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Analysis of Some Mixed Finite Element

Methods Related to Reduced Integration*

By Claes Johnson and Juhani Pitkäranta

Abstract. We prove error estimates for the following two mixed finite element methods related

to reduced integration: A method for Stokes' problem using rectangular elements with

piecewise bilinear approximations for the velocities and piecewise constants for the pressure,

and one method for a plate problem using bilinear approximations for transversal displace-

ment and rotations and piecewise constants for the shear stress. The main idea of the proof in

the case of Stokes' problem is to combine a weak Babuska-Brezzi type stability estimate for

the pressure with a superapproximability property for the velocities. A similar technique is

used in the case of the plate problem.

1. Introduction. In certain cases a direct application of the finite element method

gives very inaccurate results. This happens, e.g., for displacement type finite element

methods for thin plates constructed starting from a three-dimensional model of the

plate. In this case the resulting discrete models will be much too stiff and hence the

numerical results will be very poor. We find a similar phenomenon if we try to solve

Stokes' equations approximately using piecewise bilinear trial functions satisfying

the divergence zero condition exactly. The reason for failure in both cases is that in

the discrete model some of the conditions are emphasized too much at the expense

of other conditions, so that the model becomes "unbalanced" or "too stiff. In the

case of Stokes' problem too much effort is spent on satisfying the divergence zero

condition, and the approximability is seriously affected. For the plate problem too

much emphasis is put on a compatibility condition between displacements and

rotations.

In order to relax such conditions to obtain a "balanced" discrete model, the

technique of selective reduced integration (see, e.g., [11], [14]) has been used widely

in practice, often with considerable success. In the Stokes problem with bilinear trial

functions, the relaxation is achieved by requiring only the mean value over each

element (i.e., the value at the midpoint of each element) of the divergence to be zero.

In the case of a plate problem using bilinear trial functions for displacements and

rotations, the compatibility condition is relaxed and is required to hold only at the

midpoint of each element. In both cases the so modified methods perform surpris-

ingly well (however, these methods are somewhat "delicate" in the sense that extra

smoothness of the exact solution is required; cf. below).
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Methods of this type can be viewed as obtained by starting from a penalty

formulation with a penalty term for the condition to be relaxed and then using a

low-order integration formula for this term to achieve the relaxation. This is the

motivation for the term selective reduced integration. Alternatively, these methods

can be viewed (cf. [11]) as certain mixed finite element methods. In fact, this point of

view seems to be the more general one and is also the one adopted below in the

analysis.

The purpose of this note is to prove some error estimates for the two mixed

methods related to reduced integration mentioned above. The only previous result in

this direction, to our knowledge, was given in [15], where convergence (with no error

estimates) for the velocities was demonstrated for a finite-difference analogue of the

mixed method for Stokes' problem.

The analysis follows the general Unes of Babuska [1] and Brezzi [4] but contains

some nonstandard features. As usual when analyzing a mixed method, the difficulty

is to verify some type of Babuska-Brezzi stability condition in order to get control of

the "auxiliary variable" (the pressure in the case of Stokes' problem). Here we can

only control this variable in a weak mesh-dependent seminorm, and we compensate

for this weak estimate by using a "superapproximation" property for the main

variable (the velocities in Stokes' problem). In the case of Stokes' problem, we obtain

optimal rates of convergence in L2 and Hx for the velocities, i.e., 6(h2) and 6(h)

where h is the mesh length, requiring relatively little extra smoothness. For the

pressures computed in the natural way, we do not obtain any rate of convergence in

L2. However, we prove that a simple local averaging gives pressures with L2-error of

order 6(h). For the plate problem, we obtain 6(h) convergence in Hx for displace-

ments and rotations and 6(h3/2) convergence in L2 for the displacements under

considerable extra smoothness assumptions.

For simplicity we consider two model problems. The ideas used in the analysis can

probably be used also to analyze some other mixed methods related to reduced

integration such as, e.g., the analogous method for Stokes' problem using bi-

quadratic velocities and bilinear pressures, cf. [11].

An outline of the paper is as follows: Section 2 contains some preliminaries, in

Section 3 we treat Stokes' problem and in Section 4 the plate problem.

2. Preliminaries. Let us start by introducing some notation. Let x0 and y0 be

positive numbers, and let Í2 be the rectangle {(x, y) G R2: 0 < x < xQ, 0 < y < y0).

We introduce the usual Sobolev spaces Wk'p(Q), k > 0, 1 < p < oo, with norms

Ik \1/p

ii«»*,, = I 2 |or?.,
/=0

where | -\,   denotes the serninorms

For p = 2 we set Hk(Q) = Wk-2(Ü), \-\k=\ -\k¿ and H • \\k = « • llw. The same

notation will be used for the corresponding (semi)norms in [Wk'p(Q)\2. The scalar

products in L2(ü) or [L2(ß)]2 will be denoted by (-,-). As usual Hq(Q), k > 1,
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denotes the completion of C™(&) in the norm II • II* and H *(ß) denotes the dual

of//^(ß) with norm || • IL*.

Finally, by C or Cj we denote positive constants, possibly different at different

occurrences, which may depend on ß but not on any other parameter to be

introduced unless indicated explicitly.

Let us now introduce some finite element spaces to be used below. For simplicity

we shall consider partitions of the rectangle ß into rectangular elements with

uniform partitions in the x- and ^-direction. Let &°h be the uniform partition

obtained by using rectangles of size h, X h2, i.e.,

6°={tf„:/=l,...,«,;=l,...,m},

Ku = {(x, y) £ R2: (/ - 1)/», < x < ihu(j - l)h2<y<jh2),

where n = x0/hx and m = y0/h2 are integers. We shall assume that //, and h2

depend on the mesh parameter h = hx G (0,1) in such a way that hx/h2 is bounded

by positive constants from below and above independent of h. The finite element

spaces to be introduced will be associated with the partition Qh obtained by dividing

each K¡¡ G 6° into four equal subrectangles:

e„ = {A,7:i= l,...,2m,j= l,...,2n),

AtJ = {(x, y) G R2: (i - l)A,/2 < x < ihJ2, (j - l)h2/2 <y <jh2/2).

Let us now define

Sh = [v G //0'(ß) : v I a   is bilinear VA,7 G Qh ),

Th = [n G L2(ß): ft |A  is constant VA,7 £6,}.

These spaces will be the building blocks in the finite element methods below.

We will need an a priori estimate for the solution of the following biharmonic

problem:

(2.1)
A2"=/,

uEH2(ü),

where/G F"2(ß). We have (see [8], [10])

Proposition 2.1. If u is the solution of (2.1), then

ll«ll*+4<a/||fc)       -2<k<0.

3. A Mixed Method for Stokes' Problem.

3.1. Formulation of the Problem. Let us recall Stokes' equations for an incompressi-

ble viscous fluid with viscosity equal to one:

(3.1)

-Au + VA =/    inß,

divw = 0 inß,
w = 0 on 8ß,

ÍXdx = 0.
Jo
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Here u — (u¡, u2) is the velocity and X the pressure of the fluid. For simplicity we

consider Dirichlet boundary conditions, and we also normalize the pressure to have

zero mean value. In variational form (3.1) reads: Find (u, X) G [//¿(ß)]2 X L2(ß)

such that

(3.2)

(v«,Vo) - (X,divtj) = (f,v)    Vv Gf/Z^ß)]2,

(u,divu) = 0 VftGL2(ß),

Xdx = 0.

Let now Vh = [Sh]2, Qh = Th, and let us formulate the following finite element

method for Stokes' problem: Find (uh,Xh) & VhX Qh such that

(3.3a) i(vuh,w)-(Xh,divv) = (f,v)    V« £ F»,

(3.3b) {E(Xh,li) + (li,aivuh) = 0 V/ießA,

where e is a small positive parameter to be specified below. We note that (3.3) may

be considered to be a discrete analogue of the perturbed Stokes problem:

-Au + VA =/ inß,

eX + div u = 0 in ß,
m = 0 on 3ß,

corresponding to an almost incompressible fluid (cf. [3]).

To see the connection with reduced integration in (3.3) we note that, solving for Xh

in (3.3b), which can be done locally on each element, and eliminating Xh in (3.3a), we

obtain an equation for uh G Vh which can be formulated as follows:

(3-4) (V«A, Vt>) + -(divuh,divv)* = (f,v)   Vü G Vh,

where (•, •)„. indicates that the scalar product is evaluated using the simple quadra-

ture rule (one-point Gaussian quadrature):

f v dx = v(M)hxh2/4,   M midpoint of A G &h.
•'a

The solution uh G Vh of (3.4) can equivalently be characterized as the solution of the

minimization problem

(3.5) Min { -(vu, Vu) + >-(divu,divo)„ - (f,v)\.

Now, this problem can also be viewed as being obtained by using selective reduced

integration in the problem

(3.6) Min   -(vu, Vu) + — (div t>, div u ) - (/, v)   ,
dec, I l ¿e J

which is a standard penalty method for Stokes' problem. Comparing (3.5) and (3.6),

let us remark that in order to get reasonable results using (3.6) one has to tie e to the

mesh parameter h. If e is chosen too small, the penalty becomes too dominant and

the results will be useless. However, one has to choose e reasonably small to enforce

the divergence zero condition approximately. Even with optimal choice of e the
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method (3.6) will give only suboptimal rates of convergence (6(fh) in Hx-norm). On

the other hand, we shall prove below that if only e is sufficiently small (e < Ch2),

then the relaxed method (3.5) will be optimal in Hx and L2(ß) for the velocities

(6(h) and 6(h2), respectively). In particular, this method does not become ill-

conditioned as e gets small as is the case with (3.6). In practice a lower limit for eh is

set by the available machine precision. For related ideas in connection with more

conventional mixed methods see [3],

The existence of a unique solution of (3.3) for e > 0 follows from the stability

estimate

+ ytllAA"0 Cll/I

obtained by taking v = uh and ju. = Xh in (3.3). If e = 0, however, then Xh is not

uniquely determined but has two undetermined degrees of freedom (cf. Remark 3.1

below).

3.2. A Basic Error Estimate. Let us now analyze the finite element method (3.3)

considered as a discrete analogue of the unperturbed Stokes problem (3.2). We shall

then need the following a priori estimate for the solution of (3.2):

(3.7) <k + 2 +  IIXI/c+1 < CH/I k> A: = 0,1.

This estimate follows from Proposition 2.1 using the stream-function-vorticity for-

mulation of Stokes' equations.

As a first step let us introduce a special orthogonal basis for the space Qh of

piecewise constants, which will be of crucial importance in the subsequent analysis.

The basis consists of the functions £,- ■* G Qh, i = 1,.. .,n,j = 1,...,m, k = 1,...,4,

defined as follows: The support of each £ift, k = 1,... ,4, is contained in K¿¡ G Q°h,

and on K¡¡ the functions ¿,ijk, k = 1,... ,4, take the values ±1 on the four subrectan-

gles of K¡j according to the following pattern:

1 1 1

1

1 1

- 1

1 1

€,,%ij\ Viy2 *ij3 S//4

Figure 1

The values on K¡¡ of the basis functions (■ijk, k = 1,..., 4

Any n G Qh has the unique representation

ll=    2l   aiik^iik^
i,j,k

aijk G R.

Here and below we sum i,j and k from 1 to n, m and 4, respectively (in Section 4

below, k will run from 1 to 8).

Next, let us introduce the following subspaces of Qh:

Nh={liEQh:(li,dWv) = OVvEVh},

ATAX = {XEQh:(X,li) = 0\/liGNh}.
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It is easy to see that A^ is a two-dimensional space (cf. proof of Theorem 3.1 below)

with the orthogonal basis functions <p, and <p2 given by

<px(x) = 1, x Gß,

<p2(x) = (-l)'+J,    *GA,,Ge„.

We can then characterize the space Nk as follows:

Nh=\    2   «ijktifk-   2«i,l = 0,  2«,y4 = Of •
1 IJ,k i,j i,j '

The presence of the "checker-board" function <p2 in the nullspace Nh was noted in

[13].
Remark 3.1. Clearly there exists a unique pair (uh, Xh) G Vh X N¿~ that satisfies

(3.3) with e = 0. Denoting by (u\, X\) the solution of (3.3) with e > 0, we have by

(3.3b) that X\ G Nf and furthermore («J, X\) -* (üh, Xh) as e ^ 0. Thus, the

problem (3.3) with e small and positive, which after elimination of the pressure

corresponds to a positive definite linear system (cf. (3.4)), can be viewed as a

computationally convenient form of the problem (3.3) with e = 0 and the require-

ment Xh G Nf .    a

We will supply Qh with the mesh-dependent seminorm | • \h defined by

3

IH*= 2 HMo + ̂ M/O2*     m= 2 «//*£<,*>

where

and

fc=i í,y,A

Pk ~ 2jaijk£ijk> "■        I'--->4,

«—1 m—1

»(/*4)2= 2 2(«,74-«,+i,j4)2 + 2 2 (oiJ4-a{J+lAf.

Clearly, | -|A is a norm on TV^, and, comparing this norm with the L2-norm || • ||0,

we easily see that (cf. Lemma 3.3 below) for fi G Nk

(3.8) C^lliillo^l/il^QH/illo,

(3.9) IHa=Mo   ífí»4 = 0.

The proof of the basic error estimate for the method (3.3) will be based on the

following Babuska-Brezzi (cf. [1], [4]) type stability estimate:

Lemma 3.1. There is a constant C such that

(jMivu) ^ ~,    |
sup """¡Mi->Cl'il*'

for all ju G Qh such that (n, 1) = 0.

In the proof of this result we shall use the following easy-to-prove (cf. [6], [7], [8])

analogue of Lemma 3.1 obtained by replacing Qh by Q\, where Q\ consists of the

functions in Qh which are constant on each Ku G 6°, i.e., Q\ = {u,: u G Qh).
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Lemma 3.2. There is a constant C such that

(u,divü)      _„
sup      „y     »cilMllo.

for all u G Ql satisfying (u, 1) = 0.

Proof. Given ju G Q\ with (/i, 1) = 0, there exists (cf. [8]) z G [tf<J(ß)]2 sucn that

divz = /i,   inß,        llzll, < C||jn||0.

Let us now define zh G Vh by requiring

zh( P ) = wh( P )   if P is a corner or the midpoint of K,, G &°h,

jzhds=jzds   if S is a side of #(7 EC",

where wh E Vh satisfies (Vz - VwA, Vu) = 0 VdE Ka. One can then verify (cf.

[6], [8]) that zh is well defined and that

11**11, <C||z||„       (divz,,ft) = (divz,iu)   VjuGßJ.

Thus we have

it*ail»cMal»cw..^ä ii i z

which proves the lemma.    D

Proof of Lemma 3.1. Let ja = 2,7* oiuki;uk = 2* ft* be given with (/i, 1) = 0. We

first define two functions z = (zu z2) G Vh and w — (w,, h>2) G FA as follows:

[zÁP) = hau2
(i) 1    /   x if Pis the midpoint of AT,, G S?,

[z2(P) = halß

w2( P ) = h(ai+, -4 — a,- -4 )    if P is the midpoint of the common side

of^.and^+wse2.

w,( P ) = h(a,. -+, 4 — a,- -4 )    if P is the midpoint of the common side

(iii)
oftf,7andtf,v+1Ge°,

(iv) the remaining degrees of freedom of z and w are equal to zero.

It is straightforward to verify from the above definitions that the following

inequalities hold:

llxll, « CiJMo + IIjMo)'72*        HwIIi < Cho(nA),

(ft.divz) = (/i2 + u.3,divz) > C{\\n2\\2 + \\n3\\20),

and

(ju,divw)=     2 u*,divw \> Ch2o(fi4)  + (/x2 + /i3,div w)

> Cxh2o(^4f - C2{\\ti2\\2+ W^W2).
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To proceed, we need a third function g = (g,, g2) G Vh satisfying

Hgll^CllM.llo.       (lil,divg)>C\\lix\\2.

Since (/*,, 1) = (¡i, 1) = 0, the existence of g follows from Lemma 3.2.

Now, let v = z + Sw + o2g, where o G (0,1] will be chosen below. Then we have

(3.10) IMIi<C|H»,

and

(ft,divü) > C82\\fil\\2 + (C- C,8)(||/i2llo + «/»silo)

+ CÔh2o(fi4)2 + S2(li4,diyg).

To   finally  estimate  (fi4,divg),   let  gkiJ = gk(ihJ2, jh2/2),   i = 0,...,2n, j =

0,...,2m. By a straightforward computation we find that

,        n— 1    m

(/x4,divg) = -A, 2   2 («,74 - «1+1J4)
1=1  7=1

X \Sl,2i,2j-2 ~~ 2g22|2y_ 1  + g2,2/>2y)

(3.11)

+ jh2 2 2 («/,,+1,4 - «1/4)
1=1  y=l

X(Sl,2i-2,2y ~" 2£l,2j-l,2y + £l,2/,2/)>

and therefore

Í2«-l 2m-1     2 ] '/2

2      2     2  [(foy-&.,+ ij)2 + (í*v-*wj+l)2J|
¡=o   y=o k=i J

*£ C,Aa(ju4)|g|, < C2/ia(/t4)ll/i,llo.

Thus,

(/i,divt>) > (C - C71«)[«2||i*i Ho + H Mo + IIM3H0 + oh2o((i4)2].

Choosing now 8 = min( 1, C/2C,}, we see that (¡x, div v) > C | ¡i \2h, which together

with (3.10) proves the lemma.    D

Remark 3.2. From the proof of Lemma 3.1 we see that if /t G Qh and v E Vh, then

(u,divu) =s C|u|A|u|,. Therefore we can actually state that, for ¡i E Qh with

(u,i) = o,

CM> sup Í^>C2|H,    D

As a final preparation for the proof of the basic error estimate we note the

following discrete Sobolev imbedding result:

Lemma 3.3. For 1 < q < 00, there is a positive constant C(q) such that ¡/2,7 a,7 = 0,

then

'«—1 m-\ ] '/2 , , Xyq

2 2K-«,+,„)2 + 2 2(«,rv.)     >c(î)Aa/« 2|«V|«    •
1=1 y i 7-1 J l«-.7 J
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Proof. Let Q\ be another rectangular partitioning of ß, the interior nodes of which

are located at the midpoints of each Ku E 6A, and let v be the continuous piecewise

bilinear function on Q[ defined by v(P) = a¡j if P is a node of Q\ contained in K¡,

K¡j E ßA. Then it is easy to see that

/ vdx = hxh2^au = 0,
Jo . .   j

" t,j

and therefore, by Poincaré's and Sobolev's inequalities,

|t>|i.>C||i>|li>C(«)||t>||0>,,       q<oo.

Using the obvious inequalities

>Ch2M^\au\"\
) 1/1

|cll0.,>CV"|2í|«o-lí       .

r„-, 2       m-i yn

I u |, < c\ 2 2(«,; - «,+.,/) +22 («o- - «¿,,+l)
[/=i  j '  y-i J

the desired estimate follows.    D

We can now state and prove the basic error estimate for the method (3.3).

Theorem 3.1. Assume that the solution of (3.2) satisfies (u, X) E [W3,/,(ß)]2 X

i/'(ß) for some p > 1. Then if (uh, Xh) is the solution of (3.3) with 0 < e < Ch2 and

X E N^ is the orthogonal projection ofX onto N¡¡~, we have

\«-»h\l + \K-Mh^C(p)h(\»\2+\»\3,P+WM\l).

Proof. Let ä E Vh be the usual interpolant of u, and let X be the orthogonal

projection (in L2(ß)) of X onto A7^. From (3.3) and (3.2) we have the following

identity:

<$>(uh- u,Xh-X;v,n)

= %(u - Ü, X - X; v, p) - e(X, p)    V(o, M) E Vh X Qh,

where

%(u,X; v,n) - (Vu, Vu) - (X,divu) + (ju,div u) + e(X,n).

Since (XA — X, 1) = 0, there exists, by Lemma 3.1, z E Vh satisfying

||z||,<C|XA-X|A,        -(XA-X,divz)>|XA-X|2.

Let us now define

(3.13) 3í:={|Ma-«|2 + |Xa-X|2 + £||\a-X||2},/2,

and let v = uh — ü + 8z and ft = XA — X, where 8 E (0,1] will be chosen below.

Then we have

(3.14) llt>ll,: + M* + Vellrillo<C3C,
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and

®(ma- w,Xa - X; u,u)

= | uh - Ü |2 + 5 | XA - X |2 + e||XA - XIII + 8(v(uh - a), Vz)

^ (C - Cx8)\uh - ü\2 + ^8\Xh - X\2 + e\\Xh - X\\2.

Choosing now 8 = min( 1,1/2C,}, we find that

(3.15) %{uh-ü,Xh-X;v,n)^C%2.

Next, let us estimate the right-hand side of (3.12). First, using (3.14) and the

inequality e «s Ch2 together with (3.8), we see that

(3.16)
\%(u — ü, X — X; v, fi) — e(X, ft) |

<C%\u-ü\x + | (A-A, divo) | +|(ji,div(K-fi))| + CAX||X||0.

For the first term on the right-hand side we have by the well-known interpolation

theory [5]

(3.17) | u — ü |, < CA | u \2.

To estimate the second term, we note that if ithX is the orthogonal projection of A

onto Qh, then

(X,divt>) = (fl-AA,divt;)   Vu E Vh.

Therefore, using (3.14) and again a well-known result from approximation theory [5],

we obtain

(3.18) | (A - A,divo) |< C%IIA - 77AA||0 < Cx%h | A|,.

Finally, to estimate the third term on the right-hand side of (3.16), let u =

2„* ct,jkè,jk = lk nk. Using (3.9), (3.14), and (3.17), we see that

(3.19) 2 M*>div(n- w)| <C\n\h\u- û|, <C,A|h|2.
k=\

To estimate the remaining term (n4,di\(u — «)), we recall that AA and A E N¿" so

that ju, = AA — A E N^. Hence 2+a,74 = 0, and thus by Lemma 3.3 and (3.14) we

have

HMIo., < C(q)h~* | m|* < Cx(q)%h~x,       q < oo.

Thus, using Holder's inequality, we find that

(3.20)    | (u4,div(M - «)) |< CTp(u - «)IIMo., < Ct{p)%h-%(u - ö),

forp > I, l/q + l/p — 1, where

i/O ]/p

Tp(v) = h2/p-2  2 ( ¿(..4divoi/x<fy

ch2/p-2\ 2 / div t; dx dy

i>l >//>
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To estimate Tp(u — ü) we shall use the following "superapproximation" result. Here

and below Pk denotes the set of polynomials in x and y of degree at most k.

3

Lemma 3.4. Defining for v E ¿/"'(A), A E Qh,

a

■'A1

where v is the bilinear function interpolating v at the corners of the rectangle A, we have

L(v) = Ofor v E P2, so that for 1 *£/? < oo,

\L(v)\<Ch4-V»\v\w,*{àr

An analogous estimate holds with d/dx replaced by d/dy.

From Lemma 3.4 we conclude that

r,(«-£i)<CA2|»|3^,

which together with (3.19) and (3.20) shows that forp > 1

(3.21) | (/i,div(« - a)) |< C%h \u\2 + C(p)%h \ u \hp.

Estimating the right-hand side of (3.16), using (3.17), (3.18), and (3.21), and

combining the result with (3.12) and (3.15) we find that forp > 1

l«*-*h + |X„-X|A + v'êllXA-X||0

< Ck(\u\2 + \\\x) + C(p)k\u\3<p + Ch\\X\\0.

Using finally the triangle inequality recalling (3.17), we obtain the desired estimate

for | u — uh |, + | AA — A |A, and the proof of Theorem 3.1 is complete.    D

3.3. Smoothing of the Pressure. Since by (3.8) we only have || ¡x || 0 « CA~ ' | ¡x |A for

u E Nk , we cannot from Theorem 3.1 conclude any convergence rate in L2(ß) for

the pressure AA. However, by filtering out the component AA4 by a simple smoothing

procedure one can obtain 0(A )-convergence for the smoothed pressure. As an

example of such a smoothing procedure we may take the L2-projection irxh of Qh onto

OX;

i  4
»X(*. y) = 7 2 \Jk,    (x, y) e KtJ e eA°,

k=\

where Xijk, k — 1,... ,4, denotes the value of XA on the four subrectangles of K,j,

Corollary 3.1. Under the assumptions of Theorem 3.1, we have

\\X-irxXh\\0<C(p)h(\u\2 + \u\Xp+\\X\\x).

Proof. Recalling (3.9), we have, by Theorem 3.1,

lk*X*-**Allo<|XA-X|A<CA(|«|2 + |«|3,,+11X11,).

Further, since (X, 1) = 0, we have 7rAX — irxhX. Together with the classical estimate

IIX — irxhX || 0 *£ CA | X |,, this proves the desired estimate.    D

Remark. The nonconvergence in L2(ü) of the pressures XA has been observed in

practice, cf. [13], where also smoothing is discussed.    D
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3.4. An L2-Estimate for the Velocities. We shall now prove an error-estimate for the

velocities in the L2-norm. We shall not use the standard duality argument here since

this would give a weaker estimate than that proved below but instead base the

argument on another stability estimate related to the method (3.3). To state this

estimate, we need some additional mesh-dependent norms; see [2]. Let

H2'h(Ü) = {v E HX(Q): 0|A E H2(Q), A E S,},

and define on H2h(Q) the seminorm | • \2h as follows:

,2

\2.h
AeC

l/Y2(A) + h 1

èrpJsAovi
+

A,,A2eg

dv_

ov-,
ds,

where v¡ denotes the unit normal to the common boundary Sn of A, and A2 exterior

to A,. Further, we define on //0(ß) a norm la by

|u||2,A = ||t;||2 + Ä     2     / v2ds-
A,,A2e6A   si2

For vector functions v — (v,, v2), we set as usual

12,A »lli.A + l^ll.A     and I2     =<0,h 'l"0.h V2"0,h-

We recall (see [2]) that | -|2 A is actually a norm on H2'h(il) and that

(3.22) (Vm,Vu)<IImIIo,a|»|2,a.       u£H¿(Q),   v E H2h(Q),

(3.23) |«'l2.A<c'*~,|f'li> v '

(3.24) llu||0A<C||u||0, v

Let us now introduce the subspace Vh° C Vh defined by

Vh°= {üEFA;(ft,divü) = 0VitEÖA}.

The stability estimate, which we will need below, is the following

Lemma 3.5. There is a constant C such that

i^^l^cHK  v.eCsup
\2,h

Proof. Given u G Vh°, let (z, v) G [//0'(ß)]2 X L2(ß) be the solution of the

problem

— Az + Av = u    inß,

div z = 0 in ß,

(",1) = 0,

and let (zA, vh) E Vh X Q\ be an approximation of (z, v) defined by

(vzA, Vu) - (fA,divu) = (u,v)    VveVh,

(fi,divzA) = 0 VfiGÔJ,,

Then we have zA G Vh° and

(3-25)

(3.26) (VH.VzJ = Hwll2,.
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To estimate the error |z — zA|,, we note that by Lemma 3.2 the mixed method

defined by (3.25) is uniformly stable in the "classical" sense (cf. [1], [4]). Recalling

(3.7), we thus have the quasioptimal estimate

(3-27) |*-*aIi <CA(|z|2 + |j»|,)«;C1A||«||0.

Further, using (3.23), (3.27), and the approximation results of [2], we obtain, with

z G Vh being the interpolant of z,

I Zh k/i ** I zh ~ * \z,h + | z — z |2iA + | z |2iA

<CA-1|za-*Ii + C|z|2«C,(|z|2+|.v|1)<C2||«|Io.

Together with (3.26), this proves the lemma.    D

We can now prove the L2-estimate for the velocities.

Theorem 3.2. Under the assumptions of Theorem 3.1, we have

\\u-uh\\0<C(p)h2(\u\2+\u\hp+\\X\\x).

Proof. Let (zA, vh) G Vh X Q\ be another approximation to the solution (u, X) of

(3.2) defined by

(3.28)

(VzA, Vu) - (vh,divv) = (f, v)    VuGKA,

(u,divzA) =-e(XA,u) VwGg],,

("A,1) = 0.

Since (AA, 1) = 0, it follows from Lemma 3.2 that this problem has a unique

solution. More precisely, by the argument leading to (3.27) together with the usual

duality argument we have with zA being the solution of (3.28) with e = 0:

||M-zA°||0<Ot2(|M|2 + |A|,).

Further, by linearity and using once again Lemma 3.2, we conclude that writing

wh = zh- zl

KII,<C sup   |£(^'/t)|<C,e|AA|A<C2A2(||A||0+|AA-A|A),

which shows that

(3.29) ||M-zA||0<C/12(|M|2+ ||A||, + |XA-A|A).

Next, let us combine (3.3a) and (3.2) to obtain

(v(«A-zA), Vu)

(3.30)
= (v(m - zh), Vu) + (AA - A,divü) - (A - A,divu)   Vt> G Vh.

Note that, by (3.3b) and (3.28), we have uh- zA G Vh°. Therefore, we may apply

Lemma 3.5 to (3.30) to obtain

II"a~zaHo<C   suP   {(v(« - zh), Vu) + (AA - A,divt?)
»EC,0

(3.31) M2.*=i

- (X-A,divc)}.
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Let us now estimate the right-hand side of (3.31). First we notice that if fi E Vh is the

interpolant of u, we have, by (3.22) and (3.24),

(V(« - zh), Vu) < II« - zh\\0h\v\2th «S (II w - ü\\0h +\\zh- filio,*) |o|2,a

< (II« - fiH0,A + CHzA - fi||0) |U|2>A < C,(||tt- filio,* + II« - ZaHo)I»|2,A-

By [2] we have

II" ~~ «IIo,a * CA2| w|2,

and thus, recalling (3.29), we conclude that

(3.32) (v(u - zh), Vu) < CA2(|M|2 + ||A||, + | AA - A \„) \ v |2>A.

Next, to estimate the second term on the right side of (3.31), let us write

X* _ X - 2ai/*£/;■* -  2 M**^ijk^ijk
ijk k=l

so that

(XA-X,divü)= 2 Oi*,divt>),       uEFA°.
k-2

Consider now a given Kn E 6°. Let A* G Qh, k — 1,... ,4, be the four subrectangles

of K,j and define

it m = 1 /c,/   a*/\        * '  '

We note that if v E Vh, then | » |H2,*(JCj} = 0 if and only if vlKe[Pl(Kij)]2.

Together with the fact that

f  iijkàivvdxdy = 0    forA: = 2,3,t;E[P1(*:,7)]2)

we conclude via a scaling argument that for k — 2,3, v E Vh,

f t,Ukàwvdxdy Ch2 | u \Hi.HKij),       k = 2,3,vGVh, Kij E 6°h.

Thus, for k — 2,3, v E Vh we have

(u*,divü)<CA||ft*||0Í2|u|2/2.*(^)}      <CA|lMtllo|o
*    if '

2,/i-

Finally, to estimate (¡i4,di\v) we recall that (3.11) holds for any ft4 = 2,7a,74£/74

and g E Vh. Therefore, applying the easy-to-check inequality

2n-l2m-l     2

\»\h>Ch~2  2      2     2[(vk,-KJ-2vku + vk:l+J2
1=1     7=1    /c=l

+ (»*/,y-i -2u*,7 + u*,J+1)2],

u = (v^,v2) E KA,   o*i; = u*(/A,/2, ;A2/2),

we obtain

(u4,divü)<Ot2a(/I4)|t;|2jA,       v E FA
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Combining now the estimates for (¡ik, div v), k — 2,3,4, we find that

(3.33) (AA - X.divo) ^ CA| AA - À|A|t;|2,A,       * E Vh°.

We finally have to estimate the term (A — A, div v). To this end we first note that

if irh is the orthogonal projection of L2(ß) onto Qh, then

(divo - 7TAdivü)|A s 0   if ó|A E[P,(A)]2, A E e„,

so that by a scaling argument

lldivu -irhdi\v\\Li(A)< CA|u|„2(A),       A E6A,i; E Vh.

Thus, for v E Vh we have

(A — A,div«) = (A — 7rAA,divu) = (A — 7rAA,divu — irhdi\v)

,- 34x < IIA - 7rAX||0||divt; - 77Adivü||0

<C/,2|X|,(   2   M2„2(J1/2^CA2|X|,|t;|2,A.

lAe<2,, >

Combining now (3.32)-(3.34), we get

||uA-zA|lo<CA2(|M|2 + |X|,) + CA|XA-A|A.

Recalling finally (3.29) and the estimate already proved for | AA — A |A in Theorem

3.1, we obtain the stated estimate for || u — uh \\ 0 and the proof is complete.    D

Remark. Comparing the original problem (3.3) and the "simplified" problem

(3.28) obtained by replacing Qh by Q\, we note that we have the same rate of

convergence in the two cases. However, after eliminating the pressures (3.28) results

in a positive definite matrix equation with bandwidth twice as big as that obtained

from (3.3). Thus, the "simplified" problem may in fact be more costly to solve

numerically.    D

4. A Mixed Method for a Plate Problem. The biharmonic problem

lAU [A2u=f inß,

(4-1} Wow,

can be given the following variational formulation:

The solution of (4.2) satisfies (4.1) and vice versa. Introducing the auxiliary variable

<p — (<p,, <p2) = V u, we can formulate (4.2) as follows:

(4.3) Inf       fjllV<pll2-(/,u)},

<f=Vv

where V = HX(Q) and

IIV<pll2= IIV<p,llo+ IIV«p2llo,       <P = (<Pi,<f>2)-
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Enforcing here the side condition <p = V u approximately via a penalty term, we are

led to the following minimization problem:

(4.4) Inf       f|llV<pll2 + ^-||<p- VuH2-(/,,;)].
(v,<p)EVXV2 I L Lt >

Below we shall consider a discrete analogue of this problem.

Remark 4.1. The problem (4.4) corresponds in fact to the simplest model for a

moderately thin plate with thickness e, taking shear deformations into account. We

clearly obtain (4.3) as limit problem from (4.4) as e tends to zero. In most practical

problems e is not very small, and then (4.4) is a much better model for a plate than

(4.3). Below, we shall only consider the case when e is very small and compare the

solution of the discrete problem with the exact solution of (4.3). However, it is also

possible to compare the discrete solution with the solution of (4.4) without extra

complications. In fact (4.4) becomes more "well-conditioned" from a numerical

point of view as e/h increases; if e/A is (moderately) large one can apply a standard

finite element method to (4.4), replacing F by a finite-dimensional subspace, and

obtain good results.    D

Let us now introduce the following discrete analogue of (4.4) stated in [11]:

(4.5) Inf        Í^IIV<pll2 + ¿((p- Vu,9- Vu), -(/,»)),

where Vh — Sh, Wh = 5A and, as above, the middle term is evaluated using one-point

Gaussian quadrature. The corresponding discrete analogue with exact evaluation of

this term will be a useless model if e/A < 1.

The problem (4.5) can also be formulated as the following saddle-point problem:

(4.6) Inf Sup\\\\v<p\\2 + (<p-Vv,li)-^\\li\\2-(f,v)},
(v,<p)ev,,xwh lí(=Qh (Z. 2 I

where now Qh — Th2. The condition for (uh, 6h, Xh) E Vh X Wh X Qh to be a

saddle-point for the problem (4.6) reads

(4.7a) i(v0A,v<p) + (AA,(p) = O VtpE^,

(4.7b) ■ -(AA,Vu) = (/,u) VüEFa,

(4.7c) [e(Xh, ¡i) - (6h - V«a,/i) = 0,     V<i G Qh.

This is the discrete problem to be analyzed below. Let us note that the continuous

analogue of (4.7) reads

-A0 + A = 0,

divA=/,

(4-8) ieA-0+Vw = O,

(u,6) G VX V2.

If we here take e — 0 and eliminate 6 and A, we obtain the biharmonic problem

(4.1). Thus, the discrete model (4.7) to be studied can be considered to be a mixed

method for the biharmonic problem obtained starting from the formulation (4.8)

(with e = 0). Also, (4.8) is a model for a moderately thin plate with thickness e and

u, 6 and A being the vertical displacement, rotations and shear forces, respectively.
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Let us now analyze the method (4.7). First, we note that, taking (v, <p, (i) =

(uh, 6h, Xh) in (4.7), we obtain

|0A|2 + e||AA||2 = (/,uA).

Further, it is easy to see that (4.7c) determines uh uniquely in terms of 0h and AA.

Hence solutions of (4.7) are uniquely determined, and thus also existence of a

solution of (4.7) follows.

Next, let us introduce the orthogonal basis {îj,7*}, i— 1,...,«, j— l,...,m,

k — 1,..., 8, for the space Qh = Th2 defined as follows:

lyi = (íyi.O). lyi^ (°.í¿yi).

■nU3 = ( &É//2 - "im ).    I.74 = ( - Í.73. °).

%5= (°>£,72)> 1?,76 = (-¿,74.0).

Vifl - (° » ̂ 74 ). 1,78 = ( <72 . - *í¿y3 ) '

where iijk G PA are the basis functions introduced in Section 3 and

a = 2AI/(AI + A2),       b = 2h2/(hx+h2).

The basis functions r)iJk = (t]iJk\, 1//*>2) ta^e values on K¡¡ according to Figure 2

k 2 3 4

""iijk,!

and are zero outside K¡¡.

1

1

1

1

0

0

0

0

1
- 1

1
-1

Vijk2

k

Vijk,!

0 0

0

1 1 -a \   — a

a i       a

0

0

0

0

a |   — a

ö~l   — a

^ijkï
1

-   1

1 0 0 1 -1 -b

Figure 2

The local basis functions of Qh

Let us now introduce

N„= {XEQh:(X,<p- Vu) = 0Vt;G F„,V<p G Wh),

N¿-=    {AGÔA:(A,u) = OVuG^A}.

It is easy to see that Nh contains the functions p,, i = 1,... ,2n, and uJyj = 1,... ,2m,

where

J((-1)7,0)    H(x,y)eL,jeeh,l<j<2m,
Pí\x, y)    i

[(0,0) otherwise,
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and

/       ^_i(0,(-0')    if(x,y)EAueeh,l^i<2n,
uj\x> y i - \

[(0,0) otherwise.

Any X E Nh can then be represented as

2« 2m

X = 2 «,P, + 2 ßj»j + r,
1=1 y=l

where a¡, ßj E R and r = (rx, r2) satisfies

r,(x, y) = 0   if (x, y) E A„ 6 6„l<i<2»,

r2(x, y) = 0   if (x, y) E Aly- E 6*, 1 <j < 2m.

A simple computation shows that r — Cy, where C is a constant and

y(x, y) = {(-l)i+J(j - l)a,(-l)i+J+\i - l)b),

(x,y) £A,;.£ßA,l </<2fi, 1 <j<2m.

Thus, #,, is the (2n + 2m + l)-dimensional space spanned by the functions p¡, Up

and ¿p. Using this characterization of Nh, it is easy to verify that X = 2, y ̂  oLijki)ijk

belongs to A+ if and only if

(4.9)

2 a,.* = 0,    k = 4,6,l<i<n,

2«,,* = 0,    k = 5,l,\^j<m.

1/2

and

(4.10) 4aljaij6 + 4ô2''«„7 + 2(a2 + è2)2«,78 = 0.
ij ij i.j

Let us now introduce the following mesh-dependent norm on Qh:

WU = {a42 2K*)2 + a6 2   2(«,,*)2 + *8 2 2K*)2[
[     k=\ i,j k = 4,5,8  i,j k = 6J i.j J

r* =   2  «,7*1,7* GÔA-

Comparing this norm with the L2-norm, we see that

(4.11) C^llullo^llfill^CAIIullo   Vu EC*.

In the proof of the error estimates below we shall use the following three lemmas:

Lemma 4.1. There is a positive constant C such that, for all u E Nk ,

sup       (p.y-y0)  »ciimIIa-
(c^evixiy,  llqpll, + Ä   'Hull,
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Proof. Let « = 2,,,,* OL¡Jknijk E Nk be given, and define

Pk = 2«,7A:T),7jfe. k = !.•;..8,
•J

J_
«m 2«i/8> «,78 - ",78 ~ ^'

'.7

MSO - ^2T),78» i*81 - ^8 ~ ^80'
ij

so that in particular

(4.12) J*8I = 2 «,78*1.78' 2«,78 = 0-
i,j IJ

Next, let us define the functions z,w G Vh and x, f E W7, as follows:

X,(P) = Ä2«,V,

X2(P) = h2aij2    if P is the midpoint of KtJ E 6°;

z(P) = A3al73

(4.13a)

(4.13b)

fi(/>) = A2(«i+u8-«/y8)

f2(P)=A2(a,+ ly5-a,75)

>v(P) = h\ai+XJ1 - «,,7 - 4¿,y3)       KU> Ki+U e ^

if P is the midpoint

of the common side of

(4.13c)

if P is the midpoint

of the common side

)0.

f1(P) = /i2(a,74-a,J+14)

$2(P) = h2(atji - aIJ+lA)

w(P) = h\aij6 - a,J+„ + 4aß)     <*K>P K^ e <%>

(4.13d)  the remaining degress of freedom of z, w, x and f are equal to zero.

By straightforward computations we find that

(4.14a)

(4.14b)

and

(4.14c)

where

3 \ 3

(p,X+ Vz)= [ 2 Pk>X+ vz   ^ca2 2 IImJIo.
k=\ I k=\

2 M*,f| = (Pa + Ps + M8.i.f)> Ch\o2 + o2),
¿ = 4

2 /»* + r»80.Vw| >CA6a32,
<c = 4

m—1 «—1

°2 = 2 2 («i^-«,,;+1,4) + 2 2(«,75-«,+i,J,5)2.
* ;=i 1=1 j

m—1 n—1

°22 = 2 2 (o»* - *u+i*)2 + 2 2(«,78-«,+i.,8)2.
i   7=1 ,'=1   y
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and

m— 1 n— 1
\2

a32 = 2 2 (/wr+ 2 2(gur,
i    7=1 '="    7

where

(4,5) ■% = *,-<«♦« + ♦*
|&j- = «, + l,,7 - «,77 - 46^-

We shall now estimate the seminorms a, from below using the fact that since

ft E N^ the relations (4.9) and (4.10) hold. First, from (4.9) we conclude that

(4.16) o2>C{\\,x4\\2+11^111).

Next, by (4.12) and Lemma 3.3 with q = 2, we have

m—1 n—1

°22 = 2    2   («,78-«,\7+l,8)2+    2    2(«,78-«,+ l,78)2
(4.17) '  J=x ,=l  j

>ch22(àijS)2>cx\\psX-
ij

Finally, to estimate a3 from below, let us combine (4.15) and (4.9) and solve the

resulting system of equations for aiJ6 and atjl to obtain

m-\

«,76=  2 cTjfu + 2(2j-m-\)aß,
i=\

«,77

n-\

2 cj¡gij + 2(2/ - n - \)bß,        \^i<n,\^j<m,
i=\

where

cfl = -l/m, if /<;"- 1,

= 1 -//m,      if/>; - 1.

Upon substituting these expressions into (4.10), we obtain a relation of the form

m—1 n—1

2 2 cufij+ 2 2^,7&7 + ̂  = o.
i    y=l 1=1    j

where the coefficients c,7, rfy and e satisfy

|c,7|<Cw2,    \dij\<Cn2,   e3= C(«3m + nm3).

Since n < C/z~', m < CA"1, and llu8,0ll0 = CS, it follows that

f       m-l n-\ ] '/2

llM8.ollo<CA   2   2  U,)2+  2  2(g„)2        = CA«3-
[  '    7=1 '=1    7 J

Moreover, from (4.9) it follows easily that

m-\

(4.18a) 2  («,76 - «,,,+ ,,6)2 > Ch2^(aij6)2,        \<t<n,

7= 1 7
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and

(4.18b)
«-i
2 («,77 - «,+ 1,77)  > CA22 (aiy7) ,       I <y < m.

Combining the last three inequalities and recalling the definition of a3, we finally get

the following lower bound for a3:

(4-19) o2>c\h'2\\HJ2 + h2 2   2(«,7*)2j-
*■ k = 6,7   ,,y J

Now, let 8 E (0,1]  be a constant to be determined, let v = -z - 82w and

tp = x + 8Ç, and define

(-3 1 1/2

3C=   A2 2 ll^ll^ + /i4(a2 + a22)+A6o32       .

Recalling (4.13) and (4.14), we see that

(4.20)

and

Içll.+A-'llell.^CX,

(ju.tp- w)>C\h2 2 \\tik\\20 + 8h4{a2 + a2) + 82h6oi

+     2 Pk,K-S2Vw\ -K„i2Vw).

Using here the easy-to-check estimates

linio < Ch\a2 + o2)l/2,        || V w||0 < CA5o3,

together with (4.17), we find that

(/*,<?- w)>(C-C,8)\h2 2 Ilit*||g + 8A4(a,2 + a22) + fi2A6a32
[    k=\

Taking now 8 = min{ 1, C/2C,}, we obtain

(4.21) (m,<P- Vv)>C%2.

Finally, by combining (4.16), (4.17) and (4.19) noting that Il/x.8ll8 = H/^soHo "+"
II u811| 0, we see that

(4.22) %>C\\p\\h.

The desired result now follows from (4.20)-(4.22) and the proof is complete.    D

In the remaining two lemmas we shall use the following mesh-dependent semi-

norm:

l<p|o,/, = /i 2i 2  2 (<Pjdxdy
•'A

21 '/-

<P = (<P|,<P2) e[L2(ß)]'
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Lemma 4.2. There exists a positive constant C such that for all (v, <p) E Vh X Wh,

(p,tp - Vc) ,   „,

,3*        ̂ 11M Ho
C|«p- Vu|0>A.

Proof. Given (v, <p) E Vh X H^, let u E gA be defined by the relation

(m,£) = (*- vu,f)   vfeßA>

i.e.,

Then u E A^ and

(u,<p- Vu) = IImII2 = *4(AiA2)~1|9'- Vt)|2>A>CA2|<p- Vu|2A,

which proves the desired result.    D

Lemma 4.3. There is a constant C such that for (v, <p) E FA X W^

I » li <C(|9- Vu|0A+ |<p|,).

Proof. Let (u, <p) = (v,tpx, <p2) G VhX Wh be given. We denote by (x,, >>•) =

(/- l)A,/2, (j - l)h2/2 the nodes of ßA so that if A,7 E Qh, then A,7 =

{(x, y); x,<x< xi+i>yj<y<yj+l). Using the notation

. . / A, A2\
wij = w(x,, yj),     w,+1/2,;+1/2 = w\ x¡ + -4 , y• + y j,

we have if (x,, j^) is an interior node

Vi
3»

OX ) i+\/2,j+\/2        h
- jr(v'J ~ Vi+i<J+ ü'v+i ~ °i+ij+i) + Vi,,+1/2,7+1/2.

(^ " ë), + ,/2J+,/2 " ^ " %+' + 0,+ ,'J " Vl+UJ+l) + <P2-'+'/2,7+./2-

Adding these equations we find that

(4.23) vi+\,j+\ ~ vij =fi+1/2,7+1/2'

where

/:
1

A,<p, + A2tp2-A,  <p
9.x

A2  <p2
dv

ay

Since u vanishes on the boundary of ñ, we have u,_y+l , = 0 if / >/' and thus (4.23)

may be solved for o¡¡ to obtain

7-1

vij =   ¿i ft-r+ 1/ZJ-V+1/2;
r=l

Therefore, since j < CA   ',

(»/+1J - »iy)2 =

7-1

2,   (/-r+3/2,/-i»+l/2       Ji-v+\/2,j-v+\/2)\
= 1 J

7-1

C«        2,   (/--» + 3/2,7-f+I/2 — Ii-r+1/2,j-v+\/2)
v=\
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An analogous estimate can be derived for (u,j+I — u,7)2, and, combining these

estimates and summing over i and /, we see that

|u|2<C2{(u,+ 1,,-u,7)2+(t),,7+1-t;,7)2}

•J

Cl»       2, \(fi + 3/2,j+\/2 ~ /■+1/2,7+1/2/    "*" V7/+1/2,7 + 3/2 _ 7,+1/2,/+I/2)   )■

<>J

— I"

'.7

Further, by the definition of / we have

( 7/+3/2,/+1/2       fi+ 1/2,7+ 1/2)

1+17+1

<ca22 2 {(<Pi,*+i,/-<Pu/)2 + (<P2,*+i,/-<P2i/)2}
k = i l=j

k_. |x vjí / k+\/¿,j+i/¿        y Vf 1 k+1/2,7+1/2

insaiuauiy iui V7,+ l/2,/+3/2      7,+1/2,7+1/2J2

2

&W*+i

Together with a similar inequality for (77+1/2,7+3/2 ~/»+1/2,7+1/2)2 tms shows that

2

|u|2 < c2 2 {(^,,+1,7 - <Pk,ijf + (^,,7+. - <p*,7)2}
i,j k=\

+cl\U-£)' + (*-£)' 1
fi\\ dxh+1/2,7+1/2     \ V/i+1/2,7+ 1/2J

<C,(|«)P|2+|«p- Vu|2,A),

and the desired estimate follows.    D

We can now state and prove the main result of this section.

Theorem 4.1. There is a constant C such that if u E //5(fi) satisfies (4.1) and

(uh,Xh,9h) is the solution of the discrete problem (4.7), with 0 < e < Ch2, then

\\u - uh\\, + \\Vu - eh\\^ Ch\\u\\5.

Proof. Let (ü, 6) E FA X Wh be the usual interpolant of (u, 6), and let X be the

orthogonal projection of X onto Nk . By (4.7) and (4.8) (with e = 0 in (4.8)), we have

%{uh -ü,eh- d, Xh - X; v, (¡p, u)

(4.24) =<$,(u-ü,6-6,X-X;v, <p, p) - e(X, p) = RH,

\/(v,<p,p)EVhX WhXQh,

where 6 = V u, X = Ad and

<S(t<,0, X;u,«p,u) = (vO, V<p) - (u,0- V«) + (X,<p- Vu) + e(X,p).

Since by (4.7c) XA E Nk , we have XA - X E Nk   and thus, by Lemma 4.1, there

exists (z,S)eVhXWh such that

(4.25) iizii, + iii:ii,<ciix»-Xy*,

(4.26) (f-Vz,XA-X)>||XA-X||2.

Further, by Lemma 4.2 and (4.11), there exists v E Nk such that

(4.27) \\v\\h<Ch\\v\\v<Cx\Bh-6- V(ma-m)|0.a,
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(4.28) - (r, eh-è- v(uh - Ö)) >\ 6h-6- v(uh - ü) |2,A.

Let now v = uh — ü + 8z, <p — 6h — 6 + 5f and p — Xh — X + 8v, where 8 E (0,1]

will be chosen below. Then, by Lemma 4.3 and the fact that e < CA2, we have

(4.29)

where

(4.30)

loll, + IMi+ IWIa +Alio* CDC,

%={\oh-è\2 + \eh-è- v(uh-ü)\lh

+ \\Xh-X\\2 + e\\Xh-X\\20y/2.

Further, by (4.25)-(4.28) we have

®(«A - ü, 6h - d, Xh - X; v, <p, p)

>\0h-è\2 + 8\0h-è-v(uh-u) |2,A + 8||XA - XII2

+ e||XA - XII2 + (v(0„ - 6 ), 8 Vf) + e(XA - X, 8v)

> (1 - C8) | 0h - 6\2 + 0(1 - CoeA"2) | 6h - S - v(uA - ü) |2,„

+ iÔ||XA-X||2 + ^||XA-À||2.

Choosing here 5 = min(l, 1/2C, A2/2Ce), we obtain

(4.31) %{uh -ü,0h- 0, Xh - X; v, <p, p) > C%2.

Next, to estimate the right-hand side RH of (4.24) we first note that, by standard

interpolation theory and (4.29),

(4.32) | ( v(0 - 9 ), V<p) \< C%h \0\2< C%h \ u |3,

and also by (4.29)

(4.33) |e(X,u)|<C0C/¡7||X|lo<C13CA|M|3.

Further, denoting by 7rAX the orthogonal projection of X onto Qh, we have by (4.29)

| (X — X, <p — Vu) | = | (X — iThX,<p - Vu) |

^4'34^ «CXIIX-^XIIo^C^AIXI, <Cx%h\u\4.

To estimate \(p,6 — 0 — V(u — w)) |, we first note that, by the definition of the

seminorm II • IIA and the fact that || u II A < C%, we have

(4.35) (p,O-0- v(u-ü))\<C%2 Tk(0-0- v(«-«)),
k=\

where

r,(x) = A-2

r2(x) = h->

r,(x) = A-<

2 JkixY
k=\

1/2

2  ykUY
LA = 4,5,8

2    JÁXY

1/2

.k = 6J

,2_2        ,    ,2

•J

1/2

7fc( x )2 = 2 y¡jÁ x )2,     Y«7*(x ) = /  XV.jkdxdy
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Now, recalling Lemma 3.4, we easily find that

17,(0-0- v(u-ü))<Ch~2\   2

«SCA(|0|2 + |«|3>.

To estimate T2 and T3 we shall use the following additional superapproximation

result, the proof of which is straightforward.

Lemma 4.4. Defining for (v, <p) E HX(Q) X [HX(Q)]2, Q = Ktj E ß°,

Lk(v><P) = /"(<P-<P- V(v-v))t]ljkdxdy,
JQ

where denotes the piecewise bilinear interpolant on the four subrectangles of Ktp we

have

Lk(v,q>) =0    if(v,q>) EP3X [P2]2fork = 4,5,8,

Lk(v, <p) = 0   if(v, <p) Ê P4 X [P3]2for k = 6,7,

so íAaí

| Lt(o, <p) |< C/t4(| 0 |„,(ß) + | u \„<(Q))   for k = 4,5, 8,

\Lk(v,tp)\<Ch5(\6\H*,Q) + \u\H,IQ))   fork = 6,7.

From this lemma we conclude that

r2(0-0~- v(w- ñ))<CA(|0|3 + |w|4),

T3(0 - S - V(« - ü)) < Ch(\ B\4 + \u |5).

Recalling (4.32)-(4.35) and collecting the estimates for T,, we obtain RH <

C9CA||ti||5, which combined with (4.24) and (4.31) shows that % < Ch\\u\\5. To-

gether with the usual estimates for the interpolation error this proves the stated

estimates for || u — uh II, and || 0 — 0A ||,, and the proof is complete.    D

Remark. In general the solution u of (4.1) does not belong to //5(ñ). The best one

can say in general is that u E Hs(ü) with s ~ 4.73 if / E Hx(ti) (cf. [12]). Replacing

II • Il h by a slightly stronger norm, which is possible since in the proof of Lemma 4.1

Sobolev imbedding was used, one can prove that the statement of Theorem 4.1 holds

with ||u|| 5 replaced by 11/11,.    D

Remark. Due to the extra smoothness required to use the superapproximability

property, the usual duality argument does not give the optimal rate 6(h2) for

\\u — uh||0. It is possible to prove that ||u — uhII0 < CA3/2 II / II,.    D
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