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On the Computation of Certain Integrals

Containing the Modified Bessel Function I0( £)

By Keith R. Lassey

Abstract. Efficient stratagems are developed for numerically evaluating one- and two-dimen-

sional integrals over x, y with integrand exp( — x — y)I0(2Jpxy ). The integrals are expressed

in terms of convergent series, which exhibit the correct limiting behavior, and which can be

evaluated recursively. The performances of these stratagems are compared with numerical

integration.

1. Introduction. This paper is concerned with the efficient evaluation of the

following integrals, all involving the modified Bessel function, 70(£):

(1) Jix,y)=re-('+r%(2jty~)dt,
Jx

(2) K(x,y)=fe-<,+y\(2^)dt,

(3) L(x, y, p) = (l- p) (ye»u-"K(x, pu) du
Jo

(4) =0-/0 fdufdte-c+%(2{pul),

where/), x, y > 0. These functions will be referred to as the J-, K-, and L-functions,

respectively. The /- and ^-functions are trivially related (see (18)).

The J- and/or A"-functions are encountered in many contexts. These include: the

study of exchange processes in columns (such as heat exchange [1], and ion exchange

including chromatography [2]-[5]); dispersive exchange processes in hydrology and

soil science [6]-[8]; a probabilistic analysis of targeted missile impacts [9], [5,

Appendix]; in a solution to the telegraphy equation [5, Appendix], [10]; in a recently

proposed filtration model of aerosol retention by a vegetative canopy 111], and in

generalizations of such a model for other environmental-impact modelling applica-

tions [12].

Upon integrating (3) by parts, the L-function becomes expressible in terms of the

K- or J-functions:

(5a)        L(x, y, p) = (1 - e»~') + e"^J(x, py) - e"*-*J(px, y),

(5b) = (1 - epy-y) + epy-yK(py, x) - epx~xK(y, px).
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626 KEITH R. LASSEY

Consequently, the analytic properties of L(x, y, p) follow immediately from those

of the J- or A"-function; nevertheless, there seems to be some merit in retaining it as

a function in its own right. The L-function was encountered, though not separately

identified, by Brinkley [1, (22)]; it also arises naturally in a model of filtration [11],

[12].
All of these functions commonly arise as solutions to the hyperbolic equations:

^4>i(x, y) = *2(x, y),       Vx:4,x(x, y) = <p2(x, y),     ^z<t>2(x> y) = <t>\(x, y),

(6)

(¿y-^Áx,y) = 0,      j=l,2.

The solutions to (6) satisfying the boundary conditions

(7) <pl(x,0)=A,       <t>2(0,y) = 0,

are

(8) 4>xix,y) = AI0(2i[xy~),       <?2(x, y) = A{x~/y~Ix(2¡x~y).

The solutions satisfying the boundary conditions

(9) <f>,(x,0) = 0,      fc(0, y) = Be**,

are

(10) *,(*, y) = ßBe^+y/fKiy/ß, ßx),       <?2(x, y) = Be^/^ßx, y/ß).

The solution to (6) satisfying

(11) 4>x(x,0) = Cex/a,       <f>,(0, y) = Ce'"

is

(12) <pxix, y) = Cex^a+^{1 - Lix/a, y/ß, aß)}.

This last solution is trivial in the aß — 1 limit. Luke [10] supplies several other

partial differential equations with solutions expressible in terms of the J- and

/(-functions.

Although analytic properties of the /-function have been well documented [5],

[10], an algorithm for its efficient evaluation seems to be unavailable—except for an

incomplete collection of analytical approximations of limited accuracy [13]. In the

absence of such an algorithm, de Smedt and Wierenga [8] resorted to a truncation of

the infinite summation:

oo        n     n m

(13) Jix,y) = e-<*+»2 ^  2  —i-
„ n\      „ m\

n = 0 m = 0

Such a series exhibits slow convergence for large arguments; moreover, it may be

subject to underflow, even for modest argument values (e.g.,  for x + y > 89,

e<x+y) < 2-128)

The motivation for the current work is the validation of models of filtration [11],

in which the search for optimal model parameters was hindered by the relatively

slow numerical integration originally employed to compute the K- and L-functions.

The superior algorithms subsequently developed, and reported herein, greatly assist

such parameter searches.
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Since the proposed strategems involve the Bessel functions /m(¿), it is appropriate

to first discuss their numerical evaluation.

2. Computation of the Modified Bessel Function, /m(£). The small-argument and

asymptotic behavior of ImÜ) are

oo lït\2k

os) /„({)- p^r'-v.

Cody [14] has catalogued several computer codes for computing ImH). Some are

specific to am = 0 or 1, while others are appropriate for computing the sequence

ImiÍ) for am = 0,1,...,M; the latter exploit the stable three-term backward-recursion

relationship for contiguous values of am. In practice, /„,(£) often occurs weighted

exponentially (i.e., in the form e_M7m(£)), in which case efficiency is enhanced if the

computer code returns the exponentially-scaled Bessel function, e_iJm(£), without

internal computation of the exponential function; it is natural to proceed in this way

in the asymptotic domain where the behavior (15) dominates.

In the proposed stratagems for the large-£ domain, we have chosen to employ the

sequence rmii) for am = am0, am0 + 1,..., M (where am0 = 0 or 1) in place of the

sequence /„,(£)• Here, A"m(£) is the ratio of Bessel functions,

(16) rm(t) = Im+x(t)/Im(t);

it obeys the stable two-term backward-recursion relation,

(17) rm^M)={2m/ii + rm(t)}-\

and the inequality 0 < rm(£) < 1. The implementation of such strategems calls for

the computation of an initial ratio rMi£) and of a single Bessel function, usually

I0H) weighted exponentially, and for the recursive use of (17). The efficient

computation of rMi£) has been the subject of several papers [15]-[17].

The performance of algorithms proposed herein were tested on a PDP-11 /34

computer* (with 24-bit effective mantissa, 8-bit exponent, in single precision). In the

large-£ domain (£>20) Amos' iterative algorithm [15] is employed to compute

rMii) and Allen's formula [18] to compute e~f/0(£). The latter formula comprises

the product of the asymptote (15) and an eighth order polynomial in | '; its relative

precision for £ > 3.75 is better than 5 X 10"7 [19]. Rational approximations to

£l/2e_i/0(£) for £ > 15 have been developed by Blair and Edwards [20] to meet any

desired precision, and these would also well serve the same task.

3. The /- and /¿-functions. Analytic properties cited below are taken from

Goldstein [5] and/or Luke [10]. The complementarity relation

(18) Jix, y) + K(x, y) = 1

can be used to relate the properties of the /- and /(-functions. Throughout this

* The particular computer is equipped with the extended multiplication instruction set (EIS) as a

hardware feature, but not with the floating-point multiplication instruction set (FIS).
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section we adopt the abbreviations

(19) « = 2^,      r) = {yjx~.

We note the following interrelationship and limiting values:

(20) J(x,y) = K(y,x) + e-^+y%U),

(21) K(0,y) = 0,   J(x,0) = e-\     Hm K(x, y) = 0.
y—oo

For small values of the arguments, /(x, y) can be efficiently evaluated by

summing to convergence the following adaptation of the series (13):

(22a) J(x, y) = e~x + e"<*+>'> 2 ^  2  —, ■
, n\       , am!

n= 1 m= 1

This series has the virtue that the y -* 0 behavior is reproduced in the leading term.

The analogous series for ATx, y) is

oo        fi  n— \      m

(22b) K(x,y) = e-<x+^2 ~x   1  ^7 •
, m!       „ am!

n=1 m=0

Convergence is assisted by using (22a) and (22b) for the parameter domains

x > max( y, 1) and x *s max(j, 1), respectively, and invoking (18) as necessary.

Consider the large-£ domain, in which expressions exhibiting the appropriate

asymptotic behavior are required.

From (20) it is evident that any expression for AT(x, y) in terms of x and y has a

closely analogous counterpart for7(x, y) in terms of y and x. Such counterparts are

supplied here, and consideration is otherwise restricted to an algorithm for /("(x, y)

with x < y; a corresponding algorithm for /(x, y) with x> y follows analogously,

thereby completing the parameter space x, y > 0 by virtue of (18). The subtraction

implied by invoking (18) incurs no loss of precision, because Kix, y) > { for x > y

and 7(x, y) > {- for x < y in the domain £ > 15.

The following expansions cited by Goldstein [5] and Luke [10] converge to the

correct asymptotes, unless t) is near unity:

00

(23a) 7(x, y) = e<*+» 2 l\(0,       1 < 1,
m = 0

oo

(23b) A-(x, y) = «-<*+') 2 f mU0*       1 > 1-
m=l

This can be seen by noting the w-independence of /m(|) in the asymptotic region,

where expansions (23) then become

J(x,y)   - e-(*+>\l - t,ylI0iS),       t,<1,
?^oo

Kix,y)  - e"<*+'>(i, - I)-1/,,«),       n>l,
f-00

consistently with Goldstein's cited asymptotes [5, (74), (75)]. That the two expres-

sions (23) are compatible with (18) follows from the generating function for

modified Bessel functions [19]:
00

(24) /O(0 +   2  (ïf + rfm)/m(l) = e^+^/2.
m=\
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For small values of ij"1, one can truncate the series (23b) appropriately, and

compute ATx, y) by accumulating terms in order of decreasing am. For this purpose,

the series can be expressed in the recursive form

M

(25) K(x, y) - e-<*+" 2 *f "UO
m=\

(26a) = e-<*+'VoU),

where

(26b) SM+X = 0,       Sm = V-xrm(t)Sm+x + l.

To effect this recursion, one is required to calculate the number of terms M, the

initial ratio rM_,(£), an£l ^o(0; trie rapid recursive processes (17) and (26) then

follow. The calculation of rM_xi£) and /0(£) is discussed in Section 2. A lower bound

on the number of terms, M, can be estimated by utilizing the inequality rm(£) < 1

(which is fairly tight if £ > am) to bound the following remainder function (the

difference between (23b) and its approximation (25)):

00 00

RM(x,y) = e-^     2     V-mIm(0<e-^)2v-(m+M)ImU)
(27) m = M+\ m=\

= i)-MK(x,y).

If a relative precision, p, is demanded of ÄTx, y), then M can be selected such that

r/_A/ is not larger than p. If an absolute precision, a, is specified, rfM should not be

larger than a/Kvix, y), where A^x, y) is an upper bound of Kix, y). Such an

upper bound may be deduced from (23b):

00

Kix, y) < e<*+y%it) 2 V- = (v- iyle-<x+yf0(O.
m=\

When Tj is near unity, the series (23) are inappropriate. A more appropriate series

follows from invoking the "multiplication theorem" [19] to expand /m(£) of (23) in

terms of Im + „H0), where £0 is the smaller of 2x and 2y:

oo     /      _      \"

(28a) vTimU)= 2      „,     im+n(2y),     x>y,
n = 0 ' ■

or

(28b) r,-/m(0 = 2 ^—^-im+n(2X),     x <y-
n=0

Substitution of (28b) into (23b), and rearrangement of the summations, produce

oo     /      _      \n        oo

K(x,y) = e<x^2 JJLnfL    2    ¡m(2x).
n = 0 ' m — n+1

The infinite sum over am can be replaced with a finite sum, by invoking the standard

normalization result,

00

(29) 2 2 U€)+/o(*)-«*,
m=l
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(which is actually a special case of (24)), to produce

oo     «„     n

K{x, y) = K(x, x) - *-(*+» 2^2 Uío).
(30) „=i"!m=i

*(x,*) = i{l-í"«»/0(ío)}-

Here £0 = 2x and A = y — x.

To evaluate (30), the sum over n is truncated to « < TV and then evaluated

recursively

AV-l a«     "

2  Uto)=¿oIott0h
— 1   " :

B= 1 I

where

M!
m= 1

AN = BN = 0,   An = -^--rnU0)(An+x + Bn+x),   B„ = -~Bn+l+l,

are r„(£0) obeys the backward recursion relation (17). Again, the computation of

rNH0) and /0(£0) proceeds as described in Section 2. It remains only to estimate a

lower bound on N by bounding the remainder function

oo      »„      n

(3i) **(*. *) = «-^ 2 £f 2 /.(io).
n — N      '  m— 1

Extending the sum over am upwards toward oo, and making use of (23), produces the

inequality

(32) RN(x,y)<ex->K(x,x) f  £.

The determination of 7Y to assure a specified precision is simplified, even if N is

thereby overestimated, by using the inequality n\N\ < in + N)\ to write

00 A„ A/V-

V   — <— e*
««!      TV!     '

whereupon

(33) /?;v(x,j)<-^^L/r(x,x),        x<y.

An alternative upper bound on RNix, y) is obtained by writing /m(£0) < /0(£o) ^n

(31). This produces the inequality

n\
(34) RNix,y)<Le<x+y\ik0)    2

n = N-\

(35) <{{yN~_X^e-2xI0i2x),       x<y.

A specified absolute precision, a, can be met by selecting N such that at least one of

the upper bounds (33), (35) is smaller than «; for a specified relative tolerance, p, at

least one should be smaller than pK¡fx, y), where KLix, y) is a lower bound of

Kix, y). Such a lower bound is deducible by writing (30) as

K(x,y) = K(x,x)-R,(x,y),



THE MODIFIED BESSEL FUNCTION /0(£) 631

and utilizing bounds (32), (34); thus

K(x, y) > max{ex~yK(x, x), K(x, x) - (y - x)e"2V0(2x)}.

Performance. One of the small-£ expansions (22) is employed wherever £ < £c.

Otherwise, Kix, y) for x < y is computed via the more economical of the two

truncated expansions, (25) or (30)—expansions in ifx or A, respectively. We have

chosen to judge the relative economy of these expansions by the number of terms, M

or N, in their truncated expansions. A simple test to determine approximately the

relative magnitude of M and N appears in the appendix; the test usually avoids

computing both M and N and always avoids computing N unnecessarily. A large-£

delimiter of £c = 20 is also recommended in the appendix.

A numerical experiment is devised to compare the performance of four contend-

ing algorithms for Kix, y). The first of the four algorithms is that proposed herein;

the second employs the series expansions (22a), (22b) in the parameter domains

x < y and x > y, respectively; the remaining two employ numerical integration, one

by an adaptive Simpson's rule, the other by a doubly-adaptive Clenshaw-Curtis

quadrature. The adaptive Simpson's rule found to provide the best performance is

the AECL routine COSIMP [21 ] with a modified error accumulation which reduces

the number of integrand evaluations. The doubly-adaptive Clenshaw-Curtis quadra-

ture is a FORTRAN translation of Oliver's ALGOL procedure ADAPQUAD [22],

augmented to accommodate an optional relative precision in a manner based upon

(but more flexible than) the proposal of O'Hara and Smith [23, Appendix]. Both

numerical integrators evaluate (2) directly if x < y; but for x > y it is more efficient

to reexpress Kix, y) in terms of Kiy, x) (via Eqs. (18), (20)). Thus, in either case,

the integral is over the range [0, min(x, y)], which in practice is scaled to [0,1] and

the precomputed additive term (for x > y) added directly to the integrand. Allen's

formulae [18], [19] are used to compute /0(z) for 0 < z < £.

The numerical experiment determines the mean functional evaluation time for

Kix, y) over identical geometric grids of x and y (35 values of each) such that

£c < £ < 80. Those times are recorded in Table 1, corresponding to a demanded

relative accuracy of p = 10"5, and to the same supplemented by a demanded

absolute accuracy of « = 10"5. The superiority of the proposed algorithm is clearly

exposed. The relative inferiority of numerical integration arises because of the

requirement to compute 70(z) (weighted exponentially) at each integrand evaluation;

in fact Allen's formula as used here is quite efficient for this purpose, but would

unnecessarily limit the precision achievable in some computing environments. In

contrast, the proposed algorithm computes only one exponentially-weighted Bessel

function (either 70(£) or 70(£0))—except in marginal parameter domains, where both

are calculated—together with the ratio rMi£) or rNi£0); all are computed in the

asymptotic region (£, £0 > 20), where their evaluations are straightforward.

The adaptive Simpson's rule displays superiority over the doubly-adaptive

Clenshaw-Curtis quadrature as a numerical integrator; this is despite the former

requiring ~ 10% more integrand evaluations, on the average (typically 20 to 50 per

integral for the performance test undertaken). This presumably reflects the relatively

complex arithmetic within the latter integrator's overhead (e.g., in the computation

of Chebyshev series—each of which may have complexity comparable to that of an
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integrand evaluation). The required Clenshaw-Curtis roots and weights contribute

insignificantly to this overhead, as they are computed only once throughout each

test.

Table 1

Mean evaluation times of Kix, y)

Algorithm

As proposed

Expansion (22)

Ad. Simpson3

D-ad. C-Cb

Mean time(mi)

p= 10" a — p 10"

95

146

295

394

90

146

202

310

aA modified version of COSIMP [21].

bAn augmented doubly-adaptive Clenshaw-Curtis algorithm [22].

4. The ¿-Function. Since L(x, y, p) is a symmetric function of x and>\ there is no

loss of generality in assuming throughout that x > y. We adopt the abbreviations

(36a) Í = 2{px~y,

(36b) T), = ¡py/x,       t/2 = ¡px/y = p/t\x,

noting that tj, < min(f)2, rf2) < 1.

One can easily verify the useful relationship

(37)     L(x, y, p) = (l~ e"~')(l - ePx~x) - e^~^x+y^L(px, py, p~x),

as a result of which analytic properties of L(x, y, p) with p > 1 can be deduced

from those with/? < 1. Consequently, we restrict consideration here top < 1, though

the strategem so developed is suitable also for p > 1 if the transformation (x, y, p)

-> ipx, py, p~x) is made and the subtraction in (37) accommodated analytically.

The following properties follow immediately from Eqs. (3)-(5):

(38a) L(x,0,/>)=0,       L(x, y,0) = (1 - *"*)(! - e~r),

(38b) lim L(x, y, p) = 1 — epy-y L(x,y,l) = 0.

In principle, L(x, y, p) can be evaluated by subsituting into (5) the appropriate

expansions for the J- or ^-function. In practice, some care must be taken to avoid

loss of precision upon subtraction (particularly for p near unity), and some economy

is obtained by noting that both K- (or /-) functions share the same £-value.

The substitution of (22a) into (5a) produces the small-£ expansion

Lix, y, p) = (1 - e»y-y)il - e-')

i39) oo        „   n-l    /     m _     n\    m
-a-ix+y)  V   y_   V    \P P   )x

n = 2 m=\
AM!

The leading term of (39) is within ~ 10% of the value of L(x, y, p) everywhere in

the parameter domain x> y,p < 1, and is exact in the £ — 0 or p = 1 limits.
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An expansion alternative to (39) is more appropriate for small/?:

L(x, y, p) = (1 - epy-y)il - epx~x) - t<*+>\e*x - l)(e^ - 1)

(40) +e-(x+„ | Ell 2 *"y + *y"_isT
. «! I   "", am! m!

n— 1 ( m = 1

Expansion (40) exhibits faster convergence than (39) for p < y/x. Moreover, in the

parameter domain p > x/y > 1, it is essential to employ (40) in place of (39) for the

computation of Lipx, py, p~x).

Consider the large-£ domain, for which the cases ij2 < 1 and tj2 > 1 require

separate consideration.

In the large-T/2 domain, tj, < r/2' < 1, two substitutions of (23b) into (5b) produce

00

(41) L(x, y, p) = (l~ e»y-y) - e<x+» 2 («" " iTWf).
m=\

The nullity of L(x, y, 1) is apparent. Note that the leading term in (41) is the x -* oo

asymptote, relative to which the subtracted term is small (< 10%). The analogous

expression in the small-T/2 domain, tj, < r/2 < 1, which is incompatible with/; —* 1, is

L(x, y,p)= 1 - epy~y - epx~x

W +e-<^'|/0(£)+   1 (ff+ *)/«(«}.

which is symmetric in x, y. In each of (41) and (42), the series can be truncated to

am < M and summation effected by backward recursion in a manner similar to (25)

ff.

If either or both of t/, and t\2 is near unity, it is convenient to symmetrize (5) to

produce

Lix,y,p) = l-Hepy-y + e"x-x)
(43)
v    ' -epy-ySK(x, py) - epx~xÔK(y, px),

where

(44) 8K(x,y)={{K(x,y)-K(y,x)}.

If tj, is small, we have

(45) SK(x,py)=\{l - e-<x+pyf0(t)} - e"™> | </,(£),
m=\

in which the summation can be truncated, as before. Otherwise, one can deduce

from (30) and its analogue for x > y

00     /      _     \n      n

(46) 8K(x,y) = e-<x^2 ^-f- 2"Im(2y),       x>y,
n=\ m=0

where the double prime denotes that the first and last terms in the sum (i.e.,

am = 0, n) are to be halved. The summations of (46) can be truncated and the

remainder bounded as in (32)-(35). The truncated summation can then be cast in
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the convenient backward-recursive form:

"i  JÏ 2" Ltto) = Aohttol
n=\ m=0

AN = BN = 0,

K = 7^rf WioK+i + ¿0 + >-M0))Bn+l},

B" = 7+ïB"+x + L

Several factors of the form (1 — e~w) are encountered in these formulae. In order

to avoid a loss of precision when w is small, it is prudent to employ an approxima-

tion—such as one presented by Hart et al. [24]—which explicitly exhibits a factor of

w at small w.

Performance. The series (39) or (40) are implemented whenever £ < £c. Criteria to

determine which of the expansions (41)-(46) to proceed with when £ > £c are more

complex than those for ATx, y) in the appendix, and are omitted here. It is sufficient

to note that the universal choice £c = 28 optimized typical functional evaluation

times.

The performance of our algorithm, vis-à-vis the series expansions (39), (40) and

numerical integration, was tested using a numerical experiment similar to that for

Kix, y). Table 2 reports the mean of 1296 evaluation times, over an arithmetic grid

of nine /7-values in the range [0.05, 0.95] and, for each /»-value, identical geometric

grids of x and y (12 values of each) such that £f < £ < 80. For numerical integration

purposes L(x, y, p) is recast as

L(x,y,p) = (l -e-qy)- f{q+p(l - e«iu-y))}e-(u+x)lA2{pu~x~) du,
J0

where q = 1 — p; the entire right-hand side is then rewritten as an integral over the

range [0,1].

The superiority of the algorithm proposed herein is again in evidence, although to

a lesser degree than for ATx, y). This is because the additive leading terms in each

expansion dominate L(x, y, p). Accordingly, typical evaluation times are also

smaller than for Kix, y).

Table 2

Mean evaluation times ofL(x, y, p)

Algorithm

As proposed

Expansions (39), (40)

Ad. Simpson*

D-ad. C-C*

Mean time (ams)

p= 10"5 a = p= 10"

74 74

107 106

108 106

256 255

* As in footnotes, Table 1.
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5. Summary. We have deduced and presented suitable series expansions for

Kix, y), with x < y, and for L(x, y, p) in the asymptotic domain; complementary

expansions for /(x, y) with x > y follow analogously to those for AT(x, y). These

expansions supplement the small-argument expansions (22), (39), (40).

The practical term-by-term evaluation of the series expansion must be performed

in the backward direction, necessitating the determination of a truncation point. The

expansions may then be summed, and recursive expressions to accomplish this have

been presented. They require the evaluation of a Bessel function ratio, a-a/(£) of (16),

and of an exponentially-weighted Bessel function, e""70(£); here, £ is always in the

asymptotic region (i.e., 70(£) is dominated by the behavior (15)), where the evalua-

tions are relatively straightforward [14]—[20].

The proposed algorithm is significantly more efficient than either direct numerical

integration or small-argument expansions extended to domains stable against under-

flow. This should greatly benefit the modelling of exchange and filtration processes

[l]-[8], [11], [12], for which searches in model-parameter space necessitate successive

functional evaluations. In particular, for models of dispersive exchange processes

[6]-[8], multiple evaluations of the /- and/or /v-functions are required to accomplish

numerical integration at each parameter vector in the search; a fast algorithm for

these evaluations then becomes imperative in an extensive parameter search.

Acknowledgement. The author is grateful to Dr. M. R. Manning for useful
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Appendix. This appendix presents a scheme for assessing approximately, with

minimal computational overhead, the relative magnitude of M and N (respectively,

the number of terms retained in the truncated series (25) and (30) for Kix, y) to

meet a demanded precision).

An approximate equality of the two remainder functions (27) and (33) yields

/     n Ki     A"     (eA\N
(ad „-"=_*(_) .

which is of similar order to the specified precision. In deducing (Al), multipliers

independent of M or N have been dropped, and the last expression follows from

Stirling's approximation to N!. The reliability of (Al) should therefore improve with

increasing M and N. The break-even point for the two expansions (i.e., M = N)

satisfies approximately eA =* Mrfx. For values of eA smaller or larger than Mifx,

expansions in A or in jfx (respectively) are likely to be the more appropriate. The

following two easily-proven lemmas interpret (Al) as an exact equality and permit

the implementation of this consideration.

Lemma 1. Define

(A2) E(Me)=(Mel)1/M<.

If à < T)~xEiMA, then N < max(M, MA.
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Lemma 2. //

(A3) M-M0<eä   or   tj"m<

then M <N + M0.

The proof of Lemma 2 invokes Stirling's approximation for (M— M0)\; its

converse also holds to within the accuracy of this approximation.

The recommended strategy for computing Kix, y) for 17 > 1, £ > £c is: if A <

r/"'£(Mc)—for a supplied value of EiMA—then proceed via an expansion in A;

otherwise compute M (appropriate to an expansion in rfx) and proceed via this

expansion if (A3) is satisfied (for a supplied value of M0), or via an expansion in A

otherwise. The rationale is that, if M, N < Mc, the overhead to ascertain the more

appropriate expansion is unwarranted; and if, having computed M, an expansion in

A is the more appropriate, the presence of M0 compensates for the overhead in also

computing N.

Optimum universal choices for £c, Mc, and M0 would depend upon the distribu-

tion of encountered parameter values, x and y, upon the precision demanded, and

upon the computing environment. We here propose such choices, determined by

minimizing the mean evaluation time of Kix, y) ona PDP-11 computer for identical

geometric grids of x and y, and for a demanded relative precision of 10"5:

£c = 20,   Mo = 50,   Mc = 20,   E(MC) = 8.3.

None of these choices are critical: changes of ~ 10% affect mean evaluation times

by< 1%.
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