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On Euler Lehmer Pseudoprimes and Strong Lehmer

Pseudoprimes With Parameters L, Q

in Arithmetic Progressions

By A. Rotkiewicz

Abstract. Let U„ = (a" - ß")/(a - ß) for n odd and U„ = («" - ß")/(a2 - ß2) for even n,

where a and ß ate distinct roots of the trinomial/(z) = z1 - fLz + Q and /. > 0 and Q are

rational integers. U„ is the nth Lehmer number connected with/(z).

Let V„ = (a" + ß")/(a + ß) for n odd, and V„ = a" + ß" for n even denote the «th term

of the associated recurring sequence. An odd composite number n is a strong Lehmer

pseudoprime with parameters L. Q (or slepsp(/., Q))\l(n. DQ) = 1, where D = L — 4Q ^= 0.

and with 8(n) = n — (DL/n) = d ■ 2s, d odd, where (DL/n) is the Jacobi symbol, we have

either Vu =■ 0 (mod n) or Vd.v = 0 (mod n), for some r with 0 =s r < s.

Let D = L — 4Q > 0. Then every arithmetic progression ax + b, where a, b are relatively

prime integers, contains an infinite number of odd (composite) strong Lehmer pseudoprimes

with parameters L, Q. Some new tests for primality are also given.

1. First we recall the definitions of Euler pseudoprimes, which have been intro-

duced (see Pomerance, Selfridge, Wagstaff [5]) because they are rarer than ordinary

pseudoprimes.

An odd composite number n is an Euler pseudoprime to base c (or epsp(c)) if

(c, n) = 1 and

(1) c^-x^2=(-)imodn),

where ic/n) is the Jacobi symbol (see also Lehmer [4]). An odd composite « is a

strong pseudoprime for the base c (or spsp(c)) if, with n - 1 = d ■ 2s, d odd, we have

(2) c^^limodn)   or   cd~2' = -1 (mod n)    for some/- with 0 =e r < s.

Any prime p with ( p, c) = 1 satisfies one or the other term of this alternative.

Pomerance, Selfridge and Wagstaff [5] show that a strong pseudoprime is always an

Euler pseudoprime, but not vice versa, so criterion (2) is indeed stronger than (1).

Rotkiewicz [ 10], [ 11 ] proved that every arithmetic progression ax + b (x = 0,1,2,... )

where (a, b) = 1, contains infinitely many ordinary pseudoprimes (that is to say,

pseudoprimes for the base 2).
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It was shown by van der Poorten and Rotkiewicz [6] that every arithmetic

progression ax + b ix = 0,1,2,...), where a, b are relatively prime integers, contains

an infinite number ofodd icomposite) strong pseudoprimes for each base c > 2.

Baillie and Wagstaff [1] define several types of pseudoprimes with respect to

Lucas sequences and prove the analogs of various theorems about ordinary pseudo-

primes.

Let D, P, Q be integers such that D = P2 - 4Q # 0 and P > 0. Let U0 = 0,

I/, = \,V0 = 2, Vx = P.

The Lucas sequences Uk and Vk are defined recursively for k > 2 by

Uk = PUk_x - QUk_2,        Vk = PVk_x - QVk_2.

We will write UkiP, Q) for Uk when it is necessary to show the dependence on P and

Q. For k > 0, we also have

Uk = (ak-ßk)/ia~ß),        Vk = ak + ßk,

where a and ß are distinct roots of x2 — Px + Q = 0.

For odd positive integers n, let ein) denote the Jacobi symbol iD/n), and let

Sin) — n — ein). Un is prime and if (w, Q) = 1, then

(3) US(n) = 0imodn).

If n is composite, but (3) still holds, then we call n a Lucas pseudoprime with

parameters P and Q (or lpsp(?, Q)). A proper generalization of epsp(c) and spsp(c)

for Lucas pseudoprimes is the following:

An odd composite number n is an Euler Lucas pseudoprime with parameters P, Q

(elpsp( P, Q)) if ( n, QD) = 1 and

tf(„-«c»/2 = 0(modii)   if(e/«)= 1,   or

*V-e(n»/2 = 0(mod«)   if(ß/n) = -l.

An odd composite number « is a strong Lucas pseudoprime with parameters P, Q

(or slpspiP, Q)) if in, D) = 1 and, with Sin) = d ■ 2s, d odd, we have either

(i) Ud = 0 imod n), or

(ii) Vjr = 0 (mod n), for some r with 0 *£ r < s.

Every prime n satisfies the conditions of these four definitions (with the word

"composite" omitted), provided («, 2QD) — 1.

Much more general sequences than Lucas sequences are Lehmer sequences.

Let D, L, Q be integers such that D = L - 4Q =£ 0 and L > 0. Let U0 = 0,

Ux = 1, V0 = 2, Vx = 1. The Lehmer sequences Uk and Vk are defined recursively for

k > 2 by

Uk = LUk_]- QUk2 for k odd,

Í4 = l/*_] — QUk„2 for/c even,

FA = LVk_x - QVk_2 for A: even, and

^=^-1-0^-2 for/: odd.

For k > 0, we also have

__ |(a*-j8*)/(a-)8)        if 2)«,

*     \{ak-ßk)/{a2-ß2)     if2|»,
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and

v = Uak + ßk)/ia + ß)     (0l2\n,

*      [ak + ßk if 2| »,

where a and ß are the distinct roots of z2 — {Lz + Q = 0.

If L = P2, from Lehmer numbers we get Lucas numbers. In the case of Lehmer

numbers we can assume without any essential loss of generality that (L, Q) = 1.

This is not true for Lucas numbers.

Rotkiewicz [12] gave a proper generalization of ordinary pseudoprimes for Lehmer

numbers.

A composite « is a pseudoprime with parameters L, Q (or for the bases a and ß )

(or lepsp(L, Q)) if (n, DL) = 1 and

(7„_e(„) = 0 (mod n),   where e(«) = iLD/n).

Rotkiewicz [12] proved that if iL,Q)= 1, L > 0, D = L - 4Q > 0, then every

arithmetic progression ax + b (x = 0,1,2,...), where a, b are relatively prime,

contains an infinite number of odd icomposite) pseudoprimes with parameters L, Q

ithat is to say, pseudoprimes for the bases a and ß).

Now we shall give the definitions for Euler Lehmer pseudoprimes and strong

Lehmer pseudoprimes.

An odd composite n is an Euler Lehmer pseudoprime with parameters L, Q (or for

the bases a and ß) (or elepsp(L, Q)), if in, QD) = 1 and

U(„-e(n))/2 - 0 (mod n)   if iQL/n) = 1,   or

^-E(„),/2 = 0(mod«)   if(ßL/n) = -l,   where e( «) = ( DL/n ).

An odd composite number « is a strong Lehmer pseudoprime with parameters L, Q

(for the bases a and ß) (or slepsp(L, Q)) if in, DQ) — 1, and with Sin) = n —

i DL/n) = d ■ 2s, d odd, we have either

(j) Ud = 0imodn), or

(jj) Vd.2' = 0 (mod n), for some r with 0 < r < s.

Every prime n satisfies the conditions of each of these four definitions (with the

word "composite" omitted), provided in,2QD) = 1. The following theorem holds.

Theorem 1. If n is a slepsp(L, Q), then n is an elepsp(L, Q).

The proof is analogous to the proof of Theorem 3 from the paper of Baillie and

Wagstaff [1] on slpsp(L, Q) and may be omitted. In the present paper we shall prove

the following

Theorem 2. Let D — L — 4Q > 0, L > 0. Then every arithmetical progression

ax + b (x = 0,1,2,...), where a, b are relatively prime integers contains an infinite

number of odd strong Lehmer pseudoprimes with parameters L, Q ithat is to say, slepsp

for the bases a and ß).

2. For each positive integer n we denote by <i>„(a, ß) — <í>„(L, Q) the nth cyclo-

tomic polynomial

*,(l,q) = *,(«,ß)= n («-w) = m«d-fidfn/d\
(m,n)=\ d\n
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where f„ is a primitive nth root of unity and the product is over the <f>in) integers m

with 1 < m « n and im, n) = 1 ; jn is the Möbius function.

It will be convenient to write

<i>(a,/?;«) = </>„(<*, 0).

It is easy to see that $(a, ß; n) > 1 for D > 0, n > 2. Indeed, since <j>„i<x, ß) is

symmetrical in a and ß, we may assume that

{l + {d {l - {d

hence for n > 2, ß > 0, we have <i>(a, ß; n) > \ a — ß \ = \[D > 1, and if n > 2,

/?<0, then<i)(a, ß; n)>|a-l-j8|=vT>l.

A prime factor p of i/„ is called a primitive prime factor of i/n if /> | t/„ but

/M^t/j ••■£/„_,.
The following result is well known.

Lemma 1. Denote by r = /•(«) r/ie* largest prime factor of n. If r\ <>(«> /?; «), r/iew

every prime p dividing #(«, ß; n) is a primitive prime p divisor of Un and is = iDL/p)

(mod n).

If rk || 0(a, /?; n),k>l iwhich is to say rk| </>(a, ß; n) but rk+x\ <#>(a, ß; «)), then

r is a primitive prime divisor of Un/rk.

The number Un for n > n0(a, ß) = «0(L, Q) has a primitive prime divisor. The

number «0(a, ß) can be effectively computed. If D > 0, then n0 = 12.

Proof. The first part of this lemma follows from Theorems 3.2, 3.3, and 3.4 of

Lehmer [2]; the second part about existence of primitive prime factors follows from

the theorems of Schinzel [13] and Ward [14].

Lemma 2 (Rotkiewicz [12, Lemma 5]). Let \p(p"¡p22 ■ ■ ■ pkA - 2/>"'/72"2 • • -

PÎ'iPi-Wpî-V-iPÎ-i)-
If q is a prime such that q2 II n and a is a natural number such that axp(a) \ q — 1,

then <f>(a, ß\ n) = 1 (mod a).

3. Proof of Theorem 2. If for each pair of relatively prime integers a, b there is at

least one strong pseudoprime with parameters L, Q of the shape ax + b, where x is a

natural number, then there are infinitely many such pseudoprimes. To see this just

notice that we then have such pseudoprimes of the shape adx + b for every natural d

with (d, b) — 1, and we may choose d as large as we wish. This said, we may also

suppose without loss of generality that a is even and b is odd and that 4DL \ a, since

if ft, is a prime > 4DL of the form at + b, then every term of the progression

4DLax + bx (x — 1,2,...) is = b (mod a), its difference is 4DLa and i4DLa, bx) =
1.

Thus, we prove the theorem if we can produce a strong pseudoprime n with

parameters L, Q with n = b (mod a).

Given a and b as described, with 2X 11 b — iDL/b), X > 1, we commence our

construction by choosing three distinct odd primes/?,, p2, p3 that are relatively prime

to a. Furthermore.we introduce two further primes p and q, with q> p¡ii = 1,2,3),
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which are to satisfy certain conditions detailed below. Firstly, we require that

(a) 2xpxp2p3q21| p-eip)   and    iLQD,p) = l.

Sincep is prime, it satisfies the condition Ud = 0 (mod p) or VVd = 0 (mod p) for

somer, 0 < r < X with/? - eip) = 2xd, (2, d) = 1, eip) = iDL/p).

This holds because ± 1 are the only square roots of 1 in a finite field and

Up_e(p) = 0 (mod p), where eip) = iDL/p). So either

(4) t/(/,_E(/)))/2A = 0(mod/>)    or    V(p_e(p))/2, = 0 (mod /?)

for some u, 0 < jn < X. Slightly different proofs will be required to deal with the two

terms of the alternative. However, in either case we will construct q and p so that the

number

n, = p4>{a,ß;ip-eip))/2xPi)    or   /?<f>(«, ß; {p - eip))/2^xp,)

(/= L2,3)

is our required strong pseudoprime with parameters L, Q; here we take the first

choice for n¡ if the first term of the alternative (4) applies, and the second, with the

appropriate ¡u, in the event the second term of the alternative (4) applies.

It will be convenient to write

m, = n,/P       (/'= 1,2,3)

and to denote the integers ip — e(/?))/2x/?, and ip — e( /7»/2M" '/?,, respectively, by

s i (i = 1,2,3). We can assume that st> n0= 12. Hence if p divided more than one

of the mt, then by Lemma 1 we would have/7 as a primitive prime factor of both Us

and Us which is absurd if s¡ i= s¡. So we may suppose that p divides neither w, nor

m2, say. Now let f be the greatest prime factor of/? - eip). By (a) we have f s* q so

r>P\, Pi, and thus r is the greatest prime divisor of both sx and s2. Again by

Lemma 1, if r were to divide both m, and m2, then F would be a primitive prime

factor of both Us ,,* and USi/rk, where fk\\ p — eip). But this is absurd, so without

loss of generality f does not divide m,. Then Lemma 1 implies that every prime

factor / of m] is congruent to iDL/t) mod sx. Since D > 0, we have that m, = «,//?

is positive. So

(5) m, =(Z)L/m,) (mod 5,).

Certainly q2 II sx. So if we insist that axpia)\ q — 1, then by Lemma 2 we have

m, = 1 (mod a).

Since 4DL\ a, we have m, = 1 (mod4Z)L). So iDL/mx) = iDL/4DLg + 1) = 1

for some positive g, and from (5) it follows that

(6) w, = 1 (mod sx).

Further, if we insist that

(b) 2p,(pf-\)\q-\,

then by Lemma 2 (recall that xpip) = 2pip2 - 1)) we have

(7) m, = 1 (mod /?,).

In the same spirit, the requirement on q that

(c) 3-22X+]\q-l
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implies by Lemma 2 (recall that ^(2X+ ') = 2 • 2X+ '3 = 2x+23) that

(8) m, = 1 (mod2x+1).

Recalling that, by (a), both /?, || /? - e( /?) and 2X \\ p — e(/?), we can conclude from

(6), (7) and (8) that

w, = 1 (mod2(/? -£(/?))),

which is to say that

(9) nx=pm]=p(2(p-eip))x+ l) = (/? - e(/?))(2/?x + l)+e(/>),

for some positive x; x is positive because, with D > 0 and s, > 2, certainly

4>ia,ß;Sl)>l.

We have

e(n,) = iDL/pmx) = iDL/p) ■ iDL/mx) = iDL/p) = e(p).

Now suppose that the first term of the alternative (4) applies. By (9) we have

»i ~£("i) _ "i - £(P) _ p-e{p)    ,~       ,   ,v

2X        -^2^-^^-(2^+1)>

so (m,, /?) = 1 and

w, = <b(a,ß; (p - eip))/2xpx)\U(p-e(p))/2ipi,p\Uip_eip))/2i,

«, =p<t>(a,ß; (/? - ^PVi)!^-^»/^!^,-^))^.

where (k, — e(/i,))/2A is odd. Hence nx is a slepsp with parameters L, Q. If the

second term of the alternative (4) applies, we have, as before,

n-±zA!lA = PJlÄA.i2px+xy

and we note that 2px + 1 is odd. Hence we have

m, = <b{a,ß;(p- eip))/2»-xpx)\ V(p_e{p))/2„p¡,p\V{p_£(p))/2,,

which imply that

«, =p<b(a,ß; ip - l)/2"_1p,)| V(p_e(p))/2„\ V(n¡_e(n¡))/2,,

so also in this case n, is a slepsp with parameters L, Q. It remains for us to show that

conditions (a), (b), (c) can be satisfied and that n, lies in the appropriate arithmetic

progression. We apply Dirichlet's theorem on primes in arithmetic progression to

select a prime q with

ZPxPiPÁPi- l)(P2- OU2" \)\q-\,3-22XaxPia)\q-l.

This gives (b) and (c) and automatically yields q > pi (/ = 1,2,3). Since (a, b) = 1,

4DL | a, we have iDL/b) ^ 0.

By the Chinese Remainder Theorem there exists a natural number m such that

(10) m =iDL/b)+pxp2p3q2 (mod p2pjp2q3),   m = b (mod2A+1a).

From (10) it follows that im,2ap\p\p\q2) = 1 and,by Dirichlet's theorem, there

exists a positive x such that 2x+]ap2xp2pjq3x + m = p is a prime. Since 4DL\ a, we
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have p = m (mod4DL), m = b imod4DL), hence e(/?) = iDL/p) = iDL/m) =

iDL/b). Thus 2xpxp2p3q2 \\ p - eip), iDLQ, p) = 1. This gives (a). These remarks

conclude our proof for we have ax\/ia)\q — 1, q2\\ p — eip), so Lemma 2 yields

w, = 1 (mod a). Hence

n, = pmx = b (mod a )

as required.

Test for Primality. Let Un be the n th Lehmer number. The generalization of the

Euler theorem for Lehmer numbers is the following (cf. Lehmer [2]).

If/? is odd prime and (/?, DLQ) = 1, then

ap/l-(DL/p)/2 =iLQ/p)ßP/2-(DL/p)/2 (modp)

or, using U„ and V„,

^-^))/2 = 0(mod/»)   if(LQ//?) = l

and

^.^„/a sO (mod/»)   if(LQ//?) = -l,

where e(/>) = iDL/p).

According to Proth's theorem if N = h • 2" + 1, where 0 < h < 2" and ia/N) =

-1, then 7Y is prime if and only if a" l/2 = -1 (mod N). For the proof see Robinson

[9, Theorem 9].

The following generalization of Proth's theorem holds.

Theorem 3. Let N - h ■ 2" ± 1, where 0 < h < 2", n > 2, a and ß be roots of

the trinomial fiz) = z2 - JLz + Q, where L > 0, D = L - 4Q ^ 0, (L, Q) - 1,

(L, Q)i- <1,1>, (2,1), (3,1) (i.e.,a/ß is not a root of unity). Let iDLQ, N) = 1,

( DL/N) = ± 1, iLQ/N) = -1. r/ie« A/ ¡i/inme if and only if

N\ah-2"" + ßh 2" '.

Proof of Theorem 3. If N is prime, then ui*/2-idi/n)/2 = (LQ/N)ßN^-(DL'N^2

(mod A), and since (DL/yV)^ ±l,N = 2"h± 1, iLQ/N) = -1, we have

a(2"A±i)/2-(±D/2 = ._ßtpk±i)/2-(±W2 (mod N)

and

JV | a2" 'h + ß2" 'h.

Suppose now that N is not prime and JV| a2" h + ß2" h. Let /? be the least prime

factor of N. Since a/ß is not a root of unity, we have

/?=±1 (mod 2").

From iLQ/N) = -1 it follows that N is not a square, and a factorization of N

would yield

N = /? • q>pip + 2) >(2" - \)(2" + 1) = 2" ■ 2" - 1 >h ■ 2" - 1 = N

a contradiction; this completes the proof of Theorem 3. From Theorem 3 we deduce

the following generalization of the Lucas-Lehmer criterion.
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Theorem 3'. Let N = h ■ 2" ± 1, where 0 < h < 2", n > 2, a and ß be roots of the

trinomialfiz) = z2 - flz + Q andL > 0, D = L - 4Q ¥= 0, (L, Q) = 1, (L, Q)¥=

(1,1), (2,1), (3,1). Let iDLQ, N) = 1, iDL/N) = ± 1, iLQ/N) = -I. Then N is
prime if and only if

vn_2 = 0imodN),

where v, = o?_, - 2Q1'" with v0 = a2h + ß2h, i =1,2,....

Proof. Let v¡ = ah'2'4 + ßhl* . It follows from Theorem 3 that it is enough to

prove that v, = t5, for i > 0. This is true for i = 0. Suppose that tJ, = o,. We have

o,+ 1 = v2 - 2ß2'+'* = (a2'+'* + ß2'+lhf - 2iaßf+,h

= a2'+2h + ß2"2" = v,+ x.

This proves Theorem 3'. We can calculate the number t>0 — a2h + ß2h — ah by using

the recurrence relation aQ = 2, ax = a2 + ß2 — L — 2Q, a, = axa,_x — Q2ai_2.

If we put in Theorem 3' Q = ± 1, we get the following

Corollary 1. Let N = h ■ 2" ± 1, 0 < h < 2", n s* 2, a and ß be roots of the

trinomial fiz) = z2 - t/L z ± 1, L > 0, (L, ±1)¥= (1,1), (2,1>, <3,1), iDL/N) =

± 1, ( ± L/N ) = -1. 77i£7i a necessary and sufficient condition that N shall be prime is

that

vn^2 = 0(modN),

where u, = vf_x -2,vQ = a2h + ß2h.

For h = 1, L = 2, /(z) = z2 - /2z - 1, we have ü0 = a2 + /?2 = (a + ß)2 -

2aß = 2 + 2 = 4, and from Corollary 1 we obtain the Lucas-Lehmer theorem on

the Mersenne numbers (see Lehmer [3]). Lehmer numbers with respect to the

trinomial z2 — f~Lz ± 1 correspond to Lucas numbers with respect to the trinomial

z2 — Lz ± L,and it is easy to see that Corollary 1 for N — h ■ 2" — 1 corresponds to

Theorem 5 of Riesel (see [8]). Riesel [8] considered the case in which h is a multiple

of 3. If h = 3, the value u0 = 5778 will fit for n = 0, 3 (mod 4) (Lehmer [2]), and if

h - 6a ± 1 and 3\ N, the value «0 = (2 + JJf + (2 - f3)h will fit for all n (Riesel

[7])-
Riesel [8] used his technique to find all primes N = 3A ■ 2" — 1 for all odd

A < 35 and all n < 1000.

Theorem 3 implies immediately the following

Corollary 2. Let N — h ■ 2" ± 1, where 0 < h < 2", n > 2, a and ß be roots of

the trinomial fiz) = z2 - {Lz + Q, where L > 0, D = L - 4Q ^ 0, (L, Q) = 1,

(L, Q)+ <1,1>, (2,1), (3,1>. Let iDLQ, N) = 1, iDL/N) = ± 1, iLQ/N) = -1.
Then N = h ■ 2" ± 1 cannot be elepsp with parameters L, Q ithat is to say,elepsp for

the bases a and ß ).
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