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Numerical Quadrature Rules for Some

Infinite Range Integrals

By Avram Sidi

Abstract. Recently the present author has given a new approach to numerical quadrature

and derived new numerical quadrature formulas for finite range integrals with algebraic

and/or logarithmic endpoint singularities. In the present work this approach is used to

derive new numerical quadrature formulas for integrals of the form J"£" x"e~xf(x) dx and

J"o° x"Ep(x)f(x) dx, where Ef(x) is the exponential integral. It turns out the new rules are of

interpolator/ type, their abscissas are distinct and he in the interval of integration and then-

weights, at least numerically, are positive. For fixed a the new integration rules have the

same set of abscissas for all p. Finally, the new rules seem to be at least as efficient as the

corresponding Gaussian quadrature formulas. As an extension of the above, numerical

quadrature formulas for integrals of the form ff" \x\^e'xf(x) dx too are considered.

1. Introduction. In a recent paper, [8], the present author has presented a new

approach to numerical quadrature for finite range integrals with algebraic and/or

logarithmic endpoint singularities. In particular, the integrals dealt with are of the

form

(1.1) I[f}=Cw(x)f(x)dx,

where w(x) = (1 — x)ax^(-log x)v, a + v > -l, ß > -1, and the numerical

quadrature formulas are of the form

(1.2) Ik[f] - 2 AkA*u)>       A: =1,2,....
i = i

These formulas are based on some rational approximations obtained by applying a

modification of the nonlinear sequence transformations due to Levin [6], to the

moment series of w(x) and seem to have some very important advantages which we

now summarize.

(1) The abscissas xki are all in the interval [0, 1] and their weights turn out to be

positive. For the weight functions w(x) with a + v = 0, 1, 2, . . . , that the abscis-

sas are in [0, 1] has been proved.

(2) The abscissas are the same for a large class of endpoint singularities; in

particular, they are independent of ß and depend solely on a + v. Also if a + v is a

small nonnegative integer like 0, 1,2, the abscissas xki for the case w(x) = 1 can be

taken to be the same for all these cases. In view of these remarks the weight

functions w(x) = 1, w(x) = xß, w(x) = x^(-log x), w(x) = x^(-log x)2, w(x) =

xß(l - x)x/2(-logx)-x/2, w(x) = xß(l - x)1/2(-log x)x/2, etc., all have the same

set of abscissas regardless of what ß > -1 is.
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(3) The polynomials whose zeros are the abscissas xk„ are readily available in

analytic form and the weights Aki can be computed very easily once the abscissas

have been determined.

(4) The new quadrature formulas have very strong convergence properties and

are practically as efficient as the corresponding Gaussian formulas. For more

details and numerical results the reader is referred to the paper of Sidi [8].

It turns out that the fruitful approach that has been used for the finite range

integrals can be used for some infinite range integrals, among them some integrals

that come up in radiation theory and involve the exponential integral as a weight

function.

We shall now motivate the derivation of the new quadrature formulas for infinite

range integrals in a manner analogous to that given in Sidi [8] and also exploit the

motivation for introducing some of the notation to be used in the remainder of this

work.

Let/(z) be an analytic function in every finite subset of a simply connected open

set G of the complex plane which contains the real infinite interval [0, oo). Let also

T be a Jordan curve in G, containing the interval [0, oo) in its interior. Assume that

fiz) = 0(z~") as z —» oo, z £ G, for some a > 0. Hence, by Cauchy's theorem, we

have

(1.3) ^-¿/z^r^¿tri yp z — Zq

whenever z0 is in the interior of T and the integral is taken around T in the

counterclockwise direction.

Define the infinite range integral J[f] and its /:-point numerical quadrature rule

Uf] by

w(x)f(x)dx,        Jk[f] = 2 AkJ(xkJ),
-j i-i

where the abscissas xki are distinct. Define also

(1.5) H(z)=ff^dx,       HM-i^.
Jq    z — x i=x z      xki

The function H(z) is analytic in the z-plane cut along the positive real axis [0, oo)

and has the divergent asymptotic expansion

(1.6) #00—2"^    asz^oo,z £[0, oo),
«=i z

where ju^, are the moments of w(x),
/-OO

(1.7) jli„ = I    w(x)x"~x dx,       «-1,2,_
-'o

Let Ek[f] = J[f] - Jk[f]. Then with the help of (1.3), (1.4), and (1.5) it can be
shown that, when all the xki are in the interior of T,

(1.8) \Ek[f]\ < ¿¿M*) - Hkiz)\ l/WI \dz\,

provided the integral on the right-hand side exists. Now if this integral tends to

zero as k —> oo, then Ek[f] —> 0 as k —> oo. As mentioned in [8], in order for the
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integral in (1.8) and consequently for Ek[f\ to go to zero quickly as k —» oo, we

should demand that the sequence of the rational functions Hk(z) tend to H(z)

uniformly and quickly in any region of the complex z-plane that is at a finite

positive distance from the positive real axis.

If Hk(z) is taken to be the (k — 1/k) Padé approximant to (1.6), then Jk[f] turns

out to be the /c-point Gaussian quadrature formula for /[/]. Furthermore, if

w(x) > 0 on [0, oo ), and the moments jll, satisfy Carleman's condition, see Baker

[2, Chapter 16] (this turns out to be the case for the wix) considered in this work),

then as k -> oo, Hkiz) -* //(z) uniformly, in the sense of the previous paragraph.

In the present work we shall use again a modified version of the T-transforma-

tion of Levin to obtain another sequence of rational approximations Hk(z),

k = 1,2,3, ... , to H(z) from the series (1.6) and use these Hk(z) to derive new

numerical integration rules for some useful weight functions like w(x) = xae~x,

a > -1, and w(x) = x"Ep(x), a > -l,p + a > 0, where w(x) = Exix) and w(x) =

E2(x) come up in radiation theory; see Chandrasekhar [3, Chapter 2]. We shall also

show that these new rules have advantages similar to those for the singular finite

range integrals of [8], which we have summarized at the beginning of this section.

We note that these advantages are a direct outcome of the results of a recent work

by the author, [10].

The Gaussian quadrature formulas for the weight function w(x) = x"e~x, a >

-1, have been widely tabulated. Gautschi [5] and Danloy [4] have considered the

Gaussian quadrature rules for wix) = Epix), p > 0, and have given some tables for

the case/? = 1.

2. Asymptotic Expansions for //(z). As is explained in [8], see also [7], [9], whether

or not one can apply the ^-transformation successfully to the partial sums of the

infinite series in (1.6), to obtain good approximations to //(z), depends on whether

Hiz) satisfies a relation of the form

(2.1) H(z) = "S -, + RJ(n),
; = 1 z'

where Rn depend on the moments, and fiy), as a function of the continuous

variable .y, has an asymptotic expansion of the form

(2.2) /i»~2*    as^-+oo,
/-o y

and is an infinitely differentiable function of y up to and including y = oo.

In a recent work, [10], the present author has shown that for wix) = xae'x,

a > -1, (2.1) is satisfied with

(2-3) m, =(« + /- 1)!,       i - 1, 2,...,

(2-4) *„=(a + V1)!,
nz

and

• 2 5Ï ft,A      V -ze~%jz)
(2.5) fiy) ~ 2j -:-    asj> -»• oo,

<=o       y'



130 AVRAM SIDI

where

3'.
,       i = 0, 1,(2.6) 5i.(z)=AL[ea-«)íexp(ze£)]

£-0

Furthermore, (2.1) holds for all z £ [0, oo).

In [10] it is shown that also for wix) = xaEpix), a > -1, p + a > 0, where

EP(X) = ¡T(e~x'/tp) dt is the exponential integral, whenever Re z < 0, (2.1) is

again satisfied with

m\ (a + i- 1)! .     .  .

and R„ exactly as given in (2.4), and/(y) given by

00   -ze. (z\

(2.8) /O0~2 —^    asv^oo,
,=o    y

where

(2.9)    e,(z)= —
3|'

»(1-a)i exp(ze£) [6doeil-p>° exp(-ze°)
•'o

,    i -ai,.
í-o

Although the truth of (2.1) and (2.2) for this case has been shown only for

Re z < 0, we believe that they hold also for Re z > 0.

For the details of the computations that lead to the results above, see [10].

3. Derivation of Numerical Quadrature Formulas and Some Properties. We now

take up the problem of derivation of the new numerical quadrature formulas Jk[f\

for the infinite range integrals J[f] (see (1.4)) for the weight functions wix) =

xae~x, a > -1, and wix) = xaEpix), a > -1, p + a > 0. Let A0 = 0 and Ar =

2i„ /*,/z', r - 1, 2,..., and RT = [(a + r - l)\/zr)rx, r - 1, 2,.... Applying

the modified version of the T-transformation (see Eq. (2.2) in [8]), namely,

îi-iy^Vn+jf-'A^jR^

(2U) Tk-= —k-77^-'

7 = 0 W '

to the sequence above, and cancelling a factor of z from the numerator and the

denominator, we obtain

v i_iy/M_(" +^_zn+J~xA„        À(    }UJ(« + «+/-!)! ^"'
(3-2) rM =

~oK    '{jfia + n

(n+j)k

+ /-1)
zn+J-\

Tkn is an approximation to H(z) in (1.5), obtained from the first n + k — 1 terms

of its asymptotic series (1.6). It can easily be verified that Tk„ is a rational function

in z whose numerator Nkn(z) is a polynomial of degree < n + k — 2 and whose

denominator Dkn(z) is z " ~ ' times another polynomial of degree exactly k, so that

(degree of denominator) > (degree of numerator) + 1, a property that Hk(z) must

have (see (1.5)). Hk(z) is also required to have simple poles, otherwise the numerical
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quadrature formula contains derivatives of fix) as well as fix) itself, which is

undesirable. Consequently, we must deal with the cases n = 1, 2 exclusively (the

cases n = 3, 4, ... , give rise to a multiple pole at z = 0). Therefore, it seems that

we could set Hk(z) = Tkx or Hk(z) = Tk_x2 and use these Hk(z) to derive

numerical quadrature formulas Jk[f] for the integral J[f\. For example, for n = 1,

for which we give numerical results in this paper, we have

/To      7U/(a

<i+"^

+ /)!      7      A4,(z)
(3.3) Hk(z) = rw = J

Then the abscissas xfc, are the zeros of the denominator of Tkx (which are simple as

we shall show below), and the weights Aki are the residues of TkX at the

corresponding xki, i.e.,

#* lOO
(3-4) 4u =

<fe

i = 1, . . . , k.

*k4

Remark 1. Since the denominators of TkX and Tk_x2 depend only on a and not

on p, their zeros, therefore, the abscissas xki of our new numerical quadrature

formulas, are independent of p. Consequently, we have the same set of abscissas for

the weight functions wx(x) = xae~x and w2(x) = xaEp(x), a > -1, p + a > 0.

Furthermore, the polynomials that provide us with the abscissas are known

analytically. This is not the case for the Gaussian formulas for the weight function

w2ix).

Remark 2. The advantage of the new formulas mentioned in Remark 1 are a

consequence of our flexible modification of the ^-transformation of Levin. If

Levin's /- (or u-) transformation is used to obtain the new numerical quadrature

formulas, then, since Rn = iin/z" (or Rn = n^/z"), this advantage disappears

altogether.

We demand of a good numerical quadrature formula that its abscissas be in the

interval of integration. For the formulas obtained from Hkiz) = TkX and Hkiz) =

7*-i,2 we can show that this holds true.

Theorem 3.1. Let

p.«    D„.w -j0H>t%+(::r-o,--"-'
where m is a nonnegative integer. Then

<")       Wl - <„ + „?*-,), (If ['-tf *-"<')]■
where L^\z) is the generalized Laguerre polynomial of degree k. Furthermore,

Dknmiz) has a zero of multiplicity n — 1 at z = 0 and k simple zeros in (0, oo) and

between two simple zeros of Dknmiz) there is exactly one simple zero of Dknm_xiz),

and the first positive zero of Dknmiz) is smaller than the first positive zero of

Dk,n,m-l(2)-
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Remark. Note that the case of interest in this work is m = k.

Proof. (3.6) follows from (3.5) by observing that

P.7) 1W) « (¿fS <-<)(.+'."7-.).
and identifying the summation on the right-hand side of (3.7) as

Cky„z"~xLka+n~1)(z), where Ckn = kl/(a + n + k - 1)!, see Abramowitz and

Stegun [1, p. 775]. From (3.6) it follows that

(3-8) Dk^m+X(z) = j-z[zDk^miz)],       m = 0, 1, ... .

The rest of the theorem can now be proved by induction. Set m = 0. First

Dkn0iz) = Cknz"-xLka+"~x\z), has a zero of multiplicity n-l at z = 0 and k

simple zeros x/0), i = 1, . . . , k, in (0, oo) which we order as 0 < x{0) < x20)

< • • - < jtf\ namely those of Lka + "~x\z). Therefore, DknXiz) =

(d/dz)[zDkn0(z)], by Rolle's theorem, has a zero of multiplicity n — 1 at z = 0 and

k simple zeros x$l\ i = 1, . . . , k, such that 0 < x\X) < xf* < xfp < xf) < ■ ■ • <

xil) < **0)- The rest of the proof for general m is now obvious.

By letting m = k in Theorem 3.1 we have the following result.

Corollary. TkX has k simple poles in (0, oo) and Tk_x2 has a simple pole at z = 0

and k — 1 simple poles in (0, oo); i.e., the abscissas of the numerical quadrature

formulas obtained by setting Hkiz) = TkX (or Hkiz) = Tk_X2) are distinct, real and

in (0, oo) (or in [0, oo) with z = 0 being one of them).

Theorem 3.2. Let Oj,j = 0, 1, 2, ... , be constants independent of k, and define

(3.9)  <w«> - i (,*)*- +;>"*--' - (If J„(,V"~'
77lfc7!

(3.10) G,,n>m(z) = (« + k)Gk^m_xiz) - kGk_x¡n¡m_xiz).

Proof. We can express (3.9) in the form

,m-l   A     k

w(i-rmk)*~'
- (£*)""¿(Í)*«+*>-<*-a]'"*-'-

(311)
1 — 1    Ä

The result in (3.10) now follows by noting that (*)(/c -/) = kikJl) for / =

0, . . . , k - 1 and 0 for/ = fc.

Corollary. 77ie polynomials Dk     iz) satisfy

(3.12) öfc>B>m(z) = in + k)Dknm_xiz) - kDk_hnim_xiz).

Proof. (3.12) follows from the fact that Dknnfz) are polynomials of the form of

Gknm(z) in Theorem 3.2 above with a, = (-l)J/(a + n + j — 1)!,   / = 0, 1, . . . .

Making use of Theorem 3.2, we can prove that the abscissas of our new

numerical quadrature formulas have the interlacing property like those of the

Gaussian quadrature formulas.
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Theorem 3.3. Let xx'm < x2-m < ■ < xk'm be the simple zeros of Dknm(z) in

(0, oo) isee Theorem 3.1). Then between two consecutive such zeros of Dknmiz) there

is exactly one simple zero of Dk_Xnm_x(z), m > 2.

Proof. If we let z = xk-m and z = jc/ff, 1 < j < k - 1 in (3.12) and use the fact

that Dknm(xk'm) = 0, i = j,j + 1, we obtain

(3.13) «>*_,.*—1(**") - (» + *)£M,m-i(*/C'm)>       '' -^ + !•

In Theorem 3.1 we showed that between two simple zeros of Dknm(z) in (0, oo)

there is exactly one simple zero of Dknm_x(z). Therefore, Dknm_xixkm) =£ 0,

i = 1,2, . . ., k, furthermore Dknm_xixk,m) and T>knm_xixJkf¡) have opposite signs.

This together with (3.13) implies that Dk_Xnm_xixf'm) and At-i,„,m-i(•*/+") have

opposite signs too. Therefore, T>k_Xnm_xiz) must vanish at least once in

iXjk,m, Xjkf¡). But since the number of simple zeros of At-i,n,m-i(z) on (0> °°) is

k — 1, there can be at most one zero in ixk'm, xßfj). This completes the proof of

the theorem.

Corollary. The positive abscissas of the new numerical quadrature formulas

obtained from the rational functions Tkn and Tk_Xn in = 1, 2) interlace.

Although we have not proved the positiveness of the weights Ak¿ of our new

numerical quadrature formulas, numerical results indicate that they are. This, as is

known, is an important property that numerical quadrature formulas are required

to have.

Another property of our new formulas is that they are of interpolatory type, see

[8], as the following result states.

Theorem 3.4. Let Jk[f] in (1.4) be the numerical quadrature formula associated

with Hk(z) = Tkx or Hk(z) = Tk_X2. Then

(3.14) Jk[x'] = J[x'],       Í-0, 1, ...,k- 1,

both for wx(x) = x"e~x andw2(x) = xaEp(x), a > —l,p + a > 0, and

(3.15) Jk[x'] = J[x'],       i = 0,l,...,k,

for w2(x) whenever p + a = 1.

Proof. The same as that of Theorem 4.1 and the remark following it in [8].

Remark 3. Theorems 3.1 and 3.3 and their corollaries are similar in nature to the

corresponding theorems in [8]. The result of Theorem 3.2, however, is new and

contains Eq. (4.14) in [8] as a special case.

4. Numerical Results. In this section we shall give some numerical results

obtained by taking r7A(z) = Tkx. The results for Hkiz) = Tk_X2 are about the same

as those for Hkiz) = Tkx (they both are /c-point formulas) and will not be given

here.
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Table 4.1a

The abscissas xk¡ for the new numerical quadrature formulas / J5 w{x)f(x) dx as

2*_i Ak ¡(xkj) where w(x) = x"e~x or w(x) = x"Ep(x), p > 0. These xki are the roots of the

polynomial 'equation 2^_0 ̂  = 0 with X, = (-lyCfYJ + tf/fl, j'= 0, 1, . .. , k. The
weights Aki can be computed from (4.2).

K= 2 K= 9

0. 13529666851163687313727150 + 0 0
0.1612181109236 1109013105060 + 01

15050960112736126287316630-01
6767167970311259016621197Q+0 0

0.30751072125531379720505310+0'

0.2207521317721925858938188Q-03
0.15075523932511167225267090-01
0.1215393110961793261601531Q+00
0.1773816078371063555091626Q+00
O.12525238I1360251225620565Q+01
0.2612910899971808063081661Q+0 1
0.1875885820583371555261397Q+0 1
0.8296281357170376096817307Q+0 1
0.1369620119161662071770829Q+02

K=10

0. 16667173551838058766165280-01
O.318OI818I27581165 37606890Q+00
0.. 155217101 312 18958770177650+0 1
O.I666II3329OI7I5IHOI2508OQ + OI

K= 5

0. 9892395931261595189626817Q-01
0.880126I957863189992681821Q-02
0.81031777611698199II7161O6Q-01
0.32975751189759813206795080+0 0
0.898093'136795896721077270Q+00
0.1910197820366211633196071Q+01
O.362199311OIII317167318181Q+0 1
0.6162058051822850870715952Q+0 1
0.989110058 7100 2 93119508136Q + 0 1
0.15617596718 11010950577130Q+02

0.6575286161353591336586520Q-02
0.160611231710 11510286727860+30
0.86555322271689525188751330+00
0.2651610175151163235703710 0+01
0 .6359556081008965115919768Q + 0 1

K= 6

0.2707861701816735328121392Q-02
0.8508 3O511812861O858721367Q-O1
0.5092057133688201133906909Q+0 0
0.16 3997255871113317939 39920+0 1
0. 3915218557178793725 173108Q + 01
0.81212826622919267823023150+0 1

0.1182320312657571189567133Q-O1
0.52079096231622711693951250-02
0.5315175360211059113823919Q-0 1
0.2309906558108135273776385Q+0 0
0.65336786616 11567 980 361082Q + 00
0.1117701829626337013I53597Q + OI
O.27I81OI8927326722791116 29Q + 0 1
0.I705876379525167921577051Q+01
0.7521799853216212986333288Q + 0 1
0.1153153533217611513798817Q+02
0.1756233860215826167109116Q+02

K= 7

0.1119791118528518322907199Q-02

0.1661733979291682653256681Q-01
0.31062651531172793612126580+00
0.10 582112258133053317317520+01
0.25905118852819393116160390+0 1
0.52923803397806698510599510+0 1
O.99125116576636H613190516Q + OI

K= 8

K=12

0.20191811735885028389632310-01
0.31161319710881325981811220-02
0. 3567129378808611226018581Q-0 1
O.1637038IO6I385522I3872225O+OO
0.1810226336816232 1873361230+00
0.10937197897582915613516130+0 1
0.21 1327255'1810961116773190 + 0 1
0.3658617517020350981572 865Q+0 1
0.587O2581022O83758817O9533Q + Oi
O.89I3I99910675III2116872 19Q+01
O.1321831883068720803236893Q+02
0.1952701136176789300899512Q+02

O.I99I312298II6I278I5065726Q-03
0.2621962191012572291099059Q-01
O.1916130851588193617017717Q+0 0
0.7030609671769538287123I120+0 0
0.1779188598611186 365876671Q+0 1
O.3678515091181902027910886Q+0 1
0.6758890871288327828071605Q+01
0.1180256029 3662076062522950+02
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Table 4.1b
77ie weights Akifor the new numerical quadrature formulas /" <?"*/(•*) dx st¡ 2?_, Akifixkl).

The xki are given in Table 4.1a.

0.12627902 1922551I332710371Q + 00
0.57372097807711856672896260+00

O.1719726235O722O9O175O9659Q+0O
0.6179130891839713129379293Q+0 0
O.18OO8I2873088OI78231HOI9Q + OO

0.11711691OO70 11387616O3261Q-O2
0.11127I29883070365I38311820-0 1
O.17902OO9302818O6170237I07Q+OO
0.3306862367379120398001669Q+0 0
0.29982211855176291110100720+00
0.1258263232137970000115962Q+00
0.20987060228616790681111680-01
0.10180601328389181916816570-02
0.790882308991593117719592 8Q-05

O.7226231915I10301011686515Q-01
0.1675117155079811315906701Q+0 0
0.11667038175181929950021850+0 0
0.1355558058309322516221596Q-01

0.7079022835198523811888713Q-03
0.2518832559511835517161936O-OI
0. 127122652333919572957312 10 + 00
0.27573170801597565511525910+00
0.31729711893717736615572720+00
0.1915255678928506327037918Q+0 0
0.5511876022210918056329'390-01
O.6III96310I83102872392I859O-O2
0.2281860115590512510026685Q-03
0.12155223O900131087931O377Q-O5

0.3162835785818733939581087Q-0 1
0.29610599612965109533589560+00
O.I836O9I6095U361588023OO3Q + OO
0. 179293270165807398OI12668Q + 00
O.906291I59I918008121696161Q-02

0. 1123211335995379921913036Q-01
0.18100297 31952 151172 350761Q+0 0
0 .1283 183120 89 56 9992 82 862 81Q + 0 0
0.3139891339858115185368878Q+00
0.6070052261960922735 1117180-0 1
O.17069IIII983698I799130211Q-02

O.3I2292026I5815622231121030-03
0.1592627133601990388353136O-01
0.9032697757I8177I988251322Q-01
0.2217316103387819083713623Q+00
O.30523591239698I7078321I31Q+OO
0.2107992781200027993 7002580+00
0.1025615532611178690600888Q+0 0
0.2121651709981811223918129Q-0 1
0.1806373139670102931608111Q-02
O.I7OO2892577I558126O6338810-01
0.18 15 103579313883250561201Q-06

0.65983307982391529611850860-02
0.1098218922206528668815921Q+0 0
0.3358101635281652760831161Q+0 0
O.3771311701037623536161123Q+0 0
0.15285372318896531579560510+00
0.17182133317196871919110080-01
0.2992868121178626799191178Q-03

0.16612108170229196811795790-03
0.1002537753936819105781108Q-0 1
0.61027001685553799110O6606Q-0 1
O.17I572182236OII8306828806Q+OO
O.27620127998OO637O07 9O1187Q+0 0

26701621116058516778790260+0 0
15211363583178717681119710+0 0

0.17721511191716621639101870-01
O.73IH2358I2820936I79079IOQ-O2
O.I696806037099I12766519128Q-03
0.92126530298217906310653610-05
0.26152185760136677218286860-07

O.3099870263959833613571391O-02
0.6693866681287O97397256113Q-0 1
0.2185 36200312386550207283 3Q+00
0.3727396512211109727822777Q+0 0
O.2I31885810309I3I298663758Q+OO
0.6097027090259757966351025Q-01
0.1177052871576393867391677Q-02
0.1970356152126602699576381Q-01
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Table 4.1c

The   weights   Ak¡   for   the   new   numerical   quadrature  formulas    J" ¡f Ex(x)f{x) dx

2*_i AkJ(xkJ). The xkJ are given in Table 4.1a.

K=   9

0.75802312327106998355136900+00
0.2119765767289300161186310Q+0 0

K= 3

0.155151073510833550670115OQ+00
0.198271O6881O5893981787207Q+0 0
0.1627185767857705085083121Q-01

0.1163918118700660133391151Q-0 1
0.151716552 6131532191022856Q+0 0
O.32983I187I710617676I1212OQ+OO
O.3135016910910120987195115Q+0 0
0.15300078660113058113183 30Q+00
0.3653127788601601752980879Q-01
0.3655127107196271166283388Q-02
0.1138550570113118897616681Q-03
O.510385752O651553866290788Q-O6

0.255912131II88I756I703152OQ+OO
0.55107257566618222582233390+0 0
O.1821351518398OB5887398195Q+0 0
0.7879538011861620731361579Q-02

K= 5

O.6183607395711351532866023Q-O2
O.1071091101886063889519707Q+00
0.2781153107952368919679836Q+0 0
0.3208016909050212375820361Q+00
0.2033397579357152368218197Q+0 0
0. 7082269612288027252226315Q-0 1
0. 12362I69I5865997I692331750-0 1
O.91II21100082565 1826936216Q-03
0.211321116351IO73803I17835Q-01
0.7338615093100197129121531Q-07

0.110207310 13117727117116200 + 0 0
0.189 1155383197700586633836Q+00
O.31755175228636181303560160+0 0
0.5187500819320168386321305Q-01
0.125036 1O39183110266606738Q-O2

K = 6

0.7590679381919516301071620Q-01
0.3882569073353100371717109Q+0 0
0.3910982789957150031559817Q+00
0. 13 17919666122117178283279Q + 0 0
0. 12751058936350851656250920-01
0. 188991271 1872265139523386Q-03

0.3275381530101277670293281Q-02
0.7501957711113657025016711Q-0 1
0.229111729I836910307I5191IQ+OO
O.309091353I216158917513319Q+OO
0 . 239J31222788693268973 9621 OQ + 0 0
0.11076700053308653191822650+00
0.2886106586082509163581151Q-01
0.38101387117193701678911370-02
0.2111116921911103612591808Q-03
0.3770931329109887131130059Q-05
0.98013319925691333811362120-08

0.1081165699922111055525216Q-0 1

0.2916181563121986709991837Q+0 0
O.I0317I289721512III305998OQ+OO
0.2161039357580712197 30681OQ+00
0.15098502707516016881951920-01
O.28356O89133186I5H819769IQ-02
0.2751955815556210313516167Q-01

0. 17302172296I7563323727I68Q-02
0.52258525982661257985968820-01
0.18522380513IIO866666O67I5O+OO
0.28575797362651139881 135HQ + OO
O.26070I35173677I27OI6II88IQ+OO
0.119781857272662100 10501120+00
0.52791706867788398856171920-0 1
0.1061556012916016328951721Q-01
0.1087699857196195210286065Q-02
0.1761616687998658382098153Q-01
0.65080150937212 11033391325Q-06
0.1291161026287816155793969Q-08

0.218369109523760173'317362Q-0 1
0.2 123136066706023280859898Q+00
0.3759015998592181903536997Q+OO
0.279781168969177 80117570560+0 0
0.96011317563681111991816530-01
0.13500116061178862669818870-0 1
0.5850166653776551361622037Q-03
0.3903258O817O2669973656278Q-O5
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Table 4.2
Sk and Gk stand for the k-point new rule and Gauss-Laguerre rule respectively, with w(x) =

e~x. The abscissas for Sk are those given in Table 4.1a, and the corresponding weights are given

in Table 4.1b.

Rule
|0[f] - JJfll for J[f] -  e"xf(x)dx

f(x) ■
1+x'

f(x)
1

2
4+x

f(x)
1

f(x)
1

1+x
f(x)-

2+x
f(x)

5 «

3 *

10"

10"

8 x 10

,-3

10

3 * io"

-3
4 * 10"

10" 10'

10

10
-2

10

10

-3
10

10

-4 ,-4

10

10

2 x io"

10'

,-4

2 x

3 x

IO"3 10

10
-4

10

10

-4
10

10
-4

10

10

-6
10

5 * 10

-5

1 10

10

10 10
-5

-3
10

-5
4 x 10

-6

5 x io

1 x io"

-7
10

10
-6

1 0"

'IO"

J10

"10

,-6 10

,-4 10
-6

1 x io
-6

10"

10"

10"

10
-7 ,-9

312

2 x

1 x

10

10

-6
5 x 10"

10
-7

,-9 3 x io
-9

10
10

10" 1 x 10
-5

10
-7

n-10

10"

Exact 0,62144. 0.19951.. 0.30685... 0.59634. 0.36132.. 0.5

The abscissas xki for the weight functions wx(x) = xae'x and w2(x) = xaE (x),

a > -1, p + a > 0, have been determined for different values of a and those for

a = 0, k = 2(1)12, are given in Table 4.1a. Recall that for a fixed value of a, w,(x)

and w2ix) (for all p such that a + p > 0) have the same set of abscissas obtained

by solving the polynomial equation 2*=0 fyJ = 0, where

(4.1) \ = (-iyíí,7¿±ií>^     l   U\/j(«+y)!'

Once the abscissas xki have been computed, the corresponding weights Aki can

be determined from the formula

(4.2) Ak,i —
2f-oV4
2*-0yV~

/' = 1, . . . , k.

In Table 4.2 we compare the approximations Jk[f\ obtained by using the new

numerical quadrature formulas and the corresponding Gauss-Laguerre rules with

wix) = e~x. The abscissas for the new rules are those given in Table 4.1a, and the
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Table 4.3
Sk and Gk stand for the k-point new rule and Gauss-Laguerre rule respectively with w(x) =

e~x, i.e., the singularities of the integrands fix) at x = 0 are ignored. The abscissas for Sk are

those given in Table 4.1a, and the corresponding weights are given in Table 4.1b.

Rule

|J[f] - Jk[f]| for J[f]
OJ

e"xf(x)dx

f(x) f(x) = log x f(x) = x log x f(x) - x15 f(x) = x3/2

2 x  io"

6 x  10
-1

9 x  10

3 x 10

-3
2 x  10

-2

5 x  io
-2

6 x  10"

4 x  io
-2

1  x  io
■1

2 x   io"

3 x io

4 x  10"

-2
4 x  10"

2 x  10"

7 x 10"

3 x  io"

1  x   io"

1   x  io
-2

3 x  io"

3 x  10
-3

8 x 10"

3 x 10

6 x 10

-1
1   x  10

-1

8 x io

2 x io"

-4
3 x 10"

7 x 10
-3

2 x 10"

1   x  io

3 x io"

3 x  10"

1 x  io

8 x io

3 x 10

1x10"

-5
3 x 10"

5  x 10"

8 x 10

5 x 10"

J10

J10

2 x io"

3 x io"

10"

6 x 10"

7 x  io

1   x  io"

9 x  10"

3 x 10"

3 x io"

3 x 10"

J12

312

1  x 10

3 x io

-3
2 x  io

5 x io"

-5
3 x  10"

8 x io"

4 x  io"

3 x  io
-3

4 x  io"

2 x  io"

316 2 x io
-1

4 x  io 6 x io" 2 x 10
-3

6 x  io
-5

J24 2 x io
-1

3 x  io 3 x io
-3

9 x  10" 3 x io
-5

J32 2 x 10" 2 x  io
-2

2 x 10" 6 x  io" 1 x  io"

Exact 1.7724. -0.57721. 0.032338. 0-88622. 1.3293.

corresponding weights are given in Table 4.1b. As can be seen from Table 4.2, for

analytic fix), the new rules compare favorably with the Gaussian rules and in some

cases give better results. It is worth noting that, as the singularities of fix) become

farther away from the interval of integration [0, oo), the Jk[f] become better for

both rules.

Since the abscissas of the new rules that are given in Table 4.1 do not include the

lower limit x = 0 (a property shared by the Gaussian rules too), we can use the

new rules for obtaining approximations to integrals for which fix) are singular at
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Table 4.4
Sk and Gk stand for the k-point new rule and Gaussian rule respectively with w(x) = Ex(x).

The abscissas for Sk are those given in Table 4.1a, and the corresponding weights are given in

Table 4.1c. The abscissas and weights for G10 have been taken from the \4-digit tables of

Danloy [4].

Rule

|J[f] - Jk[f]|    for J[f] =   j  E^xJfMdx

f(x)
1+x'

f(x)=-LT
4+x¿

f(x) =
X. i

e +1
fM'm f(x) =

2+x
f(x)

2 x  io" 3 x 10" 10
-4

1  x io
-2

3 x 10
-3

10

5 x io" 3 x 10" x 10" 2 x 10
-4

2x10" 3 x 10"

1  x 10
-3

1 x  io 1   x   10
-5

9 x  10" 2 x 10
-6

4 x 10"

2 x io" 4 x 10" 2 x 10" 1  x 10" 3 x 10" 2 x 10"

J10

'10

3 x 10"

1   x io"

1   x 10

2 x  10

2 x 10

6 x 10
-9

1 x 10

2 x 10"

-7
1 x io

2 x 10"

-9
2 x 10

2 x  10

-10

•10

2 x io" 1 x 10 6 x 10 1 x 10 2 x 10' 10 1   x   10
-12

Exact 0.80759. 0.22806. 0.39225. 0.74519... 0.41835... 0.69314.

x = 0, by avoiding the singularity. It turns out that the new formulas for w(x) =

e~x work very efficiently on integrals of the form /" e'xfix) dx, where the

functions fix) have algebraic or logarithmic singularities or products of them at

x = 0, especially when fix) are continuous at x = 0. For such integrals, numerous

computations have shown that the new rules are superior to the Gaussian rules

with wix) = e~x. In Table 4.3 we compare the new rules and the Gaussian rules,

with wix) = e'x, for a set of singular functions. We note that as we proceed to the

right along this table, the fix) become less and less singular.

In Table 4.4 and Table 4.5 we compare the new rules and the Gaussian rules

with wix) = Exix), on the same functions fix) that appear in Table 4.2 and Table

4.3 respectively. The abscissas for the new rules are again those given in Table 4.1a,

and the corresponding weights are given in Table 4.1c. The results for the Gaussian

rules in this case have been obtained by using the 10-point and 20-point 14-digit

tables of Danloy [4]. The conclusions from this comparison are the same as those

for the case wix) = e~x.
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Table 4.5
Sk and Gk stand for the k-point new rule and Gaussian rule respectively w'th w(x) = Ex(x);

i.e., the singularities of the integrands fix) at x = 0 are ignored. The abscissas for Sk are those

given in Table 4.1a, and the corresponding weights are given in Table 4.1c. The abscissas and

weights for Gl0 and G20 have been taken from the 14-digit tables of Danloy [4].

Rule

|J[f] - Jk[f]|      for   J[f] =    j  E^xJfCxJdx

f(x) - x-1* f(x) = log x f(x) = x log x f(x) f(x) = x3/2

1 x 100 2 x 10 3 x io" 2 x 10" 2 x 10

4 x io" 1 x io
-2

5 x 10" 2 x  io
-3

7 x  10"

1  x io
-1

1  x 10 6 x 10" 2 x io
-5

4 x  io"

8 x io" 1  x io
-3

2 x  10" 5 x io" 1  x  io"

310

310

3 x 10"

1  xio°

4 x 10

2 x io

-4
10"

3 x 10
-2

4 x io"

7 x  io"

4 x  10"

4 x io"

'12 2 x io" 3 x 10
-4

5 x 10" 3 x 10
-6

4 x 10

J20 1  x io 0 1   x   10
-1

1    x   10" 3 x  io" 10"

Exact 3.5449. -1.5772.. -0.37231. 0.59081.. 0.53173.

5. Extension to Doubly Infinite Range Integrals. In this section we deal with

integrals of the form

(5.1) /[/] = f + Xwix)fix)dx,
•'-oo

where wix) is an even function of x and all its moments exist. Then

+ °° wjx)   j_->, f00   w(x)

(5.2)   H(z)=f

where

(5.3)

z — x 0 z2- x2
dx~ 2   2j-\   asz~*°°'

■1   Z

w(x)x2'~2 dx,       i = 1,2, ... .
o

If we let w(x) = |;c|^e"* and make the change of variable x2 = t in (5.2), then

(5.4)
.oo Á0-i)/2   -t

H(z) = zf   —^     - dt
Jn>o       z1- - t
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and

(5.5) vt= (Í^-i\ + i- 1 !,       i =1,2,....

This H(z) is the same as that for w(x) = xae~x dealt with in Sections 2, 3 and 4,

with a = (ß - l)/2 and z replaced by z2. If we let A0 = 0, Ar = 2^_, vjz2i~\

r = 1,2,..., and A, = i'rz"2r+ V"1, r = 1,2, . . . , then the approximations Tkn to

//(z) are again very accurate. Of course, Tkn also in this case is a rational function

of z. Tkn has simple poles only when n = 1,2. When n = 1, the numerator of rt_n

is an odd polynomial of degree < 2k — 1 and its denominator is an even poly-

nomial of degree 2k. The zeros of the denominator are ± \/£, , i = 1,2, . . . , k,

where £,. are the zeros of üd/d^)kLks\0, s = (ß- l)/2. When n = 2 the numera-

tor of Tfc 2 is an even polynomial of degree < 2k and its denominator is an odd

polynomial of degree 2k + 1. In this case the zeros of the denominator are 0 and

±V$i, i=l,2,...,k, where £ are the positive zeros of Hd/dÇ£)k[L{ksXÇ)],

s = iß — T)/2 + 1. Therefore, the rational approximations 7^, and Tk2 give rise

to numerical quadrature formulas with 2k and 2k + 1 abscissas, respectively. For

these formulas the weights corresponding to the nonzero abscissas ± V£, are

equal. Numerical computations with these formulas show that they are practically

as efficient as the corresponding Gaussian formulas.

6. Concluding Remarks. In this work we have used the approach of Sidi [8] to

obtain new numerical quadrature formulas for infinite range integrals of the form

/" wix)fix) dx, where wix) = xaex, a > -1, or wix) = xaEpix), a > -1, a + p

> 0. We have shown that the abscissas of these formulas are related to the

generalized Laguerre polynomials and furthermore we have proved that they are

distinct and lie in the interval of integration. The weights of these formulas turn out

to be all positive although no proof of this is available yet. We have shown that

these formulas are of interpolatory type. An important advantage of these formulas

is that for a fixed value of a, both wix) = x"e~x and wix) = x"E ix) have the

same set of abscissas independent of p. Finally, comparison of the new formulas

with the Gaussian formulas indicate that the former, on the average, are better than

the latter.
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