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On Optimal Integration Methods for Volterra

Integral Equations of the First Kind

By C. J. Gladwin

Abstract. Families of methods depending on free parameters are constructed for the solution

of nonsingular Volterra integral equations of the first kind in [5]. These parameters are

restricted to certain regions in order that a certain polynomial satisfies both a stability and a

consistency condition. In this note an optimal choice of the free parameters is outlined in

order that the /2-norm of the roots of the polynomial is minimized.

1. Introduction. Consider the linear Volterra integral equation of the first kind

(1-1) ¡XKix,t)yit)dt=fix),

where /, K are given functions on

Sx = {x\0<x<a}    and   S2 = {(x, t) |0 < t < x ^ a).

It will be assumed that sufficient regularity conditions are satisfied by / and K in

order that a unique regular solutionyix) exists on [0, a]. See also [12], for example.

On the mesh

1n = {x„ = nh | « = 0(1)/V, Nh = a, « > 0} C 5,

approximations yn to the exact solution y(xn) are generated by the family of

integration rules QiC, B, r) of the form:

(1.2) « 2 cMx^x^y +    2   h2 b,K(xH, x,_,)>>_, =/(*„),
i=0 j=P+t     1=0

n =p(l)N.

The following brief remarks pertaining to (1.2) are noted here, see also [5].

(l)p starting valuesy0, yx,... ,yp-\ are needed before (1.2) can be implemented.

(2) The vector C & Rp+X consists of the closed Newton-Cotes quadrature weights

with step number p.

(3) The vector B E Rp+2 is (partially) determined by the linear system
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(4) The remaining p + 2 — r parameters b¡: i — 0(l)p + 1 — r, say, are con-

strained so that the polynomial

(1.4) p(*)= 2.■v+I~'
1=0

is simple von Neumann. (The full rank, r = p + 2, case is only of use if /> = 0. See

also [7].)

We will be interested in the following classes of polynomials in this note.

Definition 1. Let P(z) be a real polynomial of exact degree «. Then

(a) Piz) is simple von Neumann if Piz) = 0 implies | z |< 1 with zeros on the unit

circle being simple.

(b) Piz) is Schur if P(z) = 0 implies | z |< 1.

(c) Piz) is Hurwitz if Piz) = 0 implies Re(z) < 0.

It is well known that P(z) is Schur if and only if

Q(w) = (w-l)"P((w+\)/iw-l))

is Hurwitz; see [3] for an excellent survey of such results.

With these choices for C and B, and assuming the starting errors en = yn — yixn)

= Oihr)n = 0(1)p - 1, the method (1.2) was shown to have an error en = 0(hr),

« = 0(1)JV.

It should be mentioned here that other authors, [9], [10], [14], and [1], have

considered cyclical multi-step methods recently with the latter even calling their

methods "if not optimal, at least good practical methods". The idea of their methods

is that a number of different end formulae (the B of (1.2)) have to be used cyclically,

necessitating an inordinate number of parameters. Many of these are used up in a

" trivial" fashion to place as many roots as possible of their characteristic polynomial

at the origin. However, they still maintain the necessity of solving a linear system as

well as a nonlinear system to fulfill the accuracy and stability requirements, respec-

tively.

2. Determination of the Free Parameters. The main result of this note is to display

a system of p + 2 — r linear equations to be solved for the free parameters, in

addition to the r consistency conditions (1.3). We first give some motivation for this

system.

The error en of the method (1.2) has an asymptotic expression, « -» oo, « -> 0,

nh = xn,

(2.1) en = h'e(xn) + «' £ 4dkixn) + 0(«'+l),
*=o

where

(a) eixn) is the "magnified error" function,

(b) zk are the zeros of piz) defined in (1.4),

(c) dkix) are solutions of the initial value problems

K(x, x)dix\x) - zkK,(x, x)dk(x) = 0,       dki0) = dk,
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where K is given in ( 1.1), and

(d) the dk satisfy the linear system

2 znkdk = en-eixn),       n = 0il)p.
k = 0

See also [8], [6], and [11]. The latter only considered the case r = p + 2, p = 0 (i.e.,

the trapezoidal method applied to (1.1)). We also note that in the case that piz) has

multiple roots, necessarily interior to the unit circle, only the system in (d) need be

modified—i.e., m linearly independent column vectors must be added to the

coefficient matrix. These take the form (u", ««",...,«(« — 1) •••(« — m 4- 2)u")

corresponding to a multiple root u of a fixed multiplicity, m > 1. We observe that if

piz) is simple von Neumann, the phenomenon of marginal instability occurs if

| dkix) | are increasing functions, but can be eliminated by making piz) Schur.

Thus, it is natural to choose the free parameters of piz) so as to try to minimize

some norm of the roots, in addition to the previously mentioned stability and

consistency conditions. In particular, we choose the square of the /2-norm in view of

the following observations:

(1) S"= i | z, |2 > 2"=, zf, where z, are the zeros of a real polynomial of exact degree

«. Also, equality only occurs if all the z, are real.

(2) T¡=, | z,. |2 > «II,"=, I z, |2/" with equality only if | z¡ \ = | z, | , say, for all i.

Thus we desire to try to make piz) have an many equal real roots as possible.

Obviously we cannot make piz) have a single root of multiplicity p + 1, since we

only have p + 2 — r parameters at our disposal. Also, we choose the smallest p for a

given r, compatible with stability, to ensure the use of the fewest free parameters as

possible.

The following theorem is the main result of this note. It shows how to construct

the system of linear equations for the free parameters.

Theorem 1. (1) Assume piz) is as in (1.4) with its coefficients satisfying (1.3).

(2) Assume t(w) = 1f=0l t¡w' is the transformed version of piz) using the Mobius

map

z + 1 w + I
w =--,        z---.

z — I w — 1

Then

(1) t,: i = 0(1 )/> + 1 — r depend linearly on the free parameters.

m H^r. i=p + 2-ril)p+l,

W 3*,       '        j = 0(l)p+l-r.

Proof. The system (1.3) may be solved in terms of the free parameters as follows,

[13],

(2.2) V.-+. = 7dlT!"(--Í){A^)^-P2 ''Wh
p+\-r

2
k = 0

mthSiix) = TTjml.j+tlx -ip+l-r +;)], / = l(iy.
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We shall denote the first term on the right of (2.2) by Xrï for a given number of

free parameters. A simple calculation shows

g+i-r+i      /  lV7« + r- 1 \ln + i - 2\

;^rH)(«+¡-iJ( «-i )=ü-"
i= l(l)r,n= l(l)p + 2- r(ork=p+ 1 - r(-l)O).

Now p(z) may be written as

(2.3)     piz) = " 2 bp+2lz"+-x + 2 tw'-') + 2 Kz'-'.
n=\ \ i=\ I 1=1

Denote the first term of (2.3) by qiz) which is a polynomial of degree p + 1 whose

coefficients are only (linearly) dependent on the free parameters. If we write qiz) in

powers of z — 1, we assert that the coefficients of the terms (z — l)j,j = 0(1 )r — 1

vanish. We return to this assertion later so as not to interrupt the flow of the proof.

We calculate t(w) = (w - l)p+xpüw + l)/(w - 1)). The powers (z - l)J be-

come

iw-iy+l(^\-l)J = nw-iy+>-\      j = r(l)p+l,

so that only t,: i = 0(l)p + 1 — r depend linearly on the free parameters, while the

remaining coefficients are independent of them.

Returning to our assertion, we replace z by [1 + (z — 1)] in qiz), expand the

binomials in powers of z — 1, and interchange the order of summation in the second

term of qiz). This yields:

p+2-r n-\  i       . ,\
« + r — 11/ , sn + r-l-j(2-4)    q(z)=     2    W-2  (rt + ;      %-iy

„=i ;=n \ J In=\ y=0

/l>-,-.|{("TVlM7i)}<<-'>J-
We now show that the factor { • • • } vanishes for all j — 0(1 )r — 1. It will suffice to

consider only « = p + 2 — r. Insert a factor

i r-j\ p + 1 -j\

~i r-j\ p+ 1 -j\

inside the sum over /', cancel, and use

i _     p+l-r

p+ 1 - r + i p + I - r+ i'

The inner sum becomes

The first sum is 0 since (1 — l)r~j = 0. For the second sum we use the binomial

identity

(»)    ague)-,<,+,):'.(,+.)• -»■
with x = /> + 1 — r and m = r — j. (2.5) may be found in [4], for example.
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It should be noted that the use of (2.5) does not cover the case r = p + 1.

However, returning to (2.3), it is easily seen that qiz) = b0(z — l)p+]. This com-

pletes the proof.

Remarks. (1) The idempotent map w — (z + l)/(z — 1) transforms the unit circle

of the z plane to the left half of the w plane in a 1-1 fashion. In particular, equal

roots of piz) correspond to equal roots of t(w). This suggests using the system of

linear equations

(2.6) t<"(w„) =0,       i = 0(l)/7 + 1 - r,

where w0 is one of the at most r — 1 real roots of T^p+2~r\w). We choose that w0

which makes t(w) a Hurwitz polynomial, if possible.

(2) Thus the/; + 2 coefficients of piz) can be completely determined by (1.3) and

(2.6), on a machine. Note that we must check that the coefficients of t(h>) yield a

Hurwitz polynomial for each w0, but even this can be done mechanically when the

coefficients are numerical. See some algorithms in [3], for example.

(3) Here we shall only illustrate the coefficient matrix of the system (2.6) in the

case r — p, i.e.,

F = Up+l)2piw0-l) + 2p+x    2»iw0-l)

(p + \)2p 2"

to be solved for the vector S = (¿>0, bx)T.

3. Examples and Conclusions. We first consider two methods, QiC, B, r), which

are indeed optimal.

(l)r = 2,^=1,

t(w) = (460-2) + w + w2,       t0)(w) = 1 + 2w.

Using w0 = -1/2, we obtain b0 = 9/16. In this case we actually get two equal real

roots of piz); zx2 = -1/3. t(w) is Hurwitz for b0 > 1/2.

(2)r=3,p = 2,

t(w) = (8Z>0 - 11/3) + (2/3)w + 2w2 + w3,       tw(w) = (2/3) + 4w + 3w2.

Only the root w0 = (-2 + 21/2)/3 makes t(w) a Hurwitz polynomial. In this case

we obtain b0 = (95 + 4(2)l/2)/216. t(w) is Hurwitz for bQ such that 11/24 <b0<

15/24; see also [5]. Again, in this case, we have all real roots with as many equal

roots as possible.

Rather than use the irrational b0 above, we shall use b0 = 7/15 which agrees to 3

places of decimals. A slightly better approximation is b0 = 706/1515, to 5 places of

decimals.

We note that in [2], methods with b0 = 9/16 r = 2 and b0 = 23/48 r = 3 are

considered, but no reason for these choices are given.

The following Volterra equation will be solved.

(3.1) /   exp[-ix - t)]yit)dt = sinhx,       0 < x *£ 5,

det(F) = 22p
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which has the exact solution y ix) = exp(jc). The phenomenon of marginal instabil-

ity, recall (2.1), does not occur in this equation. Thus we shall solve it by our two

optimal methods as well as by methods where piz) is simple Von Neumann in order

to see how much improvement in the numerical solution we get between the " worst"

and the " best" methods.

Table 1

Methods        Q(C,B,r)

J0

1/2

9/16

15/24

7/15

zeroes of p(z), z.

0,-1

-1/3,-1/3

1/3, (-l±2(6)h   0/5

0.234,-0.67H0.856Í

I2jll2

1.000

0.222

2.111

0.969

The polynomials, p(z), are:

p=l: piz) = b0z2 + (3/2 - 2Z>0)z + bQ- 1/2,

p = 2: piz) = b0z3 + (23/12 - 3b0)z2 + (3bQ - 16/12)z + 5/12 - b0.

We also remark that for the actual optimal b0 = (95 + 4(2)l/2)/216, in the case

p = 2, the /2-norm is 0.961. Also, for the method corresponding to r — 3, p = 2,

b0 = 11/24, p(z) has zeros z123 = -1, (-1 ± 2(3)1/2)/ll with Wz^Wj = 1.215, so

that we took b0 = 15/24 as the "worst" method.

(3.1) was solved with step sizes « = 0.1 and « = 0.05. Exact starting values were

used when needed. All computations were performed on the Honeywell sigma 9 (in

double precision, i.e., a 64 bit word) at the Communications Research Centre in

Ottawa. A selection of numerical results is displayed in Table 2.

Remarks. (1) The "optimal" method of order 2 actually has larger errors than the

"worst" method. However, the latter has a root of p(z) at the origin, which means

the summation in (2.1) has only one term. On the other hand, the errors of the

"optimal" method of order 3 are less than those of the "worst" method.

(2) In any case, the importance of this method of construction is not to minimize

the errors for a given order r, but rather to permit a mechanical, lexicographical

search, for a given pair of positive integers (r, p) with r ^ p + 2, for polynomials

piz) which are Schur.

(3) In [5] and [6], it was observed that for r = p + 1 (one free parameter) t(w) has

coefficients of opposite signs for 3 < p < 5 and hence cannot be Hurwitz for any b0;

see [3], e.g.. Thus one might conjecture that r — 3 is the highest order one can obtain

with one free parameter. However, using the crude and arbitrary choice, bi = 0:

i = 0(1)/» + 1 — r, it can be shown that t(w) is Hurwitz for p = 19, at least.



OPTIMAL INTEGRATION METHODS FOR VOLTERRA EQUATIONS 517

Table 2

Numerical Results

\        h

|enl = lyn-y(xn)l

y(xn

b0 - 1/2

r = 2

bQ - 9/16 b0 = 15/24 b0 = 7/15

r = 3

1.0     0.10

0.05

2.7182818

1.2 x 10

5.3 x 10"

-3
1.5 x 10

3.9 x 10"

-2
1.7 x 10

-3

7.9 x 10
-4

3.5 x 10"

2.3 x 10
-4

2.0     0.10

0.05

2.2 x 10
-2

7.3890561

5.5 x 10
-3

4.1 x 10"

1.1 x 10

1.3 x 10"

1.8 x 10"

4.7 x 10"

6.3 x 10"

3.0     0.10

0.05

20.0855369

6.6 x 10

1.6 x 10"

-2
1.1 x 10" 3.4 x 10"

2.9 x 10
-2

4.5 x 10
-3

1.3 x 10"

1.7 x 10"

4.0     0.10

0.05

54.5981500

1.8 x 10"

4.5 x 10"

3.0 x 10
-1

7.8 x 10
-2

9.2 x 10"

1.3 x 10"

3.5 x 10"

4.7 x 10"

5.0     0.10

0.05

4.9 x 10"

148.4131591

1.2 x 10
-1

8.3 x 10"

2.1 x 10"

2.5 x 10"

3.4 x 10"

9.5 x 10"

1.3 x 10"
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