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Collocation Methods for Boundary Value Problems

on 'Long' Intervals

By Peter A. Markowich* and Christian A. Ringhofer**

Abstract. This paper deals with the numerical solution of boundary value problems of

ordinary differential equations posed on infinite intervals. We cut the infinite interval at a

finite, large enough point and insert additional, so-called asymptotic boundary conditions at

the far (right) end and then solve the resulting two-point boundary value problem by an

/1-stable symmetric collocation method. Problems arise, because standard theory predicts the

use of many grid points as the length of the interval increases. Using the exponential decay of

the 'infinite' solution, an 'asymptotic' a priori mesh-size sequence which increases exponen-

tially, and which therefore only employs a reasonable number of meshpoints, is developed and

stability, as the length of the interval tends to infinity, is shown. We also show that the

condition number of the collocation equations is asymptotically proportional to the number of

meshpoints employed when using this exponentially graded mesh. Using £-stage collocation at

Gaussian points and requiring an accuracy O(e) at the knots implies that the number of

meshpoints is 0(c~l/2k) as c -» 0.

1. Introduction. In this paper the numerical solution of boundary value problems

on infinite intervals of the form

(1.1) y' = taf(t,y),        \<t<aa,a>Q,

(1.2) b(y(l)) = 0,

(1.3) y G C([l,oo]): «>> G C([l,oo))    and     lim y(t) = j(oo) is finite
r^oo

is considered. Here/: Rn+X -» R", b: R" -» Rk, where generally k < n holds because

(1.3) furnishes another set of boundary conditions. / fulfills certain continuity

properties at infinity which will be defined later. We assume that the Jacobian

9/(oo, y(oo))/dy has no eigenvalue on the imaginary axis.

For a > -1, Eq. (1.1) has a singularity of the second kind of rank a + 1 at t = oo.

We disregard the practically unimportant case -1 < a < 0 in the sequel.

Problems of this kind often occur in fluid dynamics (boundary layer theory),

quantum mechanics and electronics. For applications see Markowich [12], [13], de

Hoog and Weiss [7], McLeod [15] and Schneider [19].
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For the numerical solution we proceed as follows. First the infinite interval is

substituted by a finite but large interval and n — k additional so-called asymptotic

boundary conditions, which reflect the asymptotic behavior of the solution y, are

imposed at the right (far) endpoint T. We obtain a regular two-point boundary value

problem of the form

(1.4) x' = taf(t,x),       Kt<T,

(1.5) b(x(l))=0,

(1.6) S(T)x(T) = c(T).

The condition (1.6) has to be chosen such that

(1.7) ll>-*ll[i.n-»0   asT^oo

holds, and its construction is described in de Hoog and Weiss [8], Lentini and Keller

[10] and Markowich [13].

The two-point boundary value problem (1.4), (1.5), (1.6) now has to be solved by

an appropriate numerical method, for example by A -stable, symmetric collocation

methods whose simplest member is the Box-scheme:

(1.8) ^r^ = tr+x/2f{tl+x/2, Hx1+1 + x,)),       i = 0(l)(N - 1),

(1.9) b(x0) = 0,

(1.10) S(T)x„ = a(T),

where t0= \ < tx < ■ ■ ■ < tN_x < tN = T, ti+x = i, + h¡, i,+ 1/2 = i, + h¡/2 holds.

It is clear that the mesh-size selection is, especially for these problems, very

important since the amount of labor will be very large for long intervals and bad

(too small) mesh-size choices. We do not assume a relation of the form

(1.11) max hj min hi , < const

and do not formulate convergence estimates in terms of max, A, as the standard

theory of collocation methods does (see Weiss [20]). Too many meshpoints would be

employed in order to admit a given bound for the global error. Codes which employ

adaptive mesh refinement (see Lentini and Pereyra [11] and Ascher, Christiansen

and Russell [1]) solve first with a coarse grid in order to do local error estimation.

Therefore it is important to know a priori which mesh-size distribution is ap-

propriate.

In this paper we use the asymptotic form of the solution of (1.1), (1.2), (1.3) in

order to construct an asymptotic a priori mesh by equidistributing the local

discretization error.

It turns out that mesh sizes which increase exponentially can be used since our

assumptions guarantee that y(t) -> y(oo) exponentially. For a /c-stage collocation

method at Gaussian points it will be shown that the number of grid points which is

necessary in order to achieve a total accuracy 0(e) (total accuracy refers to the

difference between the 'infinite' solution y(t¡) and the discrete approximation x¡)

equals 0(e'x/2k). For this a suitable T = T(e) will be taken. Stability (as e -» 0,

T(e) -* oo) holds when using this equidistributing mesh. The Newton procedure for

solving the collocation equations with these exponentially increasing stepsizes con-

verges quadratically from a domain of starting values which does not shrink as
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e -> 0. We also show that the condition number of the (linear) collocation equations

(using Gaussian points) is 0(e"1/2/c), so that the linear system can be safely solved

by Gaussian elimination with partial pivoting.

Of course, no fully implicit difference scheme (like the implicit Euler scheme)

should be used for the integration of (1.4), (1.5), (1.6) if the fundamental matrix of

the linearized problem (1.4) contains exponentially increasing columns which are

scaled down by the boundary condition (1.6). This would cause instabilities during

the integration when using large mesh sizes.

Another way to solve problems of the kind (1.1), (1.2), (1.3) is to transform the

'infinite' problem by a transformation t = s'ß, ß> 0 to the interval [0,1] and to

employ difference methods on the unit interval. Methods of this kind have been

investigated by de Hoog and Weiss [6]. This way of proceeding has the disadvantage

that a singular problem (the right-hand side of the equation is not defined in i = 0)

has to be solved, and therefore the obtained convergence estimates are not very

strong. Another disadvantage is that many physical problems are actually posed on

an infinite interval (for example in boundary layer theory) such that a 'direct'

solution is desirable.

We remark that there is a close connection to singular perturbation problems since

the transformation s = (t - l)/(T - I), fi = l/(T - I) takes (1.4), (1.5), (1.6) into

(1.12) p,a+iz'(s) = (s + ^)afi[^^,z(s)]j,       0«s<l,a>0,

(1.13) b(z(0)) = 0,

z(D = a(I+l).

(Note that lim^0 f((s + ju,)/ja, z) =/(oo, z).)

The already developed mesh-size sequences for singular perturbation problems

cannot be applied without reconsideration since the linearization of the right-hand

side of (1.12) does not generally have a series expansion in powers of /x uniformly in

0 =í s =£ 1 (see Ringhofer [16]), since for most practical problems

(1-15) ¥-(t,y)~2A,(y)r-,      i^oo,
" 1=0

holds.

Recently Ascher and Weiss [2] came up with a mesh-size sequence for linear

constant coefficient singular perturbation problems (a — 0) (also by equidistribu-

tion) which is equivalent to ours, and which they use within the boundary layers of

thickness 0(p | In ¡u |) (where the solution decays exponentially). Outside the layer

they use a coarse mesh just fine enough to approximate the solution of the reduced

problem (¡x = 0) well.

This paper is organized as follows. Section 2 gives a short summary of the theory

of boundary value problems on infinite intervals and their ' finite' approximation, in

Section 3 step-size sequences are developed for the midpoint rule for scalar initial

value problems, Section 4 deals with the midpoint rule for linear boundary value

problems and in Section 5 nonlinear problems are dealt with. Higher order colloca-

tion methods are analyzed in Section 6 and computations are reported in Section 7.

(1.14)
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2. Boundary Value Problems on Infinite Intervals and Their Approximation by

'Finite' Interval Problems—A Summary. We consider boundary value problems on

infinite intervals of the following form

(2.1) y' - taA(t)y + taf(t),        Kr< oo, a >0,

(2.2) By(l) = ß,

(2.3) j/eC([l,oo]),

where the n X «-matrix A G C([l, oo]) and/ G C([l, oo]). B is a matrix whose rank is

(in general) less than n since (2.3) furnishes another set of boundary conditions.

Let us first consider the case where A is constant. A has the Jordan form J

obtained by

(2.4) A = EJE-X.

We assume that J has the block form

(2.5) / =
/+[ 0

L 0  i J-

K

where the r+ r+ -matrix /+ has only eigenvalues with positive real parts and the r_

r_-matrix /" has only eigenvalues with negative real parts. Eigenvalues on the

imaginary axis will be excluded for the following. The diagonal projections D+ , D_

are defined by

(2.6)

(2.7)

D+

D

OiO

0 '   0

The general solution of (2.1) (with A(t) = A) and (2.3) can now be written as

(2.8)

where

(2.9)

y(t) = E<t>(t)
0

£ + E(HE-xf)(t),       £ECr-,

,(i) = exp(^_i-)

is the fundamental matrix of the transformed problem

(2.10) «' = t"Ju + taE'xf(t).

Eu = y holds and (HE~xf)(t) is a suitable particular solution of (2.10) which can be

taken as

(2.11) (Hg)(t) = <j>(t) f'D+<¡>-x(s)sag(s)ds + ^(t) f'D_<t>-x(s)sag(s)ds
oo Y ■

for some y > 1. This operator has been analyzed by de Hoog and Weiss [7], [8] and

Markowich [12].

H has the following properties

(2.12)(a) ff:C([Y,oo])-*C(LY,oo]),

(2-12)(b) llffH[T..]<c,
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where   IHI[Yi00]  denotes  the  max-norm  on  [y, oo]  respectively  the  associated

operator-norm. The constant c is independent of y.

Markowich [12] has shown that if

(2,3)    M-«»M-ïh<"')-
Fei„([l,oo])nc([l,oo)),i>X-,>0

holds where Xmin is the smallest modulus of the real parts of the eigenvalues of A

which are in the left half-plane, then

Jo
(2.14)    ||^(r)||<const(||F||[li00,+ |IÉII)+(0 /.

<const(||fll[1,aol+ll¿ll)exp(-(Xj+1d)/»+'),       t>i,

holds. 0 < 8 < Amm and 8 -* 0 as t -» oo hold.

The boundary value problem (2.1), (2.2), (2.3) with A(t) = A is uniquely soluble

for all ß E Rr,fE C([l, oo]) if and only if the r. X /-.-matrix

(2.15) BE<b(l)
0

is nonsingular.

Here B is assumed to be an r_ X «-matrix. So the continuity requirement (2.3)

furnishes r+ linearly independent boundary conditions. (2.12), (2.15) imply that

II£II < const(||011 + ||F||[li00))holds.

The variable coefficient case A(t) £ A is treated by a perturbation approach (see

de Hoog and Weiss [7], [8] and Markowich [12], [13]). A(oo) now plays the role of A.

We assume that A(oo) has the Jordan form J given by (2.5). Then we can show (see

de Hoog and Weiss [7], [8]) that

(2.16) y(t) = EUt)t + E4,(E-xf)(t),       iECr-,

where t//_(i) is an « X /-.-matrix defined by

(2.17) *_(• ) = {l-H(E-xA(- )£-/))■ '♦(•) C([y,oo})

for y sufficiently large. For t E[l,y],\¡/_(t) can be continuously extended. Etp(E~lf)

is a suitable particular solution of (2.1). The boundary value problem (2.1), (2.2),

(2.3) is uniquely soluble for every ß E Rr-, f E C([l, oo]) if and only if the r_Xr_-

matrix

(2.18) BE\p_(\)   is nonsingular.

Markowich [12] proved the estimate

(2.19) ||j(i)||<const(||F||[li00]+||i8||)exp|-(X^'m+~a)i»+1),       t>t.

Now we briefly consider nonlinear problems of the form (1.1), (1.2), (1.3).

From (1.1), (1.3) we conclude that

(2.20) /(oo,.y(°o))=0

has to hold. We assume that the roots j(oo) of (2.20) are isolated and take one

particular root j*(oo) for the following. Moreover, f(t, }>*(oo)) shall fulfill (2.13).
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Defining

CK(t, a) = {(i, y) G R"+x \ t > t, \\y - >>*(oo)|| < k},

we assume that/, f G Ch(CK(l, _y*(oo))) for a sufficiently large k, We also assume

that the boundary value problem (1.1), (1.2), (1.3) has an isolated solution, i.e. the

linearized problem is nonsingular.

Now let J be the Jordan form oîfy(cc, y*(oo)) obtained by

fy(oo,y*(oo)) = EJE-\

and let J fulfill (2.5) such that D+ , D_, are defined as in (2.6), (2.7). Then \núll is

defined for J as above, and <f>(t), \p_(0 are as m (2-9), (2.17) with fy(t, .v*(oo))

substituted for A(t). Markowich [12] showed that

(2.21)    \\y(t)-y*(ao)\\<constH_(t)\\< constexpi-(X™n+~g V+1 ).

The isolatedness of y now implies that

(2-22) |£(J<1))*-(1)

is nonsingular. More information on the analysis of these problems can be found in

the above cited references and in Lentini and Keller [10].

We want to approximate the 'infinite' problem (2.1), (2.2), (2.3) by 'finite'

two-point boundary value problems of the form

(2.23) x' = taA(t)x + /"/(/),       i«/«r, r>i,

(2.24) Bx(l) = ß,

(2.25) S(T)x(T) = a(T).

Since (2.24) is a boundary condition of rank r_, we assume the S(T) is an

r+ X «-matrix. The question that arises immediately is how to construct an asymp-

totic boundary condition 5(2") such that

(2.26) \\y — jcII[i,?-] -» 0   asT^oo,

and the order of convergence should be as fast as possible.

A complete theory of this kind can be found in de Hoog and Weiss [7] and

Markowich [13], and therefore we only give excerpts which will be needed in the

sequel. The basic idea is that the boundary condition (2.25) has to scale down all

solution components of (2.23) which do not decay exponentially.

We assume that (2.18) holds. A possible choice is

(2.27) S = S(T)=[lr+,0]E~x,       a(T)=0.

It has been shown in the above cited references that this boundary condition implies

convergence in the sense of (2.26) and that for general o(T)

(2.28) \\y - x\\lx>T] < constllSy(r) - a(T)\\

holds. In general the admissibility conditions for a boundary condition S(T) are

(2.29) 115(7)11 < const,        T^oo,

-H

(2.30) S(T)E
f.
0

const,        T -> oo.
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Then (2.28) holds for the unique solution x of the ' finite' problem if T is sufficiently

large. a(T) = 0 is a natural choice for linear problems.

If f(t) fulfills (2.13) an estimate for the order of convergence is given by the

right-hand side of (2.19). Moreover, it has been shown that the choice (2.27) is

optimal in the sense that the actual order of convergence exceeds (2.19) for

homogeneous problems.

The condition (2.25) with S fulfilling (2.29), (2.30) and a(T) = S(T)y*(oo) can

also be used for nonlinear problems of the form (1.1), (L2), (1.3) if the above stated

assumptions on f(t, y) and the solution y hold. (2.28) still holds for nonlinear

problems. So we obtain

(2.31) ||y-x||[U7.]<const||5(r)||-(P.exp(-(Xj+~15)ra+1),

(Ki)-^(oo))exp(-^rri«+1) < 00

where

(2.32) <p =   max
(£[l,oo]

has been set. The constant in (2.31) is an upper bound for the norm of the inverse

of the linearization of (1.4), (1.5), (1.6) at y. In order to get \\y — x\\[X T] *s

const 11 S( T ) 11 e, we choose

(233) r=rW = (£-^,„f)       ,    .«i.

The advantage of choosing <p as in (2.32) is that

(2.34) ll;i>(r(e))-.y*(oo)||<£

holds, such that e controls how closey(T) is to its asymptotic state j*(oo), and then

the constant in (2.31) does not (at least for linear problems) depend on y. However,

if no estimate on <p is available, it can be incorporated into £ by setting e = e/qp.

If the function/, which sets up the differential equation (1.1) is independent of t, a

stronger estimate holds:

(2.35) ||x->>||[1|7.]<const||5(r)||m.expi-2(Xam^~g)7">+lj

if S fulfills (2.27) and a(T) = S(T)y*(oo). In this case we set

(2.36) T=T(e) = \(^-,ln^/a+'

and || x — y \\ [X)TM] < const e holds.

For constant coefficient problems (A is a constant matrix) we can determine 8

explicitly. In this case we obtain from Markowich [13] a sharper bound for the

approximation error than (2.31):

(2.37) ||>;-x||[lj7.1<const||5(r)||^.r<«+1^-1>exp(-^rra+1),

where r is the dimension of the largest Jordan block of A with an eigenvalue with

real part -A,^,, and

,       , .      IX,
(2.38) t// =   max

re[l,oo]

(/)r(a+l>(,-l> (_2iB.«+l

\ a + 1
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holds. Inserting (2.33) (with \¡i substituted for <p) into the right-hand side of (2.37)

and requiring that 8 < \min/2 and \\y — x\\[XT,e)] =£ const||S(21(e))II ■ e hold gives a

lower bound for 8 depending on e

(2.39) 5>(r,   ^Xminln
v       ' In \f//e

À min
= ô(e).

2(a + l)lnt///e|

Obviously 5(e) -» 0 as e -» 0 such that 8(e) < a^/2 holds for e sufficiently small.

8 — 8(e) can also be used for nonlinear problems if / does not depend on t. For

variable coefficient problems whose coefficient matrix has an asymptotic series

expansion as i -» oo, a similar approach can be used for the determination of 8 by

using the estimates given in Markowich [12].

3. The Scalar Case. In this section we treat the simplest case, namely scalar initial

value problems. The aim is to construct step-size sequences for the Box-scheme such

that the global error is less than 0(e) on [1, T(e)]. These step-size sequences will be

used for the general boundary value problem case.

We consider

(3.1) / = -\t"y + taf(t),       K/<oo,o>0,

(3-2) y(i)=y,

where X — Xx + iX2 may vary in a compact subset ß of {z G C | Re z > 0}.

The Box- (or centered Euler) scheme for (3.1), (3.2) has the form

(3.3)      y'+\~y' - -f *,"+i/2(.y«+i +y,) + tr+x/2fi+x/2,       i>0,yo=y,

where for«, > 0

(3.4)(a) i0=l,    ti+x = ti + «,,    i,+ 1/2 = i, + ^,       i>0;

(3-4)(b) fi+l/2=f(ti+l/2),

holds.

We define

m      1  - jhjt"+l/2

3.5 (a =n l + *h{a

Yn+U„=l,       n>-l,

and for a sequence of complex numbers z = (zJ+x/2)'jZ\

(3.5)(b)    (H_(X,t1,h)z),= 2   Hjt°+l/2Zj+l/2YJ+lti_x(Kh),       i>I+l,

and (H_(X, t,,h)z), = 0 where h = («,)tô is the sequence of stepsizes.

Using these definitions, the solution of (3.4) can be written as

(3-6) *= rw-i(*. *)*+(#-(*, f0. *)/),,

where/ = (fj+\/2)'j=o nas Deen set-
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The local discretization error t"+x/2li+x/2 of the difference scheme (3.3) is defined

as

(3-7) t?+x/2li+x/2 = Jfr'+J-J*'') + y+x/2(y(t1+x) + y(t,))

~ti+\/2fi+l/2' l ^ ">

where y is the solution of (3.1), (3.2).

The global error

(3-8) ei = y(ti)-yi

satisfies the difference equation

(3.9) °i+x~ e¡ = -\t?+x/2(ei+x + e,) + tf+x/2li+x/2,       i>0,eo = 0,

and therefore has the solution

(3.10) e, = (H_{\,t0, «)/),.

with/ = (/y+1/2)j->.

In order to estimate the right-hand side of (3.10), we need the following

Lemma 3.1. Let xKfor k = n, n + 1,... ,m, be complex numbers with RexK > 0 and

Im xK/Re xK < x = const. Then setting II/=/+1 a, = 0fori> l, a, G C:

(3.11) 2 —r^   fi   Jir^^/TT^,— 1   -r   X    \       i i  ,     M     '    Xi\ z
K = n    |   '     '    AK I       /=K+1     ' ' '

K-l

(3'12) ? ïï^F,n i^Tî^

holds.

Proof. An easy calculation gives

<-\/l + x¿   1
|l+xj2     2' \        |l-x,

Substitution into the right-hand sides of (3.11), (3.12) yields telescoping sums.

Application of Lemma 3.1 immediately gives

Lemma 3.2. Letf = (fj+\/2)jZ\- Then for every sequence « = (hj)jZ) with hj > 0

(3.13)    | (/7_(a,í,, «)/),|< const     max

holds for i > I uniformly for X E ñ.

Proof.

| (H_(\,t„ h)f),\< const  =max_iJ|/;+1/2|(l+^«,i;+1/2))

l/y+i/2l(l+VV;+«/2)

x 2     M'+1/z ,(x.*)|.

*=/ ll + ̂ /jk

'/2 _

and application of (3.11) yields (3.13).



132 PETER A. MARKO WICH AND CHRISTIAN A. RINGHOFER

1+YVA./2

We get from (3.10)

(3.14) I e, I < const     max       K+1/2I
; = 0(1)(/-1)L '       \

For the following we assume that

(3.15)(a) /(i) = F(i)exP(-^Ti«+1),       6>XX,

holds where F, F, F" E C([l, 00)) n LJ[\, 00]).

Markowich [12] shows that (3.15)(a) imphes

(3.15)(b) b(0|<^,(A)(llFll[1,ool + |j|)exp(-^Tr+1),

where cx(X) is bounded for X E fi.

A straightforward calculation gives

1
(3.16) 7+1/21

const hj
V+1/2

l/"llMy+,l + lX|ll/'ll| 'y'y+il

Differentiating (3.1) and using (3.15)(b) yields

2

(3.17) /
7+1/2 <c2(X)hjl  2j\F«%hoo] + \y\\tf°

Xexp(-^TTi"+1)'      0 *'«>(*).

where the function i2aexp(-(X,/(a + l))ia+l) takes its maximum over [l,oo] at

i(1)(X). c2(X) and i(l)(X) are bounded for X G Q.

From (3.14) we conclude that a step-size sequence «y which equidistributes the

local discretization error (| lJ+x/2 |< const e) and which fulfills h¡tf+x/2 =£ const

implies

(3.18) I e, I < conste,

where const is independent of X G Q. We set T = T(e) as in (2.33) but substitute

(Amm-á)byX,.

(3.17) implies the bounds

(3.19)   «,<«(X,,e,i,)

cQfe,

c,/ei,"aexp
2(a+ 1) '

1 < ti,< y, y > 0,

y<t,<T(e),

for the mesh size«, at a point t¡, depending on e and X, = ReX. These bounds

increase exponentially in t. Since h(\x, e, T(e)) = cxT(e)~afy holds, the condition

"/C+1/2 < const is fulfilled and (3.18) holds on [1, 2(e)]. The constants c0, c, > 0

can be chosen arbitrarily; however, the constant in (3.18) is an increasing function of

cl + c?.

We now compute the number of steps Af(e) which is necessary for integration on

the interval [1, 7(e)] if «, = «"(X,, e, i,) is chosen. Therefore we set

(3.20) N(e) = /V,(e) + N2(e),
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where Nx(e) is the number of steps in [l,y] and N2(e) is the number of steps in

[Y, 2(e)]. Obviously

(3.21) Nx(e)<^-
c0]¡e

and

v        h¡   A<+1
(3-22)   N2(e)

2V-/ Lu L h

-   max   ki+x   fT(e) " 2  — ÍM.C      Y"+/■7X«) <tt ¿ A,      p

i   i7x-rrT<x:cxp t rf,6[T.T]   A,■   ^       A(X,e, i)     X,        \2\ a+lj)fe

since max,.e[  r(e)] hj+x/hi < exp(c,Xlv/<p/2) holds. From (3.21), (3.22) we conclude

1  \
(3.33) N(e) = 0\

A constant step-size algorithm would need

(3-24) KoosX(T,e)~-     .     T{t)

mminUë,
T(e)a j

steps because

max | (H_(X, i0, «const)/),. |< constj 1 + -j-hT"^ max | /,+ 1/2l < r,

holds, where «const = (h)^TQx is a sequence of constant step sizes.

Therefore the step-size sequence h given by (3.19) is very efficient and the reason

is that no condition like hmax/hmin < const is required. We remark that h equidis-

tributes the local error.

The problem (3.1), (3.2) can be regarded as a model for the decaying solution

components of boundary value problems on ' long' intervals, and now we look at the

increasing components, which can be modelled by

(3.25) z' = ut"z + t"f(t),        Kt<T,ct>0,T=T(e),

(3.26) z(T) = z

where « = <o, + iu2 E fi and fi is again a compact subset of(zGC|Rez>0}. We

again use the Box-scheme to approximate (3.25), (3.26)

(3.27) Zi+X~ *' = |f°+1/2(z,.+, + z,) + t*+x/2fi+x/2,       i>0;       zN = z,

where

(3.28) i0 = 1< i, = i0 + h0 < ■ ■ ■ < tN_x = tN_2 + hn_2 < tN

= tN_x +hN_x = T(e)

holds.
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The solution of (3.27) is given by

(3.29) z,. = r<>JV_,(«, h)z + (H+ («, tN, h)f)t,

where

(3.30) (H+ (co, tN, h)f), = -N2    hj'î+x/2f'+x/2 YlJ_x(U, h),       i<N-l,

j=i   \+jhjtf+ 1/2

and(H+(o>,tN,h)f)N = 0.

Since the increasing components are scaled down by the asymptotic boundary

conditions at t = T, we disregard the convergence of the z, to z(t¡). Stability follows

as in Lemma 3.2.

N-l
Lemma 3.3. Let f= (fj+i/2)j=x ■ Then for every sequence h = (A,)]!,

(3.31)     | (H,(u,tN, A)/), |< const      max
j = i(\XN-\)

holds for i < N uniformly for to G ß.

Finally we prove

l^i^lfl+^VA^)

Lemma 3.4. Assume that i, *£ iy < T(e) and that hK < h(Xx, e, tK), X, = Re X > 0.

Then \ Y¡ y_,(X, A) |< exp(-c(iy — t¡)), and c = c(X) is bounded on £2.

Proof. Let z = zx + iz2, z, > 0. Then

1

1 +z
< 1 -

42,

1 +z|
exp -4

1 +z

holds. This estimate has been used in de Hoog and Weiss [6]. For X = X, + z'X2 we

obtain

/

^_,(X,A)|^exp
7-1

■2X, 2
k = i

hktak+
\

1/2

1 + öA*'*\2"*'*+l/2

Since I 1 + (X/2)hktky+x/212 < c(X) for tk < T(e) holds, we get

/     2X    J~
I r;,7_,(X, A) |< exp _L  J hkt*k+x/2

< expl-c 2 A* J < exp(-c(i, - i,)).

4. Linear Boundary Value Problems. We consider

(4.1) x' = taAx + taf(t),        l^t^T,a^0,

(4.2) Bx(l) = ß,

(4-3) S(T)x(T) = o(T),

where A fulfills (2.4), (2.5), B is an r_X «-matrix, ß G Rr- and / fulfills (2.13) with

6>Xmin, the r+ X«-matrix S(T) fulfills (2.29), (2.30) and T= T(e) as in (2.23).

This simple case is considered as a model for problems where A depends on i.
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The Box-scheme has the form

(4-4)
x,+1 -x,. _A

= TT+./2U+I + */) + T+l/2/*+l/2. * = 0(1)(^ - 1),/2Ji+\/2

(4.5) Bx0 = ß,

(4.6) S(T)xN = a(T),

where the partition A = {i0, r,,.. .,*#_,, i^r} fulfills (3.4)(a) and A = (A,)^1, A, > 0.

,4 fulfills (2.4). We employ the transformation

(4.7) x,. = Eu,

and get

(4.8) Ui+\~Ui = {tf+x/2(ui+x + u,) + i,'V1/2£-1/+1/2,       i = 0(1)(/V - 1),

(4.9) 5£Mo = 0,

(4.10) S(T)EuN = a(T).

We want to derive an existence and stability theorem for (4.8), (4.9), (4.10). As de

Hoog and Weiss [7] did for the continuous case we split u¡ into

(4.11)    (a)    ii, =

/      \

(b)   £-'/+1 /2

(^■y(+i/2)+ k

(*"W)" |k '
and get employing (3.6) for w, and (3.29) for w,+

(4.12)
0

¿+ + I^-.m-.a^'J Ê-

+ (H(J,t0,tN,h)E-xf)r

where for any i:Xi matrix P whose eigenvalues have positive real part

(4.13)    Ynktm(P,h)= J ('4 + yV"+i/a)   ('* " f A,';+1/2),       -

wc. a) = /,    »>-i,
holds and the operator 7/ is defined as

(rY+(y+,i^,A)z+),\
(4.14)(a)    (/Y(/,i0,i^,A)z),=

and

(4.14)(b)    (H+(j\tN,h)z+),

N-\

(H_(-J-,t0,h)z-),    '

= - 2 A7^t_,(7+,A)(/ + ^-A/;+1/2) tf+x/2z;+x/2,

(4.14)(c)    (W_(-/-, i„ A)z-),.

2 A,y/Hfl>i_I(^-,A)(/-^-A/^1/2) V1/2W2.
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where z+ = (z+. X/2)'¡L0X, z~= (¿,+i/2)/V and z£I/2 G Cr+ , zi+x/2 E Cr has been

set. Here (H+(J+ , tN, h)z+ )N = 0 and (H_(-J~, t„ h)z~), = 0 hold. These defini-

tions make sense because (I + t/+ )"', (I — tJ')~x exist for t 3= 0.

In order to get bounds for the defined difference operators, we use the following

representation of a matrix function

(4.15) <*,(/>) =¿/</>(X)(X/-JP)-'¿X,

where the contour TP encloses all eigenvalues of P. <¡> is assumed to be analytic. (4.15)

has been used by de Hoog and Weiss [6] in a similar context.

If all eigenvalues of P have positive real parts, we get

where Yn m is defined in (3.4) and

(4.16) y*Jp, a) = ¿j / Ynjx, h)(xik - pyxdX,
¿ttl   Jr

(4.17)    (H(J,t0,tN,h)z)i =
2iri

f   (H+(oi,tN,h)(o>I-J+YXz)¡dw

f (H_(-\,t0,h)(\I-J-yXz-).d\

where T+ C {z G C | Re z > 0}, T_ C {z G C | Re z < 0} holds. Since

(4.18) max ||(co/-y+)_I||, max||(X/-y-)"
a>er+ Aer_

const,

the estimates given in Section 3 can be used because they were formulated uniformly

for -X, u in compact subsets of the left half plane.

By evaluating (4.12) at the boundaries (/ = 1, /' = TV) we get the block system

(4.19)

BE
Y0r:N-ÁJ+,h)

0
BE

0

S(T)E S(T)E [r¿>-,(-/-,A)J

ß-BE(H(J,t0,tN,h)E-if)Q       \

' \ o(T) - S(T)E{H(J, i0, tN, h)E-xf)N[

We assume that (2.1), (2.2), (2.3) with A(T) =A has a unique solution for all

/ G C([l, oo]), ß G Rr~. Therefore (2.15) holds and implies that

beV>-
is nonsingular. From (2.30) we conclude that S(T)E['0] has a bounded inverse. From

(4.16) we conclude that

(4.20)

and

(4.21)

\Y0r+N-\(J'+ ' A)ll < const max | Y0 N-X(u, A) |< const
uert

\Y0r-N_x(-J~, h)\\ < const max | Y0 ̂ _,(-X, A)
xer_
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Now let X be the eigenvalue of J' which is nearest to the imaginary axis, such that

Re X = -Xmin, and take T_ such that

(4.22) dist(r_, X) = 8   and   dist(T_, {z G C\ Rez = 0}) = X^ - 8

holds. We now choose A = (A,)^1 such that A, < h(Xmin — 8, e, i,) defined in

(3.19).
Because of Lemma 3.4

(4.23) max|y0A,_,(-X,A)|=o(l),       £ -» 0,
Xer_

holds. Therefore, for e sufficiently small \\Y¿-N_X(-J~, A)|| can be made sufficiently

small such that the block system (4.19) has a unique solution £+ , £_.

(4.17) and the Lemmas 3.2, 3.3 yield

(4.24) max     \\(H(J, 1, T(e), h)E-xf)i\\ < const      max     ll/,+ 1/2||,
i=0(l)(Ai-l) i=0(l)(7V-l) '

and the stability estimate

(4.25) max  ||x,||<const(||jS|| + ||a(r(e))|| +      max     ll/+l/2ll)
i = 0(l)/V V i = 0(l)(Ai-l)    '        '       '

follows.

The local discretization error tf+ ,/2/,+1/2 is again defined as

(4-26)        tt+x/2li+ï/2 = ah±ù_A!À _ ±t?+l/2(x(ti+l) + x(i,))

-T+i/2/m/2.       i = 0(l)(/V-l),

such that the global discretization error

(4-27) e,. = x(i,) - x,

fulfills the discrete boundary value problem

(4.28)    ^±L-^ = f íf+1/2(eí+1 + e,) + ^1/2/,+ I/2,       / = 0(1)(/V - 1),

(4-29) fieo = 0,

(4.30) S(T)eN = 0.

From (4.26) we obtain

(4.31) max   ||e.||< const   max   ll/,+ 1/2ll,
i = 0(l)N i = 0(\)N '

where / = (//+ X/2)¡'=0X has been set.

As in Section 3 we obtain

(4.32) ||/,.+ 1/2||<constA x r+ llx"l,a '•"     "1',,',-nl    '    "A    "[',.', nl
■1/2

assuming that (2.13) holds with F, F, F" G C([l, oo)) n LJ[l, oo]). Now let a(T)

= 0. Since

llx(i)|| *= ||j(i)|| + ||x(i) -y(t)\\ < \\y(t)\\ + const\\S(T)y(T)\\
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holds, where y is the (unique) solution of the 'infinite' problem (2.1), (2.2), (2.3) with

A(T) = A, we get

(4.33)    ||x(i)|| < const      | H^Hn,«] + Wß\\\ «p(- (^+ /} ta+

+ \\S(T)y(T)\\\.

This follows from (2.14), (2.28). By using the differential equation (4.1), we derive

(4-34) ||/,+1/2|| <constA2(i2«exp(-%^ir+')) + 0(e).

Since hi<h(\adn — 8, e, *,), we obtain

(4.35) max  ||e,|| = O(e).
i = 0(l)JV

The estimate (2.14) îot y(T) gives a bound for the total error

(4.36) max   \\y{t,) - x,H < constf e + expf- (Xplk' ~ 8) T(e)a+X)\ = 0(e).

Again y solves the ' infinite' problem and x, are the solutions of the Box-scheme for

the 'finite' problem on [1, 7(e)].

We briefly investigate linear problems where the coefficient matrix A depends

on i.

The Box-scheme for the approximating 'finite' problem is

(4-37) -        = 2'(+i/2^(ii+i/2)(-ïi+i + xi) + '1+1/2/1+1/2'

i = 0(l)(N-l),

(4.38) Bx0 = ß,

(4.39) S(T)xN = a(T),        T = T(e) = tN.

For the n X «-matrix, A E C([l, 00]) is assumed to hold and A(cc) = hm,^a0A(t)

has the Jordan form / obtained by

(4.40) A(oo) = EJE-X,

and / has the block structure (2.5). Again we set

(4.41) x, = Eu,

and define

(4.42) G(t) = E-lA(t)E - J;       G(t) -* 0, t -> 00.

We use a perturbation approach for the derivation of an existence and stability

theorem and rewrite (4.37), (4.38), (4.39)

(4.43) Ui+X~ Ui = J^tf+x/2(u¡ + x + «,) + {tf+x/2G(ti+x/2)(ul + x + «,)

+C+i/2^-,/i+i/2.       i = 0(l)(AT-l),

(4.44) BEu0 = ß,

(4.45) S(T)EuN = a(T).
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The general solution of (4.43) can be written as

(4.46) w, =
o

¿+ +
0

Yr(-J-, h)eJ L

N-\

+ {H(J, t„ tN, h)Gu)i + (H(J, tn tN, h)E-lf)r

(4.47) (Gu)l+x/2 = lG(ti+x/2)(ui+x + «,),       Gu = {(Gu)i+x/2)"=~

has been set. £+ G C+ and £_ G C- hold.

From (4.17) and the Lemmas 3.2 and 3.3 we get

(4.48) max  \\{H(J, t,, tN, h)Gu)A\ < constHGIL,, ,   max  ||w,|I,
i=/(l)Af l " "' i=I(\)N

where h¡ < h(\BÚn — 8, e, t¡) is assumed to hold. XítÚD > 0 is the modulus of the real

part of that eigenvalue of ;4(oo) which is closest to the imaginary axis of all

eigenvalues of A(oo) with negative real part.

We define the operator

(4.49) H(h, tj, tN): C«»-» - C"<N~I+XX

such that, for x G Cn(N~ ", x = (xi+ x/2)?~,x,

(4.50) H(h,t,,tN)x

1 (H(J,tI,tN,h)x)I

(H(J,t,,tN,h)x)N

holds. From (4.42), (4.48) we get

(4.51) \\H(h, t„ tN)G\\ < const||G||[//i(w],

where II - II denotes the max-norm for vectors in the respective CJ or the associated

matrix norm. Therefore the operator

(4.52) / - H(h, tj, tN)G: C"^N'I+XX - C"^"^»

is invertible for t, < tN sufficiently large.

The existence theorem for (4.37), (4.38), (4.39) follows by proceeding as de Hoog

and Weiss [8] did for the continuous 'finite' problem (2.23), (2.24), (2.25). The

stability estimate (4.25) holds for variable coefficient problems too.

Theorem 4.1. Assume that A E C([l, oo]); A', A" E C([l,oo)) n LJ{1, oo]) and

that f fulfills (2.13) with F, F, F E C([l, oo)) n LJ[l, oo]). Let, for some e suffi-

ciently small, T = T(e) — tN as in (2.23), and assume that

(4.53)

(4.54)

A,. <c0-/e,       t¡<y,       c0>0,

A, < /eV-expf^^V1),       Y < <( < T(e),

holds for some fixed y. Then if the matrix (2.18) is nonsingular, the Box-scheme (4.37),

(4.38), (4.39) is uniquely soluble and

(4.55)

holds for o(T) = 0.

max   ||x, - y(t,)\\ = O(e)
i = 0(l)/V
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For the remainder of this section we assume that equality holds in (4.53), (4.54).

Then the number of steps N = N(e) fulfills

(4.56) N(e)~c-—,       e^O.

V«

The condition number of a nonsingular matrix A is defined by

(4.57) je(i4) = IUI|IU-1||.

The condition number of the difference operator Lh (given by (4.37), (4.38), (4.39),

where both sides of (4.37) are divided by t"+x/2), fulfills the estimate

(4.58) x(Lh) < const — -const N(e)

since

(4.59) ||LJ|<max(||B||,||5(r(e))||,      max      —*-^+\\A]\)
\ /=0(i)(¿v-i) ',a+1/2A,. "•oo1/

and because the stability estimate (4.25) implies II Lkx\\ < const. (4.58) is a very

moderate condition number, and therefore (4.37), (4.38), (4.39) can be safely solved

by Gaussian elimination with partial pivoting using for example the code

SOLVEBLOCK (de Boor and Weiss [5]).

5. Nonlinear Problems. We consider the 'infinite' problem

(5.1) y' = taf(t,y),        Kf<oo,a>0,

(5.2) b(y(l)) = 0,

(5.3) yeC([l,oo]),

and the Box-scheme

(5.4) Xi+l~Xi = t«+x/2f{ti+x/2, Kx,+ 1 + x,)),        i = 0(l)(N - 1),

(5-5) b(xo) = 0,

(5.6) S(T)xN = S(T)y*(oo),

where T — tN holds. The asymptotic boundary condition S(T) is set up as described

in Section 2.

As mentioned in Section 2,

(5.7) /(oo, y*(co)) = 0

has to hold. We now assume that y*(oo) is an isolated zero and that fy(<x>, .y*(oo))

has the Jordan form / obtained by

(5.8) ¿(oo, y*(oo)) = FJE-X,

where / fulfills (2.5). Moreover, we assume

(5.9) /G C2(Q(1, y*(n)));f(t, y*(oo)) = 0(*-(«/<«+'»'°+'),       6 > X^,

(5.10) b: R" -» Rr~; b, bv are locally Lipschitz continuous in R",
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and that the problem (5.1), (5.2), (5.3) has an isolated solution y*(t) -* y*(co) as

i -» oo. The isolatedness means that the linearized problem

z'=fy(t,y*(t))z,   by(y*(l))z(\) = 0,   zGC([l,oo])

has only the trivial solution z = 0. We set T= T(e) as defined in (2.33) and

conclude from de Hoog and Weiss [7] that the approximating problems

(5.11) x' = ff(t,x),

(5.12) b(x(l)) = 0,

(5.13) S(T)x(T) = S(T)y*(oo),

with (2.29), (2.30), are locally (around y*(t)) uniquely soluble for T(e) sufficiently

large and

(5.14) IU-^||[lir]<const||5(r)(7v(r)-^*(oo))||<const||5(r)||e

holds. Possible choices for S(T) are discussed in Lentini and Keller [10].

We apply the nonlinear stability theory given in Keller [9] with e as a grid

parameter. The result then follows from the stability estimate (4.25) for linear

problems, and we merely state it in

Theorem 5.1. Under the given assumption the Box-scheme has (for e sufficiently

small) a locally unique solution which converges to the locally unique solution of (5.4),

(5.5), (5.6) if a step-size sequence A, fulfilling

A^Crj/e",        i,<Y,(5.15)

(5.16) A, < fet; exp
2(a+ 1) '

is chosen. The estimate

(5.17) max  ||y(tj) - x,
i = 0(l)W

O(e),

y<t,<T(e),

0,

holds. The Newton procedure for (5.4), (5.5), (5.6) is quadratically convergent for

starting values in a sphere

K= \xEC

where £ > 0 is independent of e.

n(N+l)

y (t0)

y(tN)

The mesh-size sequence (5.16) can be employed on the whole interval [1, 2(e)]

(since AtX^ - 8, e, i,) < v^Y^exp^X^ - 8)/2(a + l))Ya+1) holds on [1, Y]);

however, there might be more efficient choices on that interval where y is not close

to y*(oo).

6. Higher Order Methods. It is intriguing to use symmetric, ^-stable (higher order)

collocation methods (see de Boor and Swartz [4], Russell [17] and Weiss [20]) for the

solution of (5.11), (5.12), (5.13). We define

(6.1) tIJ = ti + pjh„       0<Px<p2<---<Pk_x<Pk<l,
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and require that the p, are symmetric about {-. We do not include p, = 0, pk = 1 (for

example Lobatto points) in this discussion. However, the results carry over to this

case if the mesh-size sequence hj fulfills hjt"+x < const as T = 27e) -» oo where

const is sufficiently small but independent of e. If mesh-size sequences which grow

faster are admitted and if the endpoints 0, 1 are collocation points, then instabilities

can occur in the exponentially increasing components in the case a > 0.

This is illustrated by the homogeneous problem

z' = 2tz,       z(T)=z.

The trapezoidal rule has the solutions

y i-v,+i-
z>- n  i + v,

j=i     j j
If hj > v/T+~7 for p > 1, i<f<N- 1, then | (1 - A,i,+1)/(1 + A,/,)|> p > 1
holds. Keeping t = i, (and the mesh on [1, i,]) fixed implies | z, |> (p)N~' \ z |-> oo as

N -> oo (T -» oo). This exponential instability does not occur when using the

midpoint rule.

We write the k-stage collocation method for (5.11), (5.12), (5.13) as a system of

difference equations

(6.2) ^\^ = 2 âjiïfitu, xa),       i = 0(1)(/V - 1),/ = 1(1)*:,

(6.3) *±LIIl = 2 b.tfjd,, xu),       i = 0(l)(N - I),
• i=\

(6.4) b(xQ) = 0,

(6.5) S(T)xN = S(T)y*(oo),        T=T(e),

where the xtJ are the approximations to x(t,f) (resp. to y(t¡j)). From Ascher and

Weiss [2] we get

(6.6) àj,= 9,(pj),       b, = <p,(l),

where (¡p, is the interpolating polynomial (of degree k) which fulfills

(6.7) 9,(0) = 0;        <PÍ(p,) = «,7,       j = l(l)k.

We set Â = (aji)J=X{X)k.¡=XWk, b = (bx,...,bk)', where the superscript '"" denotes

transposition. The eigenvalues of A have positive real parts. In particular the

Gauss-schemes belong to this class (p, are the zeros of Gauss-Legendre polynomials)

and the Box-scheme is the one-stage Gauss-scheme (with p, = {-).

At first we investigate the stabihty of

(6.8) ^—V- = -Xi«+l/2 2 àjtyu + t?+x/2fu,      y0 = y,
• i=\

(6-9) ^f^ = -Xtr+x/2 2 b,ytl + tf+x/2f„
• i=\
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where Re X > 0; yip y„ /„, / G C holds. Setting 1 = (1,..., 1)', y, = (yiX,... ,yik)',

/ = (/i,...,/*)\ we obtain

(6.10)        y, = (/ + \httt+x/2Â)~Xïyi + A,/f+1/2(/ + XA,.í^1/2i)''/,

(6.11)(a)       yi+x = (l - \h¡t?+i/2b'(l + \hltr+l/2A)'lí)yt

-\titf:x/2ê'{i + xa,í?+ 1/2i)"'/ + h,t?+x/2f.

The function

(6.11)(b) y(^) = 1 - zb'(l + zÂ)~x\

is the growth function of the collocation scheme and fulfills

(6.12) |y(z)|<1,       Rez 2*0(^1-stability),

(6.13)(a) |y(^)|= 1 ̂ >Rez = 0orz = oo,       (Rez>0),

(6.13)(b) Urn (1 - |y(z)|)/|2|>0   forRez>0,
Rez

< c

(6.14) y(z) = ez + 0(zk+x),       z^O, Rez>0,

(see Ascher and Weiss [2]).

From (6.11) we get

(6.15) y,= ']íy(zm)y + {2zJ(-zJb'(l + zJA)-lfJ+fJ)   'fl   y(zj,
m=0 7 = 0 m=j+\

where Zj = -XhjtJ+1/2 has been set. A simple calculation shows that

(6.16) |z|(|z||¿'|ii(/ + zir'iiiiy;ii + |/;|)

<|z|max(|z|||/;il + \fj\),       Rez>0, |Imz/Rez|<c.

Using (6.12), (6.13), (6.14), we obtain

(6.17) —L-L-<const(l - |y(*)|),       Rez>0,
1 +z|2

Im z

Rez
<c.

Proceeding as in Lemma 3.1 gives the stability estimate

(6.18)    max(||^||,|j,|)

<const(b-| +j=^_i)[(l + hJtf+x/2f(kJt«+l/2\\fJ\\ + |/,|)]),

which should be compared to (3.13). Now assume that hjtJ+x/2 < const holds on the

whole interval of integration. Then we get stability for

(6.19) \^ = -x 2 vi?*« + c,/™,.   ] < m> !<k^=y>a> °'
' t=\

(6.20) y'+\y- = -X 2 brfy,, + tfmfim,       Km<k,
• i=\
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by the following perturbation approach:

(6.21) ^-^ = -\tf+x/2 2 V«
"i i=\

li ti+\/2

Ha+1/2   2 âj, —-a- yu + -a— fij ,
\/=|        \        '¿+1/2        / f.+ l/2       /

ta
int.

(6.22) ^tL^=-\/«+1/2 2b,yu
n¡ i=\

-xJÍíjI^Ia + ̂J!
\/=i     \      f;+i/2      / r/+l/2

Since í,am /if+i/2 * const holds, estimate (5.18) gives

(6.23)   max(||^||,|j,|)

' ta — ta
lj V+l/2

const  | y | + max

«7 + 1/2

max     max(|| yA\,\ y, l)
7=0(l)(i-l)

+     max     (A,//+I/2II#I + |J&|)  .
7-0(l)(i-l) '  ')

Choosing hj < ((a - \)/pk - j)tp where a = (1 + 5)1/a, we have

l(';-<j+./2)/';+./2l<S-

Therefore if

(6.24) A  < min(d0tj, dxtja),        d0 sufficiently small but independent of i

holds, we get the estimate

(6.25) max(||^||,|y,|)<const(|y| +     max     (hjtf+x/2\\fj\\ + |/.|))
\ y = 0(l)(/-l) '

for the unique solution yt¡, y¡ of (6.19), (6.20). The stability consideration for the

exponentially growing components are analogous to those following (3.25), (3.26).

This stability result, obtained for scalar initial value problems can be extended to

variable coefficient boundary value problems using the methods of Section 4.

In the sequel we assume that the function/(in (5.11)) fulfills

(6.26) fECk+\Cx(l,y*(oo))

and that the assumptions on /, b, S, y of Section 5 hold.

We define the local discretization error í?/^, í"+1/2/í of (6.2), (6.3), (6.4), (6.5) as

x(t  ) - x(t)       k

(6.27) ^^-r-'- - 2 âjiïfitu, x(i,)) = i»/,,,
"i ¡=i

(6.28) *('i+.)-*(0 _ £ eity{í¡h x{t¡i)) = ,r+v2¡n
• i=\
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where x(i) solves (5.11), (5.12), (5.13). A lengthy calculation (see Axelsson [3], Weiss

[20]) gives

(6.29) ||/0.||< const A^||x<*+%_,,i+i],
•j

(6.30) ||/,||< const A?+I- —-_||x(*+?>||
'1+1/2

(6.30) holds because we only admit symmetric collocation points. We obtain

(6.31) ||/,, || < const A*r*"exp(- ^^'^ t?+x ),       f, > y,

(6.32) ||/, || < const Af+1i^+1>Qexp(- ^^~^ ',a+'),       ', > Y,

and

(6.33) ll/,,ll = 0(A*),       ||/,|| = 0(Af+1),       Kt,<y.

The stability estimate (6.25) implies that we may equidistribute the functional

(6.34) hjtf\\i,\\ + ll/,ll < const Af+'i^+'^expi-^^in+"~^ i,a+1 j,       t,>y,

(where /, = (l'tx,...,l'ik)' holds) as long as (6.24) holds. Requiring a total accuracy

0(e), we obtain bounds for the meshsizes

(a)     A,<c0e1/(/c+1\       l<t,<y,

<"5) (b) ».«^v^t^-.',,)^),   r«,<n«),

where 2(e) is defined in (2.32), (2.33). The number of meshpoints Nk(e) ~

const l/e1/<A:+1), the condition number of the linear set equations (6.2)-(6.5) xk(Lh)

—const Nk(e) (if equality holds in (6.35)), and we get

(6.36) max   max(\\y(t ,) -yt..||,|| y(tt) - y, II) = O(e),       e -+ 0,
i = 0(l)7V ^ J

7=1(1)*

for the locally unique solution ytJ, y¡ of (6.2), (6.3), (6.4), (6.5).

Using the superconvergence property of certain collocation schemes at the knots

i,, we can improve the bounds for the meshsizes (6.35). Let

(6.37) u(s) = (s - px)(s - p2)   ■• (s - pk).

We say that to G Pr, r > 0 if

(6.38) Cs'u(s) ds = 0,       i = 0(l)(r - 1) and fls'u(s) ds * 0
•'0 •'o

holds. Obviously, k + r — 1 is the order of accuracy of the integration formula

! k

f <p(s)ds~ 2 àk/<p(Pi)-
Ja ,_,

Applying the collocation scheme (6.2), (6.3) to the scalar initial value problem

(6.39) y'=-\y+f(t),        Kt,y(l)=y,\ = \m¡B + i\2,



146 PETER A. MARKOWICH AND CHRISTIAN A. RINGHOFER

where (3.15) holds, we get for the global error e¡ = y(t¡) — y¡ at the knots

(6.40) e,+ x = y(-XA,K + A,(/, - Xh,b'(l - XhJY'T,),       e0 = 0.

From Weiss [20] (or Axelsson [3]) we get

(6.41) max(|/,| ,\h,b'{l - Xh,Â)'%\) « const A*+r|iy*+r+1)ll[fi>/i+l].

Using (6.16), we get

(6.42) | e, |< const     max     ((l + A,)2A^+r||/*+r+,)llfl ,   ,).
1   " y=0(i)(/-i)v J     ' i'j-'j+iif

For general a^Owe get, for the problem (3.1), (3.2),

(6.43) |e,|<const     max     A*+'-J_||/*+'+!).,,
7 = 0(l)(i-l) V+l/2

if hj fulfills (6.23).

Using the stability estimate (6.24) and proceeding as in Weiss [20], we obtain

Theorem 6.1. Assume that f(t, y) E Ck+r(Cx(l, y*(oo))), that the collocation scheme

is Astable and that a> E Pr. Then, for e sufficiently small, the collocation equations

(6.2), (6.3), (6.4), (6.5) with

(a)     hj^c0ex^k+X),       i«i<y,

<644) <b> */*',A"v«p((t^(".*,)'r')-   T«.,«*.).

where T(e) fulfills (2.33), have a locally unique solution x, , x, in a neighborhood of

y(ttj),y(tt) (y(t) solves (5.1), (5.2), (5.3)) and

(6.45) max   \\y(t,) - x,|| = 0(e),        e -* 0,
i = 0(\)N

(6.46) max   \\y(t,f - y,A\ = 0(¿k+xW+r>),       e - 0,
i = 0(l)Af J J

/=1(1)*

holds. The Newton procedure for the collocation equations is quadratically convergent

from a sphere of starting values which does not shrink as e -> 0.

The number of necessary meshpoints A^(e) fulfills

(6.47)WtW<^<^(^^^(^--^))+T-,),

and  the  condition  number  of  the  linearized  collocation  equations  xk(Lh) ~

const N(e), e -> 0 if equality holds in (6.44).

For Gauss points r — k holds and the bound (6.44) is best possible.

7. A Numerical Test Problem. As a test problem we solve:

(7.1) w<iv) = -l + exp(-2;w),       Kr<oo,

(7.2) w"(l) = 0,       w'"(l) = l,

(7.3) wGC3([l,oo]),

using the devised mesh-size sequences. This problem, which models the deflection of

a pile embedded in soil was investigated by Lentini and Keller [10].
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The obvious transformation

(7.4)        yx =w,   y2 = w',   y3 = w'

gives the four-dimensional problem

(7.5)

(7.6)

(7.7)

y'=f(y) =

•V2

-1 +exp(-iy,)

y4 = W";   y = (yx,y2,y3,y4)'

\

1 =£ t < oo,

0010
0001 *.)-(?),

jGC([l,oo]).

The (only) stationary solution ym is given by

(7-8) ^„ = (0,0,0,0)',

and the eigenvalues of the Jacobiany^(>'oo) are

(7,9) X,= (i),/V2,-')'r/4;       /= 1,2,3,4,

so that

(7.10) ReXo = ReX, .2-3/4 ReX, = ReXA = 2-3/4

holds. Since the imaginary parts of X23 are nonzero, we have to expect (exponen-

tially decaying) oscillating solutions.

We approximate (7.5), (7.6), (7.7) by the finite problem

(7.11)

(7.12)

(7.13)

= /(x),        Kt^T(e),

,(» = (,),

<7W)=(S).

0010
0001

1000
0100

The boundary condition (7.13) is admissible (i.e., it fulfills (2.29), (2.30)), however it

is not optimal in the sense of (2.35).

Calculations using the optimal boundary condition have been performed by

Lentini and Keller [10].

From (2.33) we get

(7.14)

where

(7.15)

<P
T(e) = 23/*ln^,

<p = max||^(i)exp(2-3/4i]
t>\

holds. Because (7.5) is autonomous and because all eigenvalues X, are simple, no

algebraic factors occur and 8 (in (2.31)) can be set to zero. For the following

computations the code COLSYS (see Ascher, Christiansen and Russell [1]) was used.

All computations were performed on the CDC-CYBER 74 of the TU Vienna. An

approximation to <p was computed numerically by solving (7.11)—(7.13) using 7-stage
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collocation at Gaussian points with equidistant grid points and meshsize A = 0.2. It

turns out that <p ~ 14 holds. For £-stage collocation at Gaussian points we use the

mesh-size sequence

/ 2"7/4   \
(7.16)(a) A^e'/^explJ —i,J,       l<t¡<T(e),

(7.16)(b) A^(e)_, = T(e) - tNk(t)_x.

Again, Nk(e) denotes the number of meshpoints in [1, T(e)].

For the following calculations we choose e = 10"2,10"3,..., 10"7 and k =

1,2,... ,6. Table 1 lists T(e) (rounded). Obviously

(7.17) 7( Ifj) " 7X<0 + 23/4lnlO~r(e) + 3.87

holds. Tenfold accuracy is achieved by increasing the integration interval by 3.87

units.

Table 2 lists the number of meshpoints Nk(e) and the ratios

(7.18) rk(e) = N(^,k)/N(e,k).

From (6.47) we conclude that

(7.19) rk(e) « lO'/2*

holds. The values 101/2/t for k = 1,... ,6 are given in the last row of Table 2, and it

seems that the convergence of rk(e) to lO1/2* (as e -» 0) gets slower as k increases.

Table 1 also shows the enormous superiority of high order methods. For k = 1

(midpoint rule) and e = 10"7, 7920 grid points are required while for k = 7 only 60

grid points are necessary in order to achieve (at least) the same accuracy (in fact

Table 3 shows that the absolute error decreases for constant e and increasing k)\

Table 3 contains the absolute errors

(7.20) ek(e)=     max     \\y(tf) - x,(e, *)||
i = 0(\)Nk(z)

(where x,(e, k) solves the A:-stage collocation equations (6.2)-(6.5) for (7.11)—(7.13))

and the corresponding (rounded) orders of convergence

(7.21) lnf    g/C\|/lnl0.
1       ' \ek(e/l0)j/

Solutions for k = 1, e = 10"5, 10~6 could not be obtained since the storage require-

ments were too large.

As mentioned before the absolute error for fixed e decreases as k increases (except

for e = 10 "4, k = 4,5). This was also observed by Ascher and Weiss [2, Table 4.2] in

the case of singular perturbation problems.

The orders of convergence are even for large e fairly accurate for k — 1,2. For

larger k and large e convergence is faster (than order one in e) but as e decreases the

orders apparently converge to one.
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Table 1

Integration intervals

10
-2

10 10 10 10 10

T(e) 12. 18 16.06 19.93 23.8 27.67    31.54

Table 2

Number of mesh points and ratios

Nx(e) T1(e) N2(e) T2(e) N3(e) t3(e) Ve) T4(e) N5(e) T5(e) N6(e) r6(e)

10
-2

27 3.04 17 1.Í 15 1.67 14 1.57 14 1.5 14 1.43

10
-3

82 2.91 32 1.78 25 1.52 22 1.45 21 1.38 20 1.35

10
-4

253 3.03 57 1.81 38 1.53 32 1.38 29 1.34 27  1.33

10
-5

794 3.14 103 1.78 1.52 44 1.43  39 1.33 36  1.31

10 2503 3.16 183 1.7£ 1.49 63 1.38 52 1.33 47  1.2£

10
-7

7920 326 131 69 60

10
l/2k

3.16 1.78 1.47 1.33 1.26 1.21

Table 3

Errors and orders of convergence

e1(e) e2(e) e3(e) e4(£) e5(E)

l.E-2 3.23E-3 1.0 2.68E-4 1.6 2.24E-4 2.8 2.20E-4 8.00E-5 2.5

l.E-3 3.03E-4 1.0 5.60E-6 1.0 3.13E-7 1.7 2.84E-7       1.9 2.84E-7 1.8

l.E-4 3.05E-5 5.55E-7 1.0 6.00E-9 0.8 3.30E-9       0.8 3.79E-9 1.4

l.E-5 5.70E-8 1.0 1.00E-9 1.1 5.0E-10 1.2 1.45E-10 1.1

l.E-6 5.00E-9 8.2E-11 3.0E-11 1.20E-11
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