
MATHEMATICS OF COMPUTATION
VOLUME 38, NUMBER 157
JANUARY 1982

Composite Exponential Approximations

By Arieh Iserles

Abstract. The Composite Exponential Approximations (CEA) arise in a natural way when

one investigates the stability and order properties of a combination of several methods for

the numerical solution of ordinary differential equations, sequentially implemented with

different step-lengths. Some general results on the order, acceptability and exponential

fitting properties of CEA are derived. The composite Padé approximations and TV-approxi-

mations are explored in detail.

1. Introduction. This paper gives a theory which is relevant to the use of variable

step-length to increase the order of solution of stiff ordinary differential systems. In

a nutshell, we explore the effect of combining two (or more) different numerical

methods with different step-lengths so that the numerical order is increased, while

other desirable properties of the solution (stability, exponential fitting, etc.) are

retained.

In its spirit this work follows two trails: first, the cyclic linear multistep methods

[2], [20]. These methods consist of sequential application of several (possibly

zero-unstable) linear multistep schemes, each with a constant step-length, so that

the outcome, as a whole, is zero-stable and of high order. Second, the use of an a

priori determined sequence of step-lengths (with a single method) in order to try

and minimize the global error [6], [7], [13], [15].

In the sequel, instead of considering the methods themselves, we examine

exponential approximations, where an exponential approximation (stability func-

tion) which corresponds to a given method is the solution by the method of the

linear scalar test equation v' = ay, y(0) = 1, with unit step-length. The theory of

these composite exponential approximations is much more general and uniform

than separate examination of each family of numerical methods, and it answers

directly the questions of A -stability and exponential fitting. As far as order is

concerned, the way back from exponential approximations to methods is less

straightforward. It will be described in detail in a forthcoming paper, which gives

particular attention to Obrechkoff, Adams-Njarsett, implicit and semiexplicit

Runge-Kutta methods. By using the given theory of composite exponential ap-

proximations that paper will develop numerical methods which have order, A-

stability and exponential fitting properties superior to the existing schemes. For

example, it will be shown that a two-stage A -stable semiexplicit Runge-Kutta

process of order four and an exponentially fitted »»-stage A -stable implicit Runge-

Kutta scheme of order 2v can be obtained.
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In Section 2 we examine the basic model of composite exponential approxima-

tions, give some existence results and explore the connection between them and the

concept of dominant pairs [8].

Section 3 is devoted to Padé approximations and to their generalizations, while

Section 4 investigates the Norsett approximations.

2. Composite Exponential Approximations. Let /?,,..., RN be rational approxi-

mations to exp(x) such that R¡(x) — exp(x) = 0(\x\p+x), i = 1, . . ., N, and let

dx . . . ,dN be arbitrary positive numbers such that 2f=1 d¡ = 1. Then the Composite

Exponential Approximation (CEA) is defined as

(2.1) R(x; dx,..., dN) = Rx(dxx)R2(d2x) ■ ■ ■ RN(dNx).

It follows that R(x; dx, . . . , dN) - exp(x) = 0(\x\p+x).

We restrict our attention to positive d¡'s, because they correspond to forward

integration of a system of ordinary differential equations.

In the sequel we will be interested in the following problems:

(i) order: whether dx, . . . , dN exist so that R(x; dx, . . . , dN) - exp(x) =

0(\x\p+s+x) for s > 1, in particular for s = N.

(ii) exponential fitting: whether dx, . . . , dN exist so that the equation

R(X; dx, . . . , dN) = exp(A) holds for certain negative real values of X.

(iii) ^-acceptability: whether the approximation R(x; dx, . . . , dN) is A-

acceptable, where we remind the reader that the exponential approximation R is A-

acceptable if \R(z)\ < 1 for every complex number z such that Re z < 0.

In some cases, when it makes sense from the numerical point of view, we

consider the less stringent ^40-acceptabihty criterion, which is that \R(x)\ < 1 for all

nonpositive real values of x.

The following sufficient condition for A -acceptability is elementary.

Lemma 1. If R¡, i = 1, . . . , N, are A-acceptable (A0-acceptable), then R is

A-acceptable (A0-acceptable).

The connection between the dks and the order of the CEA is central to the given

theory. Let

00

Rk(x) - exp(x) =    2     «*,,**>        1 <k <N,
q^p+l

and

00

R(x; </„..., dN) - exp(x) =    2     Ag(di, • • • > dN)xq.
q=p + l

Theorem 2. Let Rx, . . . , RN be rational exponential approximations of order p and

let s be an integer between 1 and p + 1. Then the CEA R(x; dx, . . . , dN) =

II^=1 Rk(dkx) is of order p + s at least if and only if

N      /r-p-l    ,_ ,y \

2     2   Sr1 a*>-<K = °'    p + i<r<p + s.
k=x \   ,=o        '■ /
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Proof. We set

N-l N-l

dk = dk/12   dp       l<k<N-l,  and   R(x; dx, . . . , dN_,) =  ü   Rk(dkx)
7=1 k=\

and assume that

oo

R{x;dx,...,dN_x)=    2     Äq{dx,...,dN_x)x«.
q=p+l

We are interested in deriving an explicit form of Aq as a function of the ak qs and

the í4's. First we find a relation between A„ and A,:
a q q

I    ¿f(¿„...,rfw)jc«
?-/> + !

=  II   Rkidkx)-e*=   u   /Jjfc S' 4*Kk*) - ex
k=l fc=l \       y=l /

{/Af-l \ oo I N-l      \1

exp   2   4-x   +    2    i,(rf„...,4-i)   S   4
\j-\ I        q=p+l \y=l       /

I ?-/>+!        ' J

Therefore, for every/? + l < <7 < 2p + I, 2JL, ^ = I implies

?-/>-i   j ¡N-i    y-<

Aqidx,...,dN)=    2     Tj-i,.^,, ...,dN-i)\  2   4      4
i-o     '• \j=l     )

Í-0       '• \y-l       /

Î

q-p-

= 2  ^{¿r'O-^W,
;=1 '•

+ (i - ¿„y-'dLA^fá,..., 4_,)}.

But firstly, the order of multiplication in the definition of R does not matter, and

so Aq is symmetric in ({akr}rKLp+i, dk), 1 < k < N. Secondly, the akqs are inde-

pendent of the dks. Hence

q-p-x   j    n

Aq(dx, ...,dN) =    2     77 2   <Xk,q-idr'(l ~ dk)'
, = 0       '•   k=\

for every p + 1 < q < 2p + 1.

Let

B,idx,...,dN)~ 2     2    ^-<V-i4   for/» + 1</• < 2p + 1.
7-o    /=o        '•
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By changing the order of summation and shift of indices, for every p + 1 < q <

2p + l,

Aqidx,...,dN)=  2   77 S «m-,4«-'2 (')(-0r<4
,_o      '• k=l r=0 v' '

q q-p-1    (_\\q-i/ ■ \     N-  S   (-■)'. 2   MM-U £<"-'*
r=p+l i = q—r \ i / fc^l

,-_p + l    W        r>!      , = 0 '• k-1

-XtrHîf «*••••*>■
Let us suppose that /?(x; </,,..., i/^) - exp(jc) = 0(x/'+î+1), where 1 < $ <

/? + 1. Then Aq(dx, . . . , dN) = 0 for every q between/? + 1 and/? + s. But

i i

¿,(</„ .. ., dN) -    2      f    _   ,.Br(di, ■ • . ,dN),       p + Kq<p + s,
r=p + l    W        O-

is a triangular nonsingular linear algebraic system. Hence Br(dx, . . . , dN) = 0,

p + l<r<p + s, which is the desired result.   □

We use the notation ak = akp+x, bk = akp+2, 1 < k < N. Hence Rk(x) — exp(x)

= akxp+x + bkxp+2 + 0(\x\p+3). By Theorem 2 the necessary and sufficient con-

dition for a CEA of order/? + 1 is

(2.2) 2 <vT'=o,
k=l

while the attainment of order/? -f- 2 is equivalent to (2.2) together with

(2.3) 2   (bk-ak)dr2 = 0.
k=i

If N = 2, the condition (2.2) immediately yields the following result.

Theorem 3. If Rk(x) - exp(x) = akxp+x + 0(xp+2), ak^0,k = l, 2, then

(a) If axa2 > 0, then no positive dks exist so that R is of order p + 1.

(b) If axa2 < 0, then there is a unique positive pair (dx, df) both in the interval

(0, 1) and given by

dx = (-a2/ax)x'^/il+(-a2/ax)x'^x\

d2 = l/{l + i-a2/ax)x^),

such that R is of order p + 1.

Proof. By an examination of (2.2) for N = 2, namely

axdp+x + a2dp+x =0,       dx + d2 - 1.    □

No transparent existence and uniqueness result with the same scope as Theorem

3 has been found for N = 3, but the following statement is useful.
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Theorem 4. Let Rkix) - exp(x) = akxp+x + bkxp+2 + 0(\x\p*3), ak ^ 0, k =

1, 2, 3, and let the products axa2 and a2a3 be negative. If either

(2.4) b2 + y+2¿?, > (1 - t])a2,       b3 + op+2b2 < (1 - o)q3,

where tj = (-a2/ax)x/{p + X), o = (-a3/a2)x/ip + X) or these two inequalities are

reversed, then dx, d2, d3 in (0, 1) exist, dx + d2 + d3 = 1, such that R is of order

p + 2.

Proof. We set for 9 in [0, 1]

d*(9) = {- (ax9p+x + a3(l - ey+x)/a2y/(>+,

d*(9) = 9/(l + d*(9)),

dï(9) = d*(9)/(l + d*(9)),

d*3i9) = il-9)/il+d*i9)\

and

R*ix; 9) = /?,(¿f (0))/?2(¿2*(0))*3(¿3*(0))-

It is easily seen that 2^_, akd^p+x(9) = 0 for every 9 <E [0, 1]. Therefore, by

(2.2), R* is of order/? + 1 for every 9 between 0 and 1.

Let £(0) = Ap+2(d\*(9), ($(9), d*(0)). By Theorem 2

m = Bp+2idti9), dîiO), d3i9)) - S  ibk - Q[dt(9)]p+2

{(¿?, - ax)9p+2 + (b2 - a2)[d*(9)]P+2 + (h - a3)(l - g/+2}

(i + d*i9)y+2

But d*(0) = a, d*(l) = tj, and so

|(0) = {b2op+2 + b3- a3(l - o)}/ (1 + oy+2,

|(1) = {¿>, + b2V»+2 - ax(l - t,)}/(1 + T,r2-

Therefore |(0)|(1) < 0, because of (2.4) and because o and tj are positive. Hence,

by the continuity of £, there is 9Q in (0, 1) such that £(0O) = 0 and R*(x, 9A is the

desired CEA of order/? + 2.   □

Observe that conditions of the form a, a, < 0 appear in both Theorems 3 and 4.

Many useful pairs of exponential approximations satisfy them.

Following [8] we call {/?,, R2) a dominant pair if for every x < 0

(2.5) min{/?,(*), R2(x)) < ex < ma.x{Rx(x), R2(x)).

If [Rx, R2} is dominant, then axa2 < 0. Hence we can use in the sequel the results

of [8] and [10] to determine some exponential approximations that satisfy the

conditions of Theorems 3 and 4.

In exponential fitting [14] the concept of dominant pairs is useful because of the

following theorem.

Theorem 5. Let [Rx, R2) be a dominant pair. Then for every x0 < 0, a d = d(xA

in (0, 1) exists such that R(x0; d, 1 — d) = exp(x0).



104 arieh iserles

Proof. (2.5) implies that exp(x0) is in the interval whose endpoints are R(x0; 0, 1)

and R(x0; 1, 0). The required result follows from the fact that R(x0; d, 1 — d) is a

continuous function of d.   □

Two possible algorithms for computing the number d(xA of Theorem 5 are:

(a) To approximate d(xA by a rational function initially and then to iterate by

the Newton-Raphson method.

(b) To use bisection, based on the fact that d(xA is in the interval [0, 1].

3. Padé-Type Approximations. The Padé approximations to exp(x) have the form

Rn,ÂX) =  Pn,ÀX)/Qn,ÂX\

,  -,       \ry      (n + m — k)\m\       k ^    , N      „    ,      ,,

P^X) » £0(n + m)M(m-k)lX'        Ô-W = ^"^

and they satisfy R„¡m(x) - exp(x) = 0(xn+m+x). According to [3], [21], and [22]

the only /I-acceptable Padé approximations are Rnn, /?n+ln, R„+2,n> n — 0, I, ...,

while all the approximations Rnm, n > m, are ^-acceptable. According to [8] the

pair {/?„ m, R„2!m2} is dominant if and only if mx + m2 is odd.

Lemma 6. The coefficients of the equation

RnJx) - exp(x) = an,m*"+m+1 + è„,mx"+m+2 + 0(x"+m+3)

have the values

= (-1)

= (-1)

„_! mini

(n + m)l(n + m + 1)! '

„_i   mini (2n2 + 2nm + 3n + m)

(n + m)l (n + m + 2)! (n + m)'

Proof. From [9] we obtain

P    (x)-exO    (x) = (-l)"-x       Y        _ml(k- m-l)l_   k
"•m{) Qnm{)     (     }      k-¿m+i   (n + m)lkl(k-n-m-iy.X-

The result follows from this equation and from

[a,j*)r1 = 1+7fT7^ + °(*2)- □

Particular cases of CEA composed of two Padé approximations can be treated

using Theorem 3 and Lemma 6. For instance the following two pairs of Padé

approximations are of interest:

(a) Rx = Rn<„, R2 = /?„+!„_,.

In this case dx = d*/i\ + d*), d2 = 1/(1 + d*), where d* = (1 + l/n)x/(2n+x\

The CEA is of order 2n + 1 and it is L-acceptable (i.e., v4-acceptable and tending

to zero as Re x —> -oo).

(°) Rl  =  Pn,n-1' R2 =  Rn-\,n-

In this case dx = d2 = \. The CEA is of order 2«. Observe that Rn-x,„ cannot be

even ^„-acceptable, but Theorem 9, which is stated and proved later, implies that

the CEA is ̂ -acceptable.
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(c) Theorem 4 gives a sufficient condition for the existence of a CEA of order

/? + 2 composed out of three Padé approximations. If Rx = R„-i,m+i, R2 — P„,m,

R3 = R„+im-i, then axa2, a2a3 < 0 and after some algebra the conditions of the

conclusion reduce to Ax(n, m)A2(n, m) > 0, where

(3.1)

/     n     vi/(»+m+i) //     n     \i/(« + « + D       \

A^^ = 2(-n7+-l) - (» - -HÍTS+r) -1)'
Il n + 1 \•/("+« + >)       \

^2(n,m) = 2-(n-m)^-^-j - lj.

It can be shown that y4,(/i, m) and /l2(n, m) are positive for every natural n and

m. Therefore a CEA of this type exists for every choice of n and m.

In particular, according to Lemma 6, ann = ¿?„„. Hence, if R„ „ appears among the

Äfc's, it is straightforward to calculate the dk's that satisfy formulae (2.2) and (2.3).

For instance, when m = n, we have the following case:

(c') Rx = /?„_,„+15 R2 = Rnn, R3 = Rn+Xn_x.

The conditions (3.1) are satisfied. Furthermore, from (2.4), (2.5) we derive

dx = d3 = d*/ (1 + 2d*),       d2 = 1/ (1 + 2d*),

where d* = (n/(2(n + l)))1/(2n+1).

Hence R(x; dx, d2, d3) is of order 2« + 2.

Lemma 7. 77ie CEA R, as defined above, is A-acceptable.

Proof. Because of the maximum modulus theorem, it is sufficient to prove that R

is analytic in the complex left half-plane and that \R(it; dx, d2, d3)\2 < 1 for every

real t. Because the dk's are positive the analyticity of the Rks in the left half-plane

would imply the analyticity of R. R2 and R3 are analytic there by [21] and [3],

respectively. The required analyticity of Rx = Ä„_,„+1 occurs if the denominator

ß„_i;„+1 has no zeros in the left half-plane. But 6B-i,n+i(z) = Pn+i,n-i(~z)> an<*

so it is sufficient to show that all the zeros of P„+Xn_x are in the left half-plane.

We proceed as in [3].

According to Wimp [23] all the zeros of the Bessel polynomial

Pia)(z) =  E   ( l)(n + a)**""*,       a>0,n>l,
k=o yK'

where (n + a)0 = 1, (n + a)k = (n + a)(n + a + 1) • • • (n + a + k - 1) for k >

1, lie in the left half-plane. Because

t»    (2* - *)! („ - 1)!     k_(n + l)l   m()
P«+x»-i(z) - Zq {2nyk[ {n_x_k)lz (2„)!   r«-'W'

it follows that Rx, and consequently R, are analytic in the left half-plane.

Let R = P/Q. When z = it the definitions of Pnm and Qnm and the identity

dx = d3 imply

\Qiit;dx,d2,d3)\2-\Piit;dx,d2,d3)\2

= le„-,,n+.(id, t)Q„M2 Oa+M-iH oi2

-|^-,,n + ,(idl t)Pn,n(i¿2 t)Pn+l,n-Ml t)\2 = 0.
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Hence the modulus of the rational function R(z) = P(z; dx, d2, d3)/Q(z; dx, d2, d3)

is one when z is on the imaginary axis, which completes the proof of the lemma.

D
(d) Rx = Rnn, R2 = Rn+ln-i, R3 = Rn+2,n-2> n > 2.

Once again (3.1) shows the existence of a CEA of order 2n + 2, while by (2.2),

(2.3) we find the coefficients

dx = d\/ (1 + d* + d*),   d2 = d*/ (1 + d* + d*),   d3 - 1/ (1 + d\ + dj),

where

dl = (2(n + 2)/ in - l))1/(2n+2).

This CEA is ̂ -acceptable.

Let us now turn our attention to exponential fitting. By Theorem 5 and [8], if

R, = R and /?, = R^^,» ■, there is a CEA of order n + m that can be

exponentially fitted to an arbitrary negative argument (because [R„¡m, /?„+i,m-i} is

a dominant pair). If n = m then the CEA is A -acceptable.

Hence we can obtain exponentially fitted L-acceptable CEA of order 2« with

denominators of degree n and n + 1. For computational reasons we are interested

in denominators of degrees as small as possible. The following example shows that

if we settle for ^-acceptability then, under some restrictions, we can obtain

exponentially fitted CEA of order 2n, where the denominator of each rational

function is of degree n.

(e) Let

(1 - <*)/>„,„_,(*) + aPn<nix)
Rx(x; a) =

R2(x; a) =

(i - «)g^-iW + «a,.w
(1- <*)Pn-x,n(x) + <*PnAX)

(1  -   <*)Qn-l,n(x) + «&,„(*)'

If a e [0, 1] then, by [4], Rx is ^-acceptable.

Furthermore, both Rks are of order 2« - 1 for any a. We will form a CEA of

order 2/j from Rx and R2. Its properties are given in Theorem 9, which depends on

the following lemma.

Lemma 8. For every a in [0, 1] the function Q(x; a) = (1 - a)Q„_Xn(x) +

aQ„„(x) has no zeros for Re x < 0.

Proof. First we use a technique from the proof of Lemma 7 to show that Qn-i,/i

has no zeros in the left half-plane. The function value ßn_i,„(z) is equal to

/>„„_,( - z), and the equation

holds, where Pj?lx is a Bessel polynomial. Therefore by [23] all the zeros of Q„_u„

are in the right half-plane.
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We continue as in [5]; by deducing a contradiction from the assumption that a*

in (0, 1) and z*, Re z* < 0, exist so that Q(z*; d*) = 0. Because Q(z; 1) = Qnn(z)

¥*■ 0 and Q(z; 0) = Qn-x„(z) ¥= 0 for every z in the left half-plane, the assumption

and the root locus property [12] imply the existence of real numbers t and â, where

á is in (0, 1), such that Q(it; a) = 0. Hence the ratio on)„('0/on-i,n('0 is real; m

other words the equation Im Q„t„(it)/Qn-lt„(it) = 0 holds, which is equivalent to

the condition

Qn.n(it) Qn-l,n(Ít)   ~  QnM Qn-lM   = 0.

Because Q„-h„(- it) and QnJ,-it) are equal to P^-iity and P„„iil), respectively,

and because the equations

Pn,n-i(x) = Pn,n(x) ~ 2(2« - i)x/>"-'"-'(^'

Qn-\,n(X) =  Qn,ÁX) + 2(2^rT) XQn-l,n-l(X)>

are given in [5], it follows that the identity

Qn,n(it)Pn-l,n-l(it) + Pn,n(it)Qn-l,n-l(it) = 0

is obtained, which is the same as the equation

Reßn,n(/Ö/>„_1>n_,(/Ö = 0.

The polynomial Re Q„t„(it)P„-i:„-i(it) is even and, according to [5], the even-

powered terms of Qn,n(z)Pn_Xn_x(z) are

2»! (*-!)!     -1   Í2n-2j-2)li2n-j-iy      ,2

t^-M)   (2n _ 2)! (2n)! zo -    ß {(n _. _ 1)!)2      (    y-

Hence Re Q„,„(it)Pn-ltn-i(it) = Enn_x(it) > 0. This contradiction completes the

proof.   □

Theorem 9. Let Rx and R2 be as defined above and let R = R(x; a) be the

corresponding CEA with dx = d2=\. Then

(i) R is A-acceptable for every a in [0, 1].

(ii) For every a, R(x; a) - exp(x) = 0(x2n+x).

(iii) x0 < 0 exists such that, for every x* < xQ, there is an a = a(x*) in [0, 1] so

that R(x*; a) = exp(x*).

Proof, (i) By Lemma 8 and the A -acceptability of /?,, R is analytic in the left

half-plane. Furthermore, for every a and real t, \R(it; ot)\ = 1. The acceptability

follows.

(ii) The order of R is proved by combining Theorem 3 and Lemma 6, using the

identity Qnm(0) = 1.

(iii) By examining coefficients we find that, for x < 0, R(x; 0) < 0 < exp(x).

Moreover, because Rix; 1) = R^ni\x) > 0, and because the decay of rational

functions is necessarily slower than that of exp(jc), we deduce Rix; 1) > exp(x)

when x«0.

Therefore x0 < 0 exists such that, for every x < x0,

R(x; 0) < exp(jc) < R(x; 1).
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Since R is continuous in a for o G [0, 1], it follows that, for every x* < Xq,

a = a(x*) exists such that R(x*, a) = exp(x*), which is the required result.   □

Table I gives the greatest x0 that is allowed by Theorem 9 for 1 < n < 10.

Table I. The x0'sfor n = 1, . . . , 10.

l

2

3
4

5

6
7

8
9

10

-4.7987

-5.5882
-10.0729
-10.9024
-15.3653
-16.2086
-20.6624
-21.5127
-25.9615
-26.8159

Remark. The principal error term (i.e., the coefficient of x2n+x in the error

expansion) of R(x; a) has the value

£» =
(-I)-'(h!)2 4n

2n + 1
-2a + 422nH2n)l)2i2n - 1)

Because a2 — 2a + 4n/(2n + 1) i= 0 for every n > 1 and real a, the order 2n

cannot be increased. Furthermore, ^„(a)! attains its minimum value when a = 1,

which corresponds to two equal steps by the diagonal Padé approximation R„n.

Therefore, as far as order and local error (but not exponential fitting) are con-

cerned, one cannot do better than the diagonal Padé approximation.

Remark. Higher orders of the CEA can be attained by allowing complex dks,

complex Rks or Rk's such that

Rk(x) - exp(x) = akx + 0(x2),       ak =£ 0.

Three examples are given:

(i) If Rx = R2 = Rx „ dx=2-+V3 i/6, a\ -1 - V3 i/6, then Rix; dx, dj =
R22(x), of order 4.

(ii) If a = 1 ± V(2n - 1)/ (2n + l)i , then the CEA of Theorem 8 is of order

2« + 1 (as can be easily verified by an examination of the principal error term).

(iii) If s =^4(V5 + 1)  - ^/4(V5 - 1) ,

<Ii(x) 1 -
4 + 5

<72(*) = 1

x,

16- 2s

6^216 - 4s + s2 - 6V2 16 - 4s + s2

Ri(x) = 1i(~x)/ql(x),    R2(x) = q2(~x)/q2(x), then

/î(x; \, |) = R33(x),   of order 6.

However, these approximations are of little or no computational value.

x2,
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4. Nefrsett Approximations. Rational approximations to exp(x) with only real

poles [17], [18] are of great importance in the numerical solution of large stiff

systems with sparse Jacobian matrices (such systems are obtained, for example,

when one solves parabolic partial differential equations by the method of lines).

They are variously called multiple Padé approximations [17], TV-approximations

[18], and restricted Padé approximations [22]. In the following we prefer the name

TV-approximations.

According to Njarsett and Wolfbrandt [18], one cannot exceed order n + 1 if an

approximation has n poles, which are all real and the degree of the numerator does

not exceed n. The best such approximation, as far as local principal error is

concerned, is attained by an approximation that has just one real pole, of multiplic-

ity n. Therefore, in the sequel we restrict our attention to this type of approxima-

tion.

Let Lf* denote the generalized Laguerre polynomial [19],

^„(li^i (-»iDjrhfA1-
where (1 + d)0 = 1, (1 + d)k = (1 + d)(2 + d) ■ ■ ■ (k + d). The usual Laguerre

polynomial of degree n is Ln = L®\

Let Sn,k(x) = Pn,k(x)/(l - akx)n, where

<4-,)      '-<*>-,?.(! (7^(")4'
and where ak is the reciprocal of the kth zero of LnX) (and so, according to [19], ak is

real and positive). Ngirsett [17] proves that Snk(x) — exp(x) = cnkxn+2 + 0(xn+3),

where

We consider in this section some CEA's that are formed from these TV-approxi-

mations.

Theorem 10. The pair [S„¡, Sn¡ } is dominant if and only if ix + i2 is odd.

Proof. According to Theorem 4.3 of [17],

(4.2) S^ix) -e* = Ln(l/ak)ex\X it/it - 1 /ak))n^e~' dt.

Because ak > 0, the integral on the right is positive for x < 0. Hence it is sufficient

to prove that the signs of the numbers {Ln(l/ak): k = 1,2, . . . , n) alternate.

According to [19],

Ln(x) = /,<'>(*) - LixUx).

Therefore the proof follows by the interlacing property of the zeros of {L^X)}^0.

D
(f) Let Rx = Snii and R2 = S„h. Because sgn cnicnii = (-1)',+'2, it follows that,

if i, + i2 is odd, then dx and d2 in (0, 1) exist, such that the CEA is of order n + 2.

In fact, according to Theorem 2,

dx = d*/(i + d*y, d2= i/(i + d*),
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where

d* = (- (a-'Ln(l/a,))/«-Ln(l/.,)))1/(n+2).

According to [22] very few TV-approximations of the type Snk are A -acceptable.

However, owing to the special structure of the sparse Jacobian matrices, which are

encountered in the numerical solution of parabolic equations by the method of

lines, ^„-acceptability is frequently a suitable stability requirement.

The ^„-acceptable approximations Snk are fully characterized in [17]. The

following lemma gives a stability result which, although less general, is sufficient

for many practical cases of CEA's of two approximations Snk.

Lemma 11. Let Rk = Sni¡¡, /', + i2 odd and bk = L„(l/a¡), k = 1, 2, where a¡k is

the ikth zero ofL(X\l/x), and let R be any CEA. Then

(i) IZ?!^! < 1 is necessary for the A„-acceptability of R.

(ii) // \bx\, \b2\ < 1, then R is A„-acceptable.

Proof, (i) According to (4.1) for x < 0

s-^(-1)"|„(^(")</"'-i"'

Hence for dx,d2 G (0, 1)

lim    \R(x; dx, d2)\ = |Z?,Z?2|,
x—>—oo

which shows that R is ,4„-acceptable only if \bxb2\ < 1.

(ii) If |¿>,|, |Z?2| < 1, then, according to [17], both SnJ¡ and Sn¡2 are ^„-acceptable.

The ^„-acceptability of R follows from Lemma 1 and Theorem 3.    □

Table II gives the acceptability properties of some composite TV-approximations

of type (f) and, for the sake of comparison, the acceptability properties of some

TV-approximations Snk. According to [17], the ^„-acceptable TV-approximations are

also /l(a)-acceptable, where R is /4(a)-acceptable if \R(z)\ < 1 for every z which

belongs to the wedge-shaped domain {z: |arg( — z)\ <a) of the complex left

half-plane [11]. It is customary to present a in degrees, rather than in radians—thus

.4(90)-acceptability corresponds to ^-acceptability. As N/zCrsett points out in [17],

for n < 9 the ^„-acceptable TV-approximations are /4(a)-acceptable with a > 89.

As is evident from Table II, the composition preserves this property.

(g) Rk = S„ ¡ ,k = l,2,ix + i2 odd, with exponential fitting.

As a consequence of Theorem 10, for every x0 < 0, d exists in (0, 1) such that

R(x0; d, 1 - d) = exp(x„). If x0 < 0 then the order is n + 1, while, in the limit as

x„ tends to zero, one gets the CEA of type (f).

(h)Rk = SnA,k = 1,2,3.
Table II shows the relative scarcity of acceptable TV-approximations and their

composite counterparts for small values of n. The least value of n for which there is

an ^„-acceptable CEA of three TV-approximations, whose order is n + 3, is n = 6,

and the coefficients of the CEA are /, = 4, i2 = 5, /3 = 6, dx = 0.59375, d2 =

0.34375, d3 = 0.06250.
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Table II

All the acceptable N-approximations SnJ and CEA { SnJ¡, S„, J for 2 < n < 7

rfi Acceptability Order

0.341081377 0.658918623
.4-ace.

.4-ace.

0.301016914 0.698983084
A-asx.

,4-ace.

0.281617072 0.718382928
A-acc.

A(99)-aoc.

0.270247623 0.729752377

^4-ace.

/<(89)-acc.

yt(89>acc.

0.262827198 0.737172802

^(89>acc.

A(Wyacc.

/l(89)-acc.

0.354081725
0.257628647

0.645918275
0.742371353

A(i9)-acc.

/((89)-acc.

j4-acc.

/4(89>acc.

An alternative approach to the TV-approximations [17] is to let the polynomial/?

in the numerator be of degree n — 1 and to require the order of the approximation

to be only n. This approach is of relevance to semiexplicit Runge-Kutta methods

[16], [1]. As is conjectured by Harsett [16] no semiexplicit Runge-Kutta method of

n stages can attain order n + 1 for even n, n > 4. The exponential approximations

of these methods are TV-approximations. Among the TV-approximations of order «

the approximations with deg/? = n — 1 have the best asymptotic acceptability

properties.

It is proven in [17] that the approximation

Tn,kix) = #»**(*)/ (1 - "kX)n

is of order n, where Pnk is the polynomial (4.1) and where ak is the reciprocal of the

kth zero of Ln. The choice of ak implies deg/? = n — 1 and Tnk(x) — exp(x) =

c.lrxn+x + 0(xn+2), where
Ln,kJ

i-iy

n + 1
■a£L«\\/ak).

Theorem 12. The pair { Tni, Tn¡ ) is dominant if and only if ix + i2 is odd.

Proof. According to Theorem 4.3 in [17]

Tnkix) -e* = L?il/ak)/ake*C t"/it - l/ak)^xe-dt.

The proof proceeds along the same lines as the proof of Theorem 10.   □

Hence, by Theorems 3 and 5 it is possible to form CEA of the TV-approximations

T„k in order to exponentially fit or increase the order, while preserving the

acceptability properties.
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