
mathematics of computation
volume 39, number 160
october 1982, pages 655-662

Formulas for Factorial N

By Francis J. Murray

Abstract. Burnside's and Stirling's formulas for factorial N are special cases of a family of

formulas with corresponding asymptotic series given by E. W. Barnes in 1899. An operational

procedure for obtaining these formulas and series is presented which yields both convergent

and divergent series and error estimates in the latter case. Two formulas of this family have

superior accuracy and the geometric mean is better than either.

1. Introduction. Burnside's formula for N ! is given by

(1) b(N) = (27ry5((N+.5)/e)N+-5.

(1) has a number of advantages relative to the usual Stirling formula

(2) s(N) = (2tre)5(N/ef+-5.

Thus if Eb(N) and Es(N) are defined by the equations

(3) b(N)/N\= 1 + Eb(N): s(N)/N\= 1 - Es(N),

then for N = 1,2,..., both Eb(N) and Es(N) are positive and, practically, Es(N)

= 2Eb(N). One can take logarithms of b(N) for N — 0,\,..., and, indeed,

Eb(0) = .07.

The computational value of these formulas is based on the associated asymptotic

series. The asymptotic series for both b(N) and s(N) are special cases of a family of

asymptotic series for AM. The classical textbook procedure for obtaining s(N) is

based on Euler-Maclaurin summation. For example, in [5] one has a development

explicitly based on the properties of the Bernoulli functions. An alternate procedure

is presented here, using "operational" methods which produce both convergent and

divergent series and error estimates in the latter case. The family of asymptotic series

is known. Thus Eq. (28) of this paper is related to Eq. 12, p. 48 of [2], by an obvious

change of independent variables and an explicit formula for the remainder term.

Equation 12 of [2] is ascribed to E. W. Barnes. Burnside [1], showed that log b(N) is

the initial term of a convergent series for log(AM) and Wilton [6], generalized

Burnside's result to nonintegral values.

The formulas s(N) and b(N) avoid certain difficulties which are associated with

the iterative computation of A/!, when their accuracy is adequate. There are,

however, two formulas, corresponding to members of the above-mentioned family of

series, which have superior accuracy, and the geometrical mean is even better. In

each of these five formulas only one logarithm and antilogarithm is computed.
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The present paper has been revised in accordance with recommendations of the

referee.

2. Convergent Series for Factorial N. The Burnside series can be derived as

follows. Let

(4) f(x) = xlog\x\—x.

For positive integral values of k, consider f(k + h) as a Taylor series at k for h = .5

and h = -.5. Taking the difference yields

00

(5) f(k + .5) -f(k - .5) = log k - 2 WC; + l){2k)2j.

Define f by the equation

00 00

(6) 2    1 /k2j = 2 V (k + N + \)2J = f(2¿ N + 1).
k=N+\ k=0

To obtain an expression for log AM, (5) can be summed from 2 to N.
00

(7) f(N + .5) -/(1.5) = log AM- 2 (í(2y,2) - S(2j, N + l))/2f(2f + 1)22^.
7=1

Combining the terms independent of N into a constant c yields

00

(8) logN\ = f(N+ .5) + c- 2 f(2y\ N + \)/2j(2j + 1)22^.
7=1

The values of the f function which appear can be estimated by the usual integral

test. Thus the convergence and characteristics of the series in the last expression in

(8) are readily obtained. Since this expression approaches zero as N -» oo, a

comparison with Stirling's formula shows that c = .5 log(277). With this value of c,

(8) becomes the Burnside series.

The f functions in (8) appear quite formidable in regard to computation, although

they really are not. Cf. [2, Section 1.10, p. 24]. Also the Stirling asymptotic series for

log N ! has terms consisting of negative powers of N with relatively small rational

coefficients. It would clearly be desirable to have a similar series with negative

powers of 7Y + .5.

Consider then the difference equation

(9) b(x+ .5) -b(x- .5) = logx.

A solution, b(x), of this equation, defined for x > 1.5 will yield an expression for

log AM

(10) \ogN\=b(N + .5) +c

by summing (9) for x = 2,..., N.

We obtain a solution of (9) by "operational methods." We proceed formally and

return to a justification later. In terms of the differential operator, D, (9) can be

written

(11) (exp(.5£>) - cxp(-.5D))b(x) = logx.

Integration is equivalent to dividing by D, i.e.,

(12) (2sinh(.5D)/D)b(x) = f(x) + A,
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where A is a constant of integration. The operator on the left, when applied to a

constant, yields the constant. Thus the constant A can be incorporated into b(x).

Then

(13) b(x) = (.5D/sinh(.5D))f(x).

Let z denote a complex variable. The expansion of the meromorphic function ese z

in terms of its poles yields (see [3, p. 463])

00

(14) z/sin z = 1 +  2 (-1)"222/ {z2 - n2Tt2).
n=\

Substituting z = .5ix yields

oo

(15) .5Vsinh.5x = 1 +  2 (-1)"2jc2/ (x2 + 4/iV).
n=\

For x = D, using (15) in (13) yields

00

(16) b(x)=f(x)+ 2{-i)"yn{x),
n=l

where

(17) (D2 + 4n\2)yn(x) = 2D2f(x) = 2/x.

For positive x, variation of parameters yields a solution of (17) which goes to zero

as x goes to infinity, i.e.,

/•OO

(18) yn(x) = (\/trn)      (\/t)sm(2trn(t - x)) dt.
Jx

By changing the variable of integration this can also be expressed as

y-OO

(19) yn(x) = (l/trn)      (sin u/ (u + 2irnx)) du.
Jo

Since any two distinct solutions of (17) must differ by a harmonic oscillation of

nonzero amplitude, (19) is the only solution of (17) which goes to zero as x goes to

plus infinity.

Now one can readily show that for a s* 0

/•OO

/    (sin u/ (u + a)) du
Jo

(20) .„ I  oc \

= /   sin w    2 V {lk"n + " + <0((2A: + l)ir + u + a)\ du,
Jo U=o /

and consequently, for x>0,yn(x)>0 and for each x, yn(x) decreases as n increases,

and, for each n, y„(x) is a monotonically decreasing function of x for x > 0. Thus

the summation in (16) is for each x an alternating series of decreasing terms, and,

indeed, one has uniform convergence for x > 0. Since the summation in (16)

approaches zero as x -» oo, comparison with Stirling's formula shows that the

constant c in (10) has value .5 log 277.

3. The Asymptotic Series. The series (16) for b(x) with terms given by (19) does

not satisfy our requirement for a series in negative integral powers of N + .5. We

proceed to obtain an asymptotic series of this type with a remainder estimate.



658 FRANCIS J. MURRAY

Repeated integration by parts yields

yn(x) = (l/nm) 2 {-\)J+\2j-2)\/(2Trnx)2j-x

+ (-l)k(2k)\ (\/nm) /"^(sin u/(2mnx + u)2k+x) du
Jo

and

oo k

(22) 2 (-1)"ä(*) = 2 aj(2j - 2)\/x2'~x + R(k, x),
n=\ j=\

where

OÙ gg

(23) Ä(*,x) = (-l)*(2*)! 2 (-l)"(l/"^)í   (sin u/(2vnx + u)2k+l) du
n=\ J0

and

(24) a, = 2(-ir" 2 (-l)V(2«i^.
«=i

But ay can also be evaluated as follows. The function

(25) .5 x/sinh .5* = 1/ (l + (.5* f/3 ! + (.5* )*/5 !+•••)

is analytic at x = 0 and has a Taylor expansion

oc

2./(26) l+2f;
7=1

valid for \x\< 2m, with rational cyi which are readily evaluated. But the left-hand

side of (25) is also given in (15). Now, if we factor out 4n2m2 in the denominator of

the terms in (15), we can express the function as a power series in x/2mn and obtain

ultimately

00/00 \

(27) .5x/sinh.5*= 1 +2 2 (-1)'+M   2 {-\)"/{2mn)2j \x2J
j=\ \n=\ I

for |jc|<2tt. Comparing with (26) shows that Uj — Cj. However, we also have

D2jf(x) = (2j - 2)\/x2j- ', so that (16) and (22) yield

k

(28) b(x)=f(x)+ 2cJD2^f(x) + R(k,x).
7=1

If, in (28), we ignore the remainder term and let k = oo, we obtain an expression

which corresponds to using (26) as the function of D in (13). This is, of course, a

most naive way to solve (11) and yields a divergent series. On the other hand, the

properties of R(k, x) yield very useful results since the c¡ can be readily calculated.

The argument, in the paragraph containing (20), is based simply on the fact that

sin(« + m) = -sin u and readily generalizes to yield properties of the summation in

(23) in place of the summation in (16). In particular, the summation in (23) is always

negative, and for k fixed this summation approaches zero as x -» oo. Hence the/(x)

terms in (28) yield an asymptotic expression for b(x), and R(k, x) has the sign
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(-\)k+x. Hence, if one adds a term to the asymptotic expression, the remainder

changes sign, i.e., each term overshoots and must be larger than the previous

remainder. These are, of course, computationally desirable properties of the asymp-

totic expression.

4. On Justifying the Formal Procedure. We now return to justifying the formal

procedure of Section 2. This can be done by using the Fourier transform to express

the operator D on generalized functions, that is, using the methods described in [4].

However, to justify our procedure it is only necessary to show that (9) holds for

x = 2,3,... for b given by (16) and (19). We now show that (9) holds for x > .5.

By making the change of variable u = 2mnv and manipulating the limits of

integration, we obtain

(29)   yn(x+ .5)-yn(x- .5) = ({-\)"+'/nm) f5 (sin2m nu / (u + x)) du.

To make the required summation in (16), we consider

00

h(u) = - 2  sin2mnu/n = Imlog(l — exp(27r/'w))
n= 1

= Im(log(2sin7r«) + log(sinww — z'cos7rw))

= .5(1 — sign u)m + m(u — ¿)

using half angle formulas. Using this summation formula one obtains

00

2(-irU(*+.5)-v„(x-.5))

(31) "=1
= 1 + logx + (x - .5)log(x - .5) - (x+ .5)log(x + .5),

which implies (9).

The Fourier transform approach requires that yn(x) be defined for negative x. If

one considers integration across a simple pole, as given by the Cauchy limit, then

( 19) yields that for x<0

(32) yn(x) = cos(2mnx)/n - yn(x).

The summation argument of (30) then yields for x < 0

(33) b(x) =-\og(2\cosmx\)-b(\x\).

5. The Family of Asymptotic Series. The equations (10), (28) and the evaluation of

the constant c at the end of Section 2 yield the asymptotic series for log N !

\ogN\ = f(N+ .5) + .51og(2w) - 1/24(A+ .5)
(34)

+ 1/K3(N + .5)3 - 3l/K5(N + .5)5 + m/Kn(N + .5)7-,

where K3 = 26 X 32 X 5 = 2880, K5 = 27 X 32 X 5 X 7 = 40320, and £7 = 2" X 3

X 5 X 7 = 215040.

The argument used above will also yield other asymptotic series. For example, if

we replace (9) by

(35) s(x) -s(x - 1) = logx,
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the equivalent of (25) is

(36) x/(\ -exp(-jc)) = 1/(1 - x/2\+x2/3\-),

and the equivalent of (34) is

(37) \ogN\ = f(N) + .5log W + .51og2vr-r- 1/12JV - 1/360N2 +

which is the usual Stirling series for log TV!.

In general, we can replace (9) by

(38) g(x + .5 + a) - g(x - .5 + a) = log x.

One expands the function exp(-ax)/2sinh.5x — l/x + a in terms of its poles, and

one obtains, corresponding to (15) in the previous argument,

x cxp(-ax )/2 sinh .5x

(39>        = 1 - ax + 2 2 {-l)"x2(cos2mna - xsin2mna/2mn)/ (x2 + {2mn)2).

n=\

To obtain the equivalent to (16), we use bothyn, defined by (19), and
/•OO

(40) zn = -Dyn/2mn = (l/mn)      (cos u/ (u + 2mnx)) du.
Jo

The equivalent of (16) is then

00

(41) g(x) =f{x) - a log x +  2 (-l)"(jncos(27rna) + znsin(2mna)).

n=l

A rather obvious modification of the argument associated with Eqs. (29) and (30)

shows that (41) satisfies (38).

The Taylor expansion corresponding to (26) is

x exp(-ax )/2 sinh .5x

= 1 - ax + ^(a2 - -k)x2 + (a/6)(.25 - a2)x3

(42) + (l/24)((a2 - .25)2 - l/30)x4

- (a/120)((a2 - 5/12)2 - l/36)x5 + • • • ,

which yields the asymptotic series for log N !

logN\ = f(N+ .5 + a) - alog(N + .5 + a) + .51og277

+ .5(a2 - 1/12)/ (N + .5 + a) - a(.25 - a2)/6(N + .5 + a)2

(43)
+ ((a2 - .25)   - l/30)/12(A + .5 + a)3

+ a((a2 - 5/12)2 - l/36J/20(yV + .5 + a)4 + • • • .

The asymptotic character and the remainder of (43) is readily obtained by the

methods used after (28) above, but the effect of the remainder is more complicated

and depends on a.

6. The Formulas. Define for -.5 < a < .5

(44)      M(N, a) = (N+ .5)log(N + .5 + a) - (N + .5 + a) + .5 log277,

so that log AM = M(N, a) + o(l) as N -» a. For fixed N, M has a maximum at a = 0

and a minimum at the lower extreme point. If M(N, a) is used as an approximation
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for log A!, then by (43) the error is 0(l/N) for large N except for a = ±(1/12)1/2,

where the error is essentially -a/36( N + .5 + a)2.

We define the a formula for N! as ba(N) = exp(M(N,a)). We have b0(N) = b(N),

b   5(N) = s(N). Referring to Eq. (3), we have for large N

(45) Eb(N)~ l/24(N+ .5);    Es(N)~l/l2N.

In general

(46) ba(N) = (2m)5e-a((N + .5 + a)/e)N+\

Let d = (1/12)5. If Ed(N) is defined by

(47) ba(N)/N\= 1 +Ed(N),

then for large N, Ed(N) ~ d/36(N + .5 + d)2. For a = -d the error has the

opposite sign and is larger.

The geometric mean of ba and b_a is given by

(48) gm(N) = {bdb_d)S = {2m)\((N + ,5)2 - 1/12,/e2)5'    *.

If gm(N)/N\= 1 - Eg(N), then for large N

(49) £g(A0 ~ l/240(Af + .5)3.

Table of Fractional Errors

N N!                         Es                         Eb Ed                           Eg

0 1 1.0 .0750476 .0116301     .0285848

1 1 .077863 .027508 .0024793     .0011684

2 2 .040498 .016655 .0010333     .00026056

3 6 .027298 .01192 .00056145 9.5981E~5

4 24 .020576 .0092757 .00035165 4.5374E"5

5 120 .016507 .00759 .00024064 2.4914E"5

6 720 .01378 .006422 .00017492 1.5115E_5

7 5040 .011826 .0055653 .00013284 9.8486E~6

8 40320 .010357 .00491 .0001043 6.7697E~6

9 3.6288E5 .0092128 .0043928 8.4052E_5 4.8512E"6

10 3.6288E6 .008296 .003974 6.9174E"5 3.5941E~6

15 1.3077E12 .0055393 .0026911 3.2266E~5 1.1182E"6

20 2.4329E18 .0041577 .0020343 1.86E~5 4.8339E"7

25 1.5511E25 .0033276 .0016352 1.2082E~5 2.5101E"7

30 2.6525E32 .0027738 .001367 8.4737E"6 1.4678E"?

35 1.Ö333E40 .0023781 .0011743 6.2696E"6 9.3471E"8

40 8.1592E47 .0020811 .0010293 4.8262E"6 6.2658E~8

45 1.1962E56 .0018501 .00091614 3.8289E_6 4.4519E~8

50 3.0414E64 .0016653 .0008254 3.1121E-6 3.2295E"8
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