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Polynomial Formulation of Second

Derivative Multistep Methods

By S. Kowali* and G. K. Gupta

Abstract. Following the work of Enright [3] there has been interest in studying second

derivative methods for solving stiff ordinary differential equations. Successful implementa-

tions of second derivative methods have been reported by Enright [3], Sacks-Davis [9], [10]

and Addison[l].

Wallace and Gupta [13] have suggested a polynomial formulation of the usual first-derivative

multistep methods. Recently Skeel [11] has shown the equivalence of several formulations of

multistep methods. The work of Wallace and Gupta [13] was extended to second derivative

methods by Gupta [8]. The present work includes results obtained regarding the stability and

truncation error of second derivative methods using the polynomial formulation.

1. Introduction. In this paper we extend the work of Wallace and Gupta [13] to

include second derivative methods. Gupta [8] presented a polynomial formulation of

second derivative methods and we study that formulation further. The present paper

also discusses an erroneous result obtained in Gupta [8, Eq. (3.7)]. In addition, the

present paper explores the relationship between the blended formulas of Skeel and

Kong [12] and the second derivative methods of Enright [3] when Nordsieck

representation is used. We also discuss some advantages of the polynomial formula-

tion.

Let the ordinary differential equations being solved be

(1.1) y'=f(x, v),       v(0)=yo       (y being a vector).

The second derivative linear multistep formulas may be represented as follows

using the conventional representation

k k k

(1-2) yn+\ = 2 «/Ä+i-i + h 2 ßiy'n+\-t + h2 S YiJC-M-i-
(=1 i=0 i=0

If ail y, are zero, then we get the usual linear multistep formulas. Enright [3] studied

formulas which have all y, zero except y0 and found stiffly-stable formulas up to

order 9. Enright [4] presents another set of second derivative formulas which are

stiffly stable up to order 7. The first set of Enright's formulas has been implemented

by Enright [3], Sacks-Davis [9], [10], and Addison [1].

We first discuss the polynomial formulation in the next section. We then discuss

analysis of stability in Section 3 and of truncation error in Section 4 if the
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polynomial formulation is used. Section 5 deals with implementation of second

derivative formulas using the Nordsieck representation. The following section looks

at blended formulas and in Section 7 we present some new second derivative

formulas using the polynomial formulation.

2. Polynomial Formulation. Wallace and Gupta [ 13] present a polynomial formula-

tion of the usual first-derivative multistep methods. This formulation has the

advantage that it leads naturally to algorithms using the Nordsieck representation of

multistep formulas.

Gupta [8] extended the polynomial formulation of Wallace and Gupta to include

second derivative methods. For completeness, we reproduce the example discussed

in that paper and, in fact, we discuss it here in somewhat more detail.

Example. The example deals with the following third order formula of Enright [3]:

(2.1) jvh =yn + |u + 2/„+,) - IU'-h-

The above formula has been derived by obtaining a polynomial approximation

P„+ x(x) of degree 3 to the solution such that

.        , Pn+\(Xn)=yn> '.'+lW=/|.
(2-2)

°n+\\Xn+\) ~ /n+l> "n+ \\Xn+ 1 ) —/n+l-

We now briefly derive P„+X(x) because this leads to the polynomial formulation we

are seeking.

Let

xn+x — 0,       h — I,   and

(2 3)

Applying the conditions (2.2) we get

a
— i

n+l 3 (3j,n+/„ + 2/„+1 -i/„'+i),        bn+x =/„+,,
(2.4)

Cn+1  ~ lfn+\> "n+l  ~~  3 (/n ~ /n+l    '   /n+l)-

Now we can see that

Pn+Áx = xn+\ = 0) =y„+i =a„+i =\{3yn+fn + 2fn+x -U'+i).

which is the same as the third order formula (2.1) except that h= \.

We may also derive an expression for Pn(x) in a similar way and obtain

Pn(x) = a„ + bn(x + 1) + c„(x + \f + d„(x + l)3,

where an, bn,... etc. are the same as an+x, bn+x,... etc. defined in (2.4) except that n

is replaced by n — 1. We are interested in finding Pn+X(x) — P„(x) because this

leads to the Nordsieck polynomial representation. Let us say that

(2.5) P„+Ax) = P„(x) + Cn+x(x).

Then we get

C*+i(*) = (fln+i -a„-bn- c„- d„) + (b„+l ~b„- 2c„ - 3dn)x

+ (c„+i - cn- 3dn)x2 + (dn+x - d„)x3

= ûo.n+i + aUa+lx + a2¡n+ix2 + a3,n+1x3    (say),
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where

ûo,„+i =yn-yn-\ + H-2/«-i - 3/n + 2/„+, - 2/; -i/„'+1),

aI,n+l /n-1  "'"/n+l  ~~ 2/„ ,

«2,«+, = H-2/„-, + 2/„ - 3/„' +/„'+1),

fl3,n+l  =  3~V     /n-1    '   2/„ ~~ f„+\  ~ f„  +/„+l)-

We can eliminate^ — yn_, from the above expression for a0n+, by using (2.1). Now

we may rewrite Cn+X(x) if we note that

a3,n+l = 3~(2û2,n+l ~~ al,n+l)> a0,n+l = 3\¿a\,n+] ~ fl2,n+l)'

and therefore

I    x3 2\ I x3     x2      1 \
(2-6)       Cn+X(x) = a,ill+1l--y + *+3 j +2a2,n+i[y + y-^j-

It is easy to check that

Q+i(*„) = Q'+i(*„) = 0   since*,, = -1.

Also we note that the above expression for Cn+X(x) is equivalent to the representa-

tion of Gupta [8, Eq. (2.5)], which defines

(2.7) p(t) = 2 + t-±t3,       q(t) = -i+2-t2 + \:t3,

where t = (x — xn+x)/h. The polynomials p and q are the same as in (2.6) above

because we had assumed xn+, = 0 and h — 1 and therefore t = x.

The above example shows that the second derivative formulas may be expressed as

(2.8) Pn+X(x) = Pn(x) + 8Un+xp((x - xn+x)/h) + 82n+xq((x - xn+x)/h),

where p and q are constant polynomials representing the second derivative formula.

Polynomials p and q corresponding to formulas of order greater than three of

Enright [3] are presented in the Appendix.

The scalars 5, n+, and 82 „+, are chosen to satisfy the differential equation at x„+,

and the second derivative condition. That is

Pn+\\Xn+\) ~ /(^n+l' Pn+AXn+\))>

Pn+\\Xn+\) ~ J  \xn+\i Pn+\\Xn+\))-

In [8, Eq. (2.5)] a formulation very similar to (2.8) is used. The only difference is

that [8] uses the symbol 8n+x instead of Ô, n+, and defines 82n+l of (2.8) above as

u8x n+]. Comparing Eq. (2.6) with [8, Eq. (2.5)], we obtain

i?,M „ = 2fl2,n+l _ -2/„_, + 2f„ - 3/; +/;+,

al,n+l /n-1    '   /n+l LIn

for the third order formula (2.1). The above expression for u does not seem to be

equal to h 3//3y as claimed by Gupta [8, Eq. (3.7)].

We have followed a somewhat tedious approach above to obtain expression (2.6)

for Cn+X(x). The reason for this was to obtain the expression (2.10) for u. An easier

approach is possible by observing that

C„^(xn) = Pn+x(xn)-Pn(xn) = Q
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and

CUÁXn) = P¿+AXn)-P¿(xn)=0

and therefore

Cn+X(x) = (linear polynomial) • (x — xn)

which may be written as

Cn+X(xn+X + th) = 8Xn+xp(t) + 82n+xq(t),

where p(t) and q(t) are independent cubic polynomials satisfying p(— I)—

q(—l) — 0 and p'(— 1) = q'(— 1) = 0. For convenience we require that p'(0) = 1,

p"(0) — 0 and q'(0) = 0, q"(0) = 1, which gives the same polynomials as (2.7)

above.

We shall look at some of the implementation details of the second derivative

methods in Section 5, but we first consider how the polynomials p and q in (2.8) are

related to the coefficients a,, /?, and y, of the conventional representation (1.2). We

do this by analyzing the stability of the second derivative formulas using the

formulation (2.8).

3. Analysis of Stability. The stability region associated with the second derivative

fc-step formula ( 1.2) is defined by the characteristic polynomial

(3.1) a(r)-hXß(r)-(hXfy(r) = 0,

where
k k k

(3.2) a(r) = rk - 2 «/*"',       ß(r) = 2 ftr*"1,       y(r) = 2 Y,r^'.
i=l ¡=o ¡=o

Using the polynomial formulation (2.8), the polynomials a(r), ß(r), y(r) are not

immediately known. Under the hypothesis that (2.8) is the polynomial formulation

of some second derivative &-step formula (1.2), we will derive an expression for the

characteristic polynomial (3.1) in terms of the polynomials p and q of (2.8). We

follow an approach similar to that of Wallace and Gupta [13] and Gupta [7] for the

usual multistep methods.

In studying the stability we are concerned with the behavior of the numerical

solution y„ as n -» oo. If the differential equation y' = Xy is solved using the second

derivative method of order m, the approximating polynomial at x = 0 is given by

(assuming constant step-size)

(3.3)       p0(x)= £ 8uP(^)+ £ MÍnP)-
( = -00 l = -00

We need to know 5,, and 82i at each step to obtain an expression for P0(x).

Let hX satisfy (3.1) for |r|> 1. Equation (3.1) now defines hX as an algebraic

function of r for | r | > 1. We have that y„ = r" is a numerical solution for y' — Xy.

For such a solution the corrections 6, „ and 52 „ must also be proportional to r". Due

to this proportionality, we may express 8X „ and 82n as follows:

(3.4) Kn = Ks"   and   o2,„ = K2r".

Substituting in (3.3), we have

(3.5) P0(*)=    2   V^) +    S   K2r'q{^).
l = -0O l' = -00
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Now let

p(x) = d0 + dxx + d2x2 + ---+dmxm,

(3-6)
q(x) = e0 + exx + e2x   + • ■ ■ +emxm.

Equation (3.5) now becomes

0 m        i x — X   \J ° m       I X - X  \j

(3-7)     P0(x)=   2   Ktr'2dj(^)   +   2   Kxf* 2 •j(L1TL) •
/ = -oo j — 0 /' = -oo j = 0

We now reverse the order of summation and obtain

m oo ,- m ce

(3.8) />„(*) = *, 2 ^2 r-'(| + «)   + K2 2 e, 2 r-'(| + i)
j=0     (=0 y = 0     / = 0

and therefore

(3.9) /»„(O) = tf.G + tf2JF/,

(3.10) Po'(0) = KXR + K2S,

(3.11) p¿'(o) = ÄT.r + a:2i/,

where

(3.12)

and

G=ldjVJ(r), H=%ejVJ(r),
y=o ;=o

m m

R= ÏJdjVj_x{r), S= 2jejVj_x(r),
j=\ j=\

T=l j{j-\)djVj.2{r),       U= 2 j(j-l)ejVj.2(r).
7=2 7=2

¡^(r) is defined in the same way as in [13]

m

(3.13) Vj(r) = 2 r-'/A
(=0

This may be evaluated from the recurrence relation

^M) = ~j2  (Í)vs(r)   and    V0(r) = y^.
s=0

PQ(x) is the polynomial approximating the solution at x = 0 and so satisfies the

differential equation and the second derivative condition at x = 0. That is, for the

differential equation y' = Xy, we have

(3.14) P0'(0) = hXP0(0),       P0"(0) = (hX)2P0(0) = hXP¿(0).

Substituting for Po(0), P0'(0) and P¿'(0) from (3.9) to (3.13), we have

(3.15) KXR +K2S = hX{KxG +K2H), KXT + K2U = (hX)2{KxG + K2H}.

Eliminating Kx and K2 from the above two equations gives the following:

(3.16) (ST- UR) + hX(UG - HT) + (hX)2(HR - GS) = 0.
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Cancelling the common factor (say F) and comparing with (3.1) gives

i-x \l\ í  \      ST~UR      ai  ^      UG-HT        ,  .      HR - GS(3.17) a(r)=-,    ß(r) =-,    y(r) =---.

Example. We again consider the example of the third order formula (2.1). The

polynomials p and q in (2.7) are represented by vectors

(3.18) p=[f,l,0-i]r,       <7 = [-¿,0,U]r.

Therefore we have

^_ 2 r2(r2-2r-2)       IT _ r2(~r2 + 8r + 5)

(3.19)

3        ('"O4       ' 6(r-l)4

R=r2(r-\)(r-3) s=2r2(r-\)

(r-1)4        ' (r-1)4   '

T=    2r(r-\)2 u=r{r-\)\r+\)

(r-1)4   ' (r-\f

Substituting  these values  in  (3.16)  and  eliminating  the  common  factor F —

r3/(r — l)4 gives the characteristic equation

(hX)2(-L)+hXÇ^pl-(r-l) = o,

which is identical to the characteristic equation of formula (2.1).

We have therefore shown the relationship between polynomial formulation (2.8)

and the conventional formula (1.2) of second derivative methods. Before discussing

an implementation of second derivative methods we note that when a second

derivative method is expressed using formulation (2.8), its truncation error coeffi-

cient may also be computed directly using the formula in the next section.

4. Truncation Error. To obtain an expression for the local truncation error

coefficient Km+X for a method of order m, we follow an approach similar to that of

Wallace and Gupta [13] for polynomial representation of the usual multistep

methods.

We omit the details of the derivation and present only the resulting formula. Let

the corrector polynomials p and q be given by (3.6). The truncation error coefficient

Km+, is then given by

_ a0 + a{sx + ••■ +amsm

Am+1 m\am

where s¡ is the coefficient of n in the summation S"=¿ /', a, = di + Qe¡\ d¡, e¿ being

the coefficients of polynomials p and q and

dx + 2d2sx + ••• +mdmsm_x

e, + 2e2s, + ••• +memsm_x

(The numbers i, are the Bernoulli numbers. We have s0= \, sx = -^, s2 — I,

s4 = - 3^, etc. and s2n+, = 0, n = 1,2,....)

5. Implementation. Gupta [8] has discussed the implementation of second deriva-

tive methods using the Nordsieck representation. We present further details of the

implementation, particularly about the corrector iterations.



SECOND DERIVATIVE MULTISTEP METHODS 453

The predictor-corrector algorithm for second derivative methods may be written

as

(5.1) an+x =Aan + d8x + e82,

where d and e are vectors of scaled derivatives of polynomialsp((x — xn+x)/h) and

q((x — xn+x)/h) of (2.8) at xn+x. an+x and an are vectors of scaled derivatives of

approximating polynomials P„+X(x) and P„(x) of (2.8) at xn+x. We note that the

above representation is similar to the Nordsieck representation of the usual multi-

step method as discussed by Gear [5, p. 216].

ô, and 82 in the above representation are computed by satisfying the differential

equation and the second derivative condition at xn+x as given by (2.9) and must be

computed by an iterative scheme. We discuss one possible iterative scheme here.

Let b = Aa„ and 6, be the z'th element of b. Similarly let d¡ and e, be the z'th

elements of d and e. In our representation, d2 = ex =0 and d2 = 1, e2 = {-. Now the

conditions (2.9) to compute 8X and ô2 may be written as

bx + Ô, - hf(xn+x, b0 + d08x + e082) = 0,

(5-2) h2
b2 + 82- y//(x„+1, b0 + d08x + e082) = 0.

We have assumed /' = Jf (if df/dx = 0). From the above two equations we get

(5.3) 82 = (hJbx/2-b2) + hJ8x/2.

Substituting for 82 in the first equation of (5.2), we get the following equation:

(5.4) bx + 8x- hf(xn+x,b0 + e0(hJbx/2 - b2) + (d0 + he0J/2)8x) = 0.

In the above equation / depends on 8X and 52 since J = J(bQ + d08x + e082). If we

are able to solve this equation and obtain 8X, we can compute 82 using (5.3). To solve

(5.4), we need to use the Newton method as modified by Liniger and Willoughby [6]

and Enright [3]. We obtain the following iterations

(5.5) 8[+l = 8 b{+8r{- hf
r+l _ ür_!_!_¿_

1     I-hJ(d0 + Jhe0/2) '

where 8\~ is the rth approximation of 5, and

/'=/(*„+,, °o + e0(Jrhbx/2 - b2) + (d0 + Jrhe0/2)8[).

If we put

(5.6) W = / - kld0 - h2J2e0/2,

we may rewrite (5.5) as

(5.7) H/(ô[+1 -5[) = -/3, -8rx + hfr.

Note that these iterations are somewhat different than those obtained by Gupta [8].

Once S, is computed, we an compute 82 and obtain vector an+, of (5.1).

Computing W requires computation of J2. Several ways of avoiding this are

discussed by Skeel and Kong [12].

6. Blended Multistep Formulas. We now compare our representation with the

blended methods approach of [12]. It has been shown by Skeel and Kong [12] that a

"blend" of the (k + l)th order Adams-Moulton formula (AMF) and /cth order
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Backward Differentiation Formula (BDF) becomes identical to the second derivative

formula of [3] of order k + 1 for the equationy' — Xy.

In the Nordsieck notation the blended formula is given by

(6.1) a„ = Aan_x+(w-hyJ„z)b„,

where an, an_, are vectors of scaled derivatives of the approximating polynomials, w

is the correction vector corresponding to AMF of order k + 1, and z to BDF of

order k.

In polynomial notation the above formula is given by

(6.2) P„{x) = />„_,(*) + (A(t) - yhJ„B(t))K,

where A and B are modifier polynomials and t = (x — xn)/h. Comparing the above

equation with Eq. (2.8), it would be expected that if (6.2) is to be equivalent to

Enright's formulas for some y, then we should have

Pn(xn-\) = Pn-\(xn-\) = yn-\    and   P;(x„_ ,) = ?„'_,(jc„_,) =/„_,.

Therefore we should have

yl(-l) = B(-l) = 0   and   A'(-\) = B'(-\) = 0.

In the blended formulas we note that the condition B'(— 1) = 0 is not satisfied, that

is, />„'(x„_, ) ¥= P„'_,(xn_, ). Another difference between the Nordsieck representation

(6.1) of blended formulas of order m and (5.1) of second derivative formulas of order

m is that (6.1) is an w-value method based on (m — 1) degree polynomials while

(5.1) is an (m + 1)-value method based on m degree polynomials.

It is therefore not obvious that the blended formulas are equivalent to Enright's

formulas for y' = Jy when the Nordsieck representation is used.

7. New Formulas. As we have already discussed in Section 2, using the formulation

(2.5), polynomial Cn+X(x) can be obtained in terms of the two polynomialsp and q

for the second derivative formulas of Enright [3] by requiring that

Q+i(*„) = ç,'+i(*n) = o

and, in addition,

ChU,-,) = 0   forz=l,...,/c-l

for a k-slep formula of order k + 2. To obtain the polynomial p and q we require

that

p(-\) = q(-l) = 0   and   p'(-z) = <?'(-/) = 0,       i =1,2,...,*,

and, in addition, choosing p'(0) = 1, p"(0) = 0 and q'(0) = 0, q"(0) = 1.

New sets of formulas may be obtained by choosing C„+1 to approximate zero for

values x < x„ in other ways. We have tried three different approximations and the

following sets of formulas were obtained.

(1) Set 1. This set of second derivative formulas was obtained by requiring

C„+X(x) to satisfy the following conditions:

C„+1(x,,_,.) = 0,       z = 0,l,...,/c-l.

The above conditions lead to /c-step formulas of order k + 1. The polynomial p and

q of (2.7) may be obtained by requiring that

p{-i) = o(~i) = 0   forz = 1,2,. ..,k,
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and, in addition,

p'(0) = q"(0) = 1    and   p"(0) = q'(0) = 0

as before. These formulas could be called second derivative BDF because of the

backward differentiation conditions which are satisfied by the formulas. The for-

mulas are stiffly-stable up to order 11.

(2) Set 2. This second set of formulas was obtained by requiring Cn+X(x) to satisfy

the following conditions

C„+,(*J = 0   and    C„+1(*„-,) = 0,       / = 0,1,...,* - 1.

This leads to /c-step formulas of order k + 2 stable up to order 8. The polynomials p

and q may be obtained by requiring

p'(-l) = q'(-l) = 0   and   p(-i) = q(-i) = 0,       i = 1,2,...,*,

and the same conditions as before for t = 0.

(3) Set 3. This set was obtained by requiring Cn+X(x) to satisfy the following

conditions

C„+1(x„_,) = C„'+1(x„_,) =0. i = 0,1,...,*-   1.

This leads to /c-step formulas of odd order 2k + 1. To obtain even order formulas

we decided to let Cn+X(xn_k+X) ¥^ 0. This leads to /c-step formulas of even order 2k.

Formulas were stable only up to order 7.

Stability curves and truncation error for the above sets of formulas were computed

using the results of Sections 3 and 4. The results are summarized in Table 1 which

gives the truncation error coefficients Km+X and stability parameters a and D for

each of the three sets of formulas described above and the formulas of [3]. For

definition of stability parameters a and D, see [5, p. 219].

Table 1

Stability parameters and truncation error coefficients

of four sets of second derivative formulas

it

12

Enright's Formulas

0.14E-1

0.49E-2

0.24E-2

0.14E-2

0.86E-3

0.59E-J

0.42E-3

A - St

87.9

82.0

73.1

60.0

37.7

Unstab

able

0.10

0.53

1.34

2.72

5.18

le

0.17

0.55E-1

0.27E-1

0.16E-1

0.10E-1

0.73E-2

0.54E-2

0.41E-2

0.32E-2

0.26E-2

table

t ible

89.4

86.4

80.8

72.5

60.8

43.4

12.S

Unstab

-0.15E-1

-0.13

-0.40

-0.88

-1.65

-2.77

-4.37

0.17

0.14E-1

0.37E-2

0.14E-2

0.67E-3

0.36E-3

0.21E-3

A - St ible

A - St ible

A - Stable

86.1

77.4

64.4

43.2

Unstab

-0.23

-0.96

-2.17

-3.86

le

0.14E-1

0.49E-2

0.74E-3

0.25E-3

0.51E-4

82.8

69.7

46.8

Unstab1

■0.51

1.80

5.53
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8. Conclusions. We have shown the relationship between a polynomial formulation

of second derivative formulas and their conventional representation. This is useful in

deriving new sets of second derivative formulas and investigating their stability. We

have derived some new sets of formulas and the results are encouraging.

Also as indicated by Gupta [8], the polynomial formulation presented here could

be used for computing variable-step formulas if necessary.

We have also shown that it is not at all obvious that for the problem y' — Jy

blended formulas of Skeel and Kong [12] are equivalent to Enright's formulas when

Nordsieck representation is used.

Acknowledgement. We are grateful to an anonymous referee for a thorough review

of this paper.

Appendix. Vectors of scaled derivatives of corrector polynomials p and q in (2.8)

or the correction vectors d and e of (4.1) for the second derivative formulas of

Enright [3] are given here. (d¡, e¡ are the z'th elements of d and e.)

Table A1

Coefficients of the correction vectors d(dx = 1, d2 = 0)

0RDER=

29_
48

307
540

3133
5760

3177C-1
60480-1

247021
483840

1758023
3528000

1_

12

85

108
415

432
12019
10800

13489
10800

726301
529200

_3_
16

_5_
12

755

1152
343
384

16219
14400

9743

7200

11
180

119
720

2149
7200

6503
14400

311821
504000

25
1728

133
2880

1631
17280

119
756

137
5040

1009
100800

3069
352800

49
115200

179

100800

121
2116800
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Table A2

Coefficients of the correction vectors e(ex =0, e2 = {)

ORDER=

19
180 32

863
10080

275
3456

33953
453600

11
18

25
36

137
180

147
180

1089
1260

3S_
96

15
32

203
360

469
720

30 12
17

120
147
720

967
3600

1
144

175
4320

49
756

1
840

1
240

23

5760 10080

1

45360
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