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Optimal Error Properties of Finite Element Methods

for Second Order Elliptic Dirichlet Problems

By Arthur G. Werschulz

Abstract. We use the informational approach of Traub and Wozniakowski [9] to study the

variational form of the second order elliptic Dirichlet problem Lu = f on ü C RN. For

/e Hr(Q), where r> -1, a quasi-uniform finite element method using n linear functional

Jaf^i nas T7'(ß)-norm error 0(n~<r+1)/'v). We prove that it is asymptotically optimal among

all methods using any information consisting of any n linear functionals. An analogous result

holds if L is of order 2m: if / € Hr(ü), where r 3» -m, then there is a finite element method

whose //"(fi)-norm error is %(n~(2m+r~a)/N) for 0 « a « m, and this is asymptotically

optimal; thus, the optimal error improves as m increases. If the integrals jaf'p, are approxi-

mated by using n evaluations off, then there is a finite element method with quadrature with

7i'(ß)-norm error 0(n~r/N) where r > N/2. We show that when N = 1, there is no method

using n function evaluations whose error is better than ñ(n~r); thus for N = 1, the finite

element method with quadrature is asymptotically optimal among all methods using n

evaluations of /.

1. Introduction. This paper deals with the optimal solution of second order elliptic

partial differential equations. We wish to consider the variational form of the

problem

(1.1) Lu=f   infiCR",       u = 0   on3fi,

(see Section 2). Suppose that we evaluate information of the form

<"> [u*.//*•}•
If / E Hr(Q), where r > -1, there exists a finite element method using (1.2) whose

error is 0(n~(r+ X)/N) when measured in the i/'(ß) norm.

We first wish to answer two questions. First, is there another method using the

information (1.2) whose error is better than that of this finite element method?

Second, is the information (1.2) the best possible information using n linear

functionals? That is, is there another set of n linear functionals such that the best

algorithm using this new information is better than the best algorithm using (1.2)? In

Section 3, we asymptotically answer these questions in the negative. Thus,this finite

element method is of asymptotically optimal error among all algorithms, linear or

nonlinear, using any n linear functionals whatsoever.

We also report some results on 2mth order elliptic problems which indicate that

as m increases, the same number of evaluations yields smaller Hm(ü) error.
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402 ARTHUR G. WERSCHULZ

Although this is true, the cost of constructing an approximation of given accuracy

increases with m. In addition, we consider the case where the error is measured by

other Sobolev norms.

In many cases, the information (1.2) is not available. Then /a /»//, is approximated

via a quadrature rule using function evaluations. Thus, instead of using the "optimal"

information of size n, we use the standard information

(1-3) {/(*,),...,/(*„)},

of size n. If / E Hr(£l), r > N/2, there exists a finite element method with quadra-

ture using (1.2) with x¡ = x** whose error is 0(n~r/N).

We now pose two additional questions. First, is there another method using

{f(x**),...,f(x**)} whose error is better than this finite element method with

quadrature? Second, is there a choice of x¡ in (1.3) which yields better error than the

choice x¡ = x**l In Section 4, we asymptotically answer these questions in the

negative for the case N = 1. That is, the finite element method with quadrature is

asymptotically of optimal error among all algorithms using information of the form

(1.3), and the choice x¡ — xf* is asymptotically optimal. Since we have this negative

result for a particular value of A^, there is no way of improving the error behavior for

allN.

In what follows, we use the ß and © notations, as well as the more commonly used

O and o notations. We say that f(n) = Q(g(n)) if g(n) — 0(f(n)), and /(«) =

@(g(n)) if/(«) = 0(g(n)) and f(n) = ß(g(«)).

2. The Variational Dirichlet Problem. In what follows, we use the standard

notation for Sobolev spaces, norms, etc., found in Ciarlet [3]. Let ñ be a C°° region

in R^, and let A : fi -> RNXN and q: ß -> RN be given C°° mappings. We assume that

A is uniformly positive definite, i.e., A is symmetric and there exists y > 0 such that

(2.1) iTA(x)^yei,       VÉER'WxEñ.

We also assume that q(x) s* 0 for x E fi.

We define a bilinear form B: H^Q) X H^tt) ^ R by

(2.2) B(v,w):=  [ [(AVv)TVw +qvw\.

Recall that //~'(ñ) is the completion of C°°(ß) under the norm

(2.3) H-.=     sup
^e//'(£2)

1*11,

see pp. 18 ff. of Babuska and Aziz [2].

Then the variational Dirichlet problem is defined as follows. Let r> -1. For a

given/ E Hr(Q), find u = Sf€ /f<J(fi) satisfying

(2.4) B(u,v) = (/,«):=  ffv   Vu G 7f,j(ß).

Using the assumptions on A and q, the Lax-Milgram theorem implies that S:

Hr(ti) — H¿(Q) is a bounded linear operator, and is a Hubert space isomorphism of

/r~'(0)0^0/7,5(0).
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For future reference, we recall the "shift theorem" (see Chapter 3 of Babuska and

Aziz [2]) which states that since / E Hr(Q), Sf E H¿(Q) n Hr+2(ü); moreover,

there is a positive constant o, independent off, for which

(2.5) o-'\\Sf\\r+2< U/H, <o||S/||,+2.

If r > N/2, then the shift theorem and the Sobolev embedding theorem yield that

the solution u = Sf to the variational Dirichlet problem will be the solution to the

classical Dirichlet problem, that is,

(2.6) - div(Av u) + qu=f   in Q

and

(2.7) m = 0   on 9ß.

3. Asymptotically Optimal Error Algorithms Using General Information. We first

consider a class of finite element methods for the problem (2.4). For further details,

see Babuska and Aziz [2] or Ciarlet [3]. These methods have the property that their

explicit dependence on /in (2.4) is actually through the information

(3.1) *:/:=[(/.«■) ••■(/,*r)r,
where the functions yp": ß -» R will be defined below.

Given r as in Section 2, we define the integer k by

(3.2) *:=M + 1.
and let {SA}A>o be a quasi-uniform family of finite element subspaces of //0'(ß) of

degree k. That is, there is a quasi-uniform family {?FA}A>0 of triangulations of ß such

that vh E §A if and only if vh is continuous, vh vanishes on 3ß, and vh \E E 9k for

each subregion E of 9"A. Here,

(3.3) <$k := spanixf1 • • • x%": a, > 0 integer,  2 «, < ki.

(Of course, since we have assumed that ß is C°°, we must make an additional

assumption about the boundary elements to guarantee that §A C i/¿(ñ); for exam-

ple, we may use curved elements as in [4].) Let

(3.4) n = n(h) := dimSA.

We choose the degrees of freedom of the finite element space to consist of function

values at a setp",... ,p" E ß of nodes. Then any vh E %h may be written uniquely as

(3-5) v„(x) = J vh(Pj*)y(x),

where the basis functions i|",.. .,^„" are chosen so that ^"(P") = °¡j, so mat meY

have "small" support. The quasi-uniformity implies that there exists C > 0 for which

(3.6) h^Cn~x/N.

We briefly recall the approximation properties of the finite element space. Let

v E Hr+2(Q). We then define the §h-projection Phv of v by

(3.7) II»-'»»Hi =   inC  II»-»J i-
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Then there is a C > 0, independent of v and h, such that

(3.8) \\v - P.vl < Chr+x\\v\\r+2.

The finite element method <p* is defined as follows. Given / E /T(ß), define

u\ E SA for h > 0 by

(3-9) B(ut,vh) = (f,vh)   Vt>AeSA.

Writing

(3.10) «¡¡(x) = 2 «t^*)'
y=i

we see that u = [«, ■ • • un]Tis the solution to

(3.11) Ku = b,

where the entries K¡¡ and bi of the matrix K and the vector b are, respectively, given

by

(3.12) K(j=3(W,W),       b, = (f,*i).

Since the dependence of u* on / is only through the information (3.1), the finite

element method

(3.13) ?*(%„*/) ■= K,

where n = dim Sn, is well defined.

We now consider the error of the finite element method. Since (2.4) and (3.9) yield

(3.14) ||« - ugfl, < C inf   ||u - oj, = C||« - jt>||,

(for positive C independent of u and h), we may use (2.5) and (3.8) to find that there

is a C > 0 for which

(3.15) \\u-u*h\\^Chr+x\\f\\r.

So (3.6) yields a positive ß, independent of n and /, for which

(3.16) ||5/-<p*(9i:/)||1=ll«-«,*l|1<^^+1)/iVll/llr.

We are now ready to consider the two main problems of this section.

(i) Is there any other "algorithm" (method) using the information (3.1) whose

error behavior is better than that of the finite element method?

(ii) Is there another choice of "information" using n linear functionals of /which is

better than the information (3.1)? That is, is there an algorithm using this other

information and having better error than the best algorithm using (3.1)?

In order to answer these questions, we must specify our intuitive ideas of

"algorithm" and "information" more precisely. We use the notions and results found

in Part A of Traub and Wozniakowski [9], hereafter referred to as "Part A."

By information of cardinality n, we mean a linear operator

(3.17) 91: Hr(Q) -* R"

such that

(3.18) %f=[Lif--LJ]T
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for some linear functionals L,,... ,L„ on //r(ß). Clearly the information 91* given

by (3.1) is of cardinality n.

Let % be the unit ball of /T(ß), i.e.,

(3.19) % = BHr(Q):= {/E Hr(Q): \\f\\r < 1}.

An algorithm <p using the information 91 is a (not-necessarily linear) operator tp:

%(%) -» //o(S2). This means that (¡p approximates 5/ for / E ?F0 by using only the

information 91/.

The (HWii-ca.se) error of an algorithm <p using 91 is defined to be

(3.20) e(<p):=  sup ||S/-«p(9t,/)||,.

Results from Chapters 2 and 3 of Part A yield

(3.21) mfe(<p) = r(%,S,%):=       sup       ||Sz||,,
f zeker9ln%

where the infimum is over all <p using 91 and r(%, S,%) is called the radius of

information. We say that <p is an optimal error algorithm using 91 if qp uses 91 and

(3.22) e(<p) = r(%,S,%).

Our second task is to determine, for each positive integer n, the most "relevant"

information of cardinality n. Define the nth minimal radius of information by

(3.23) r(n, S, %) := inf r(9l, S, %),
51

where the infimum is over all 91 of cardinality n. Then 91 of cardinality n is an «th

optimal information if

(3.24) r(%,S,%) = r(n,S,%).

Recall that for a balanced subset A- of a Hilbert space H, the Kolmogorov n-width

dn( X, H) is defined to be

(3.25) dn(X, H) := ini sup   inf  ||jc — ̂ ||w,
An    XBX  yGAn

where An is a subspace of // with dimension at most n. Using results from Chapters

2 and 3 of Part A, it is easy to see that

(3-26) r(n,S,%)=dn{s(%),Hx(Sl)).

(This may also be viewed as a consequence of the equality of the Kolmogorov and

Gelfand «-widths in a reflexive Banach space.)

We are now ready to prove the main result of this section.

Theorem 3.1. Let % be the unit ball of Hr(Q,), r > -1. Then the following hold:

(j) r(n, S,%) = @(n-ir+X)/N) as n -» oo.

(ii) The information 9t* given by (3.1) is an nth asymptotically optimal information

(i.e., optimal to within a constant factor), and

r(cJi*,S,%)^e(n-(r+x^N)   asn^oo.

(Hi) The finite element method <p* given by (3.13) is an asymptotically optimal

algorithm using 91* and

e(9*) = e(n-<r+,>/*).    D
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Proof. Let

(3.27) X:= {u(EH¿+2(n):\\u\\r+2^o-x},

where o is from (2.5). We claim that

(3.28) XCS(%).

Indeed, let u E X. Since r > -1, u E i/0'(ß) n iT+2(ß), and there exists a unique

/ E Hr(Q) such that 5/ = w. Moreover,

(3.29) |«j|rt.2 <•»"',

so that the shift theorem (2.5) yields

(3.30) ll/llr<ollS/||r+2<l,

i.e., / E §Q. Thus u = Sf E S(%), i.e., (3.28) holds as claimed. Since for any Hubert

space H and any balanced subsets X and Y of H we have

(3.31) *cy-»dI,(jr;,J5r)<rf11(y,Jï),

we see that (3.28) implies

(3.32) d„{s(%), Hx(Sl)) > d„{X, Hx(ü)) = o-xdn{BH¿+2(Q), H¿(Q)).

Using a proof analogous to that of Theorem 2.5.1 of BabuSka and Aziz [2], there is a

positive constant C, independent of n, such that

(3.33) dn{BH¿-+2(íl), i/0'(ß)) > c[dn{BHx0(ü), L2(ö))]

Jerome [5], [6] uses a result on pp. 250-251 of Agmon [1] to show

(3.34) dn(BHx(Q), L2(ß)) > (Cnyl/N(l + o(l)),

where

vol(O)_

r+\

(3.35) C = 2V/2r(i + Ay 2) '

r denoting the gamma function. Thus (3.26), (3.32), (3.33), and (3.34) imply that

there exists a positive constant a, independent of n, such that

(3.36) r(n,S,%)>an-^+X)/N.

On the other hand, (3.13), (3.16), (3.19), and (3.20) imply that

(3.37) e«)<j8n-<r+,)/w.

The theorem follows from (3.36) and (3.37).    D

Thus the finite element method using n evaluations of (/, \p") is (asymptotically)

of optimal error among all algorithms using any information of cardinality n.

Remark 3.1. Consider the case r = -1. Then % is the unit ball of i/"'(ß). Note

that 77~'(ß) is the largest space for which a solution in Hq(ü) is guaranteed.

However, there exists C> 0, independent of n, such that

(3.38) r(n,S,BH-x(Q))>C.

Thus in the case where the problem data have only enough smoothness to guarantee

that the solution operator S is well defined and bounded, the problem is not
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convergent, in the sense that for no sequence {<p„}^=1 of algorithms, with <pn using

any information of cardinality n, do we have

(3.39) lime(tpj = 0.
n-*oo

More generally, it may be shown that if % is the unit ball of a Hilbert space H which

is embedded in H_1(0), then the problem is convergent (in the sense that (3.39)

holds for some sequence of algorithms) if and only if the embedding of H into

H~ x(ü) is compact.    D

Remark 3.2. The information operator 91 given by (3.9) is defined by n linear

functionals which are given independent of the choice of problem datum /. It is

possible to consider "adaptive" information operators for which the evaluation of

the z'th functional depends on the previous / — 1 evaluations. However, there is no

advantage in doing this; when ÍF0 is the unit ball of a Hilbert space, the nth minimal

radius is the same for nonadaptive information of the form (3.9) and for adaptive

information. (See Section 2.7 of Part A.)    D

Remark 3.3. We generalize this problem by considering a 2mtb. order elliptic

problem and measuring the error in the Ha(ü) norm (0 < a < m). Then for r> -m,

a finite element algorithm using subspaces of //0m(ß) which are piecewise polynomi-

als of degree \r\ + 2m — 1 is asymptotically optimal, and

(3.40) r(n,S,BHr(Ü)) = @(n-(2m+r-a)/N)   asn^oo.

This holds because the shift theorem for a 2mth order elliptic operator takes the

form

(3.41) o-x\\f\\r<\\Sf\\r+2m^o\\f\\r   V/E//Tß).

Hence the asymptotic error improves whenever a decreases, m increases, N de-

creases, or r increases.    D

Remark 3.4. For further information on optimal interpolation-error estimates and

elliptic problems, the reader may wish to consult Schultz [7].    D

We now consider the computational complexity of using the finite element

method <p* to find an e-approximation to S, that is, of computing the value of

<p*(9L*/) such that

(3.42) e(tf)<e.

By (iii) of Theorem 3.1, we must choose

(3.43) n = n*(e) = ®(e-N^r+V)

in order to guarantee (3.42). The algorithm <p* is linear, i.e., of the form

(3.44) <(9i;/)= 2 (/,+;)&.
1=1

where g, E H¿(Q) are independent of/. If one agrees to use preconditioning, i.e., to

compute the g, in advance and not count the cost of this precomputation, then the

computation of <¡p*(91*/)(j¡:) at any point x E ß requires the computation of n inner

products and 2n — 1 arithmetic operations. Assuming that the inner products can be

computed in finite time, we conclude that the complexity of using the finite element

method to compute an e-approximation is

(3.45) COMP(<p„*,e) = 0(£^/(r+1))    as e -> 0,
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where n is given by (3.43). Since <p* is (to within a constant factor) an optimal error

algorithm, it follows that

(3.46) COMP(S, e) = inf comp(<p, £) = e(«"~*r/(,+ I>).
f

Thus the finite element method is (to within a constant factor) of optimal complex-

ity.

We wish to comment on the preconditioning assumption. In practice, such

preconditioning is not often done. One reason is that for large n, the complexity of

the precomputation may be prohibitively expensive, since it essentially amounts to

computing the L {/-factorization of the matrix K of (3.11), while not counting the

cost of this factorization. Another reason is that one often wishes to fix / and let n

increase (e.g., in Richardson extrapolation); in this case, one cannot take advantage

of the linearity of tp*.

The computation of tp* now requires the solution of the large sparse linear system

(3.11). This is, in itself, an active area of research. However, for N — 1, the stiffness

matrix K in (3.11) is a banded matrix whose bandwidth depends only on r, and not

on n; this system can be solved in 0(n) operations, even if precomputing is not

allowed. So for the case N = I, the result (3.45) still holds, and the finite element

method is still an asymptotically optimal-complexity algorithm.

Remark 3.5. Similarly, one can show that if preconditioning is allowed, there is a

finite element method for a 2wth order elliptic problem which computes an

e-approximation in the Ha(il) norm (0 < a < m) with complexity Q(e~N/<-2m+r~a'>),

and that this is an asymptotically optimal-complexity algorithm for computing an

e-approximation. Hence, the complexity decreases as m increases and a decreases.

However, if one does not want to use preconditioning, this optimal complexity is no

longer apparent, since the combinatory complexity increases with m.    D

4. Asymptotically Optimal Error Algorithms Using Standard Information. The

asymptotically optimal algorithms <p* described in the last section require the

calculation of the inner products

(4.1) (/,*/) =//*/       (!</<»)

for/ E Hr(ü). In practice, this is often accomplished by replacing the integral with a

quadrature rule using function evaluations f(x¡), xi E ß. Recall that the Sobolev

embedding theorem requires that r > N/2 in order for f(x¡) to be defined for all

/E#r(ß).

In this section, we use r from Section 2 to define an integer k by

(4.2) k:=\r}.

Chapter 4.1 of [3] considers the use of a quadrature rule which is exact for piecewise

polynomials of degree at most 2 k — 2 to approximate the inner products occurring

in a finite element method using a quasi-uniform family {SA}A>0- Here SA is a finite

element subspace of //¿(ß) of degree k; the degrees of freedom of SA once again

consist of function evaluations at nodes in ß. Denoting the approximate solution

thus produced by k**, Ciarlet [3] shows that there is a positive constant C,

independent of u and h, such that

(4.3) ||h - y**ll> <C/i'11/IIr.
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The dependence of w** on/is only through the information

(4.4) 91**/:= [/(***)• ••/(xr)f,

where

(4.5) « = e(dimSj.

The finite element method with quadrature

(4.6) <p**(9ir/) := «r
is well defined. Moreover, if we let % — BHr(ü) be the unit ball of Hr(Ü) (see

(3.19)), then (3.20), (4.3), (4.6), and the quasi-uniformity of {SA}A>0 imply that there

exists a positive constant ß, independent of n, such that

(4.7) e(<p**) < fin-'/".

Note that this error bound is worse than the optimal error when using the

information 91*. This leads us to consider the main problems of this section.

(i) Is there any other algorithm using 91** whose error is better than that of <p**?

(ii) Is there another choice of the points xf* in (4.4) which yields an optimal error

algorithm with smaller error?

We show that (i) and (ii) cannot be generally answered in the affirmative, by

considering the case N = 1. In this case, ß becomes an open interval / on the real

line. Defining, for xx,... ,xn E /, the standard information 9ln by

(4-8) <&„/■= [f(xl)--f(x„)]T,

we have

Theorem 4.1. Let I be a real interval, and let % be the unit ball of Hr(I), r > {.

Then the following hold:

(i) For any xx,...,x„ E /,

r(GJin,S,%) = ü(n~r)    asn^oo.

(ii) The points x¡ = xf* are asymptotically optimal, i.e.,

'(<%**, S,%) = e(      inf      r(%n,S,%)\ =e(/T>)   as n 00.

(iii) 77te finite element method with quadrature, <p**, is an asymptotically optimal

error using 91**, and

e(tp**) = @(n~r)    as n^ ce.    □

Proof. Since 5 is a Hilbert space isomorphism of //"'(/) onto //(j(ß), and

Hr(I) C H~ X(I), there is a positive constant C such that

(4.9) R&Hi>C|4h    Vz £#'(/).

Using (2.3) and choosing i// E HX(I) to be the constant function \¡>(x) = 1, we see

that

(4.10) \\z\\-^\I\~V1 [ z     VzE/T(ß),
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\I\ denoting the length of /. Let xx,...,xn E / be given. Then (3.21), (4.9), and

(4.10) imply that there is a positive constant C, independent of n and the selection of

xx,...,x„ E /, suchthat

(4.11) r(%n,S,%)>C L
for any z E ker 9l„ n %.

We now define a function z E ker 9l„ n % which gives the desired result. Let x0

and xn+] denote the left and right endpoints of /, and assume without loss of

generality that xx < x2< • ■ ■ < xn. Define

(4.12) h,--=xl+x-Xi       (0<i<n)

and

(4.13) />,:=H*,+ *,+ >)       (0 </<«).

Define z on / by

(4.14)   z(x):--

(**„)'.

(iM'x Pr
x-Pi

i*,

where

(4.15)

t\t.     Y    I Pi+i      x

\       2"i+l

(i*-)'.

(2r-l)\

x0<x<p0,

Pj<x<xl+X,   0</' <n - 1,

Xi+i<*<ft+i,   0</<«-l,

\(r- D'r-'o[(--l)!]2

One may verify that

x(o) = i,     x(i) = o,
xO)(0) = xO)(l) = 0 (Kj<r-1),

X'(y)<0 for0<j><l,

x(.v)>0 for 0 <>><!,

(4.16)

andsoxECr"'([0, l])and

(4.17) P-= fx(y)dy>0.

Since f is piecewise polynomial and globally C-\ zE//r(/). A straightforward

computation yields

1 1/2

(4.18)

where

(4.19)

Wr*>a
"    / l/l \2r_2v2   lili

L7-0  v

h~ [\u\y)dy.
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Note that a is a fixed positive constant, independent of n and the choice of

x„... ,x„ E /. Now define

(4.20) z(x) := z(x)/a.

Since z vanishes at xx,... ,x„ and (4.18) holds, we have z E ker 9l„ D %.

Another computation yields

(4.21)

where

/,-:('+*>(!*•)' +ï,|, (!»,)' +¿o+^í*-.)
r+l

n+1

x2a,+i,
1=0

(4.22) X := —^—min(l + w,2u).
a2

Since

(4-23) "2^=14
1=0

one may use elementary calculus to show that

n+l I    \I\    \r

(4.24) 2^.^-LL.
(=0

Using (4.11), (4.21), and (4.24), there is an a > 0, independent of n and xx,...,x„,

such that

(4.25) r(%n,S,%)>an~r,

proving (i). The rest of the theorem follows from (i) and (4.7) with N = 1.    D

Remark 4.1. In Section 6.4 of Part A, it is shown that the optimal error for using n

evaluations in numerical quadrature is ®(n~r), provided % = {/ E Hr(I):

Il /(r)Il L (i) * 1 }• We are not able to make direct use of this fact, because we must

use %= {f El Hr(I): 11/11,. < 1} in order to take advantage of the shift theorem

(2.5). Similarly, the results of Sobolev [8] may be used to show that in N dimensions,

the optimal error for using n evaluations in numerical quadrature is @(n~r/N),

provided % consists of all/ E Hr(Q) whose Hr(Q) seminorm is bounded by a fixed

constant. In order to use the shift theorem (2.5), we must assume that the Hr(Q)

norm is bounded by a fixed constant. Of course, the two hypotheses are not

interchangeable, since any element of '?,._, has //r(ß) seminorm of zero; thus we

cannot immediately use the results of Sobolev [8] to yield a lower bound of

Q(n~r/N) for quadrature (and thus, for the problem S) in N dimensions for general

N.    D

Remark 4.2. Suppose % is the unit ball of C(ß) under the sup norm. Since the

information 9ln/is well defined for any / E C(ß), we wish to consider the optimal

error behavior of algorithms <p using 9l„ in this case. Since % is not the unit ball of a

Hilbert space, (3.21) is not guaranteed to hold. However, it is known that

(4.26) mte(<p) = c      sup       ||S/||,,
f /eker9L„n%
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where c E [1,2]; see Sections 2.2 and 2.3 of Part A. It is possible to show that

(4.27) sup       115/11, = sup HS/||,=: k.
fekei 9L„n% fe%

Since S ¥= 0, k is a positive constant, independent of n. Thus for any algorithm <p„

using 9l„, we see that

(4.28) K<e(<p„)<2K,

no matter how large n is. So, the minimal condition for 9l„ to be defined is not

strong enough to yield an algorithm of error less than k.    D

Remark 4.3. Once again, we could consider adaptive standard information, in

which x¡ depends on Xj and f(xj) for 1 <j <i — 1. However, for any adaptive

standard information 9t, one can find nonadaptive standard information 9lnon of

the same cardinality for which /•(9lnon, 5, %) < r(%, S, %); see Section 2.7 of Part

A. So, adaptive information does not help.    D

From Theorems 3.1 and 4.1, we easily conclude

Corollary 4.1. For N = 1,

r(®,'„S,%)

This shows how much we lose by using the standard information 91** instead of

the asymptotically optimal information 91*. The penalty goes to infinity with n.

We now consider the computational complexity of using the finite element

method with quadrature tp** to find an e-approximation to S, in the case N = 1. By

(iii) of Theorem 4.1, to guarantee e(<p**) < e, we require

(4.29) n = @(e~x</r)    ase^O.

Again, <p** is linear, i.e., there exist g, E //,J(ß) such that

(4.30) vr{9L?f) = 2 /(*,)&•
i=i

Let us agree to compute the g, in advance and not count the cost of this precomputa-

tion. Assume that the evaluation of / has finite cost. We then find that the

complexity of using the finite element method with quadrature to compute an

e-approximation is

(4.31) COMP(ff**,e) = e(e-,/r)    as e - 0.

Since <p** is a linear asymptotically optimal error algorithm using 9l„, we see that

(4.32) COMP**(S, e) = inf COMP(<p, e) = 0(e~1/r)    as e -» 0,
v

the infimum being taken over all 9 using standard information and for which

e(<p) < e. Thus <p** is of asymptotically optimal complexity using standard informa-

tion

Comparing (3.47) and (4.32), we find

Corollary 4.2. IfN = 1,

COMP**(5, e) / / M 1/c-2+r>\

COMP(S, e) <)
as e -» 0.    Ü
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This is another measure of the penalty for using standard information.

As in Section 3, we may wish to avoid the assumption of preconditioning. In this

case, we once again have to solve a linear system involving a large sparse matrix.

However, for the case N = 1, which we are considering, the linear system may once

again be solved in linear time, so that the finite element method with quadrature

remains an asymptotically optimal complexity algorithm.

Acknowledgements. I would like to thank Dr. A. B. Stephens (U. S. Naval Surface

Weapons Center, White Oak, Maryland), Professor J. F. Traub (Columbia Univer-

sity), and Professor H. Wozniakowski (University of Warsaw) for their comments,

suggestions, and encouragement. In addition, I would like to thank the referee for

his suggestions, which improved the exposition of this paper.

Department of Mathematics

University of Maryland Baltimore County

Catonsville, Maryland 21228

1. S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, N. J., 1965.

2. I. Babuska & A. K. Aziz, "Survey lectures on the mathematical foundations of the finite element

method," in The Mathematical Foundations of the Finite Element Method with Applications to Partial

Differential Equations (A. K. Aziz, ed.), Academic Press, New York, 1972.

3. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

4. P. G. Ciarlet & P. A. Raviart, "Interpolation theory over curved elements," Comput. Methods

Appl. Mech. Engrg., v. 1, 1972, pp. 217-249.
5. J. W. Jerome, "Asymptotic estimates of the L2 «-width," J. Math. Anal. Appl., v. 22, 1968, pp.

449-464.

6. J. W. Jerome, "On «-widths in Sobolev spaces and elliptic boundary value problems," /. Math. Anal.

Appl., v. 29, 1970, pp. 201-215.

7. M. H. Schultz, "Multivariate spline functions and elliptic problems," in Approximation with Special

Emphasis on Spline Functions (J. J. Schoenberg, ed.). Academic Press, New York, 1969.

8. S. L. Sobolev, "On the order of convergence of cubature formulas," Dokl. Akad. Nauk SSSR, v.

162, 1965, pp. 1005-1008; English transi, in Soviet Math. Dokl., v. 6, 1965, pp. 808-812.

9. J. F. Traub & H. Wozniakowski, A General Theory of Optimal Algorithms, Academic Press, New

York, 1980.


