
mathematics of computation
volume 40, number 161
january 1983, pages 175-191

Block Runge-Kutta Methods for the

Numerical Integration of Initial Value Problems

in Ordinary Differential Equations

Part I. The Nonstiff Case

By J. R. Cash

Abstract. Block Runge-Kutta formulae suitable for the approximate numerical integration of

initial value problems for first order systems of ordinary differential equations are derived.

Considered in detail are the problems of varying both order and stepsize automatically. This

leads to a class of variable order block explicit Runge-Kutta formulae for the integration of

nonstiff problems and a class of variable order block implicit formulae suitable for stiff

problems. The central idea is similar to one due to C. W. Gear in developing Runge-Kutta

starters for linear multistep methods. Some numerical results are given to illustrate the

algorithms developed for both the stiff and nonstiff cases and comparisons with standard

Runge-Kutta methods are made.

1. Introduction. In the first part of this paper we will be concerned with the

approximate numerical integration of the nonstiff initial value problem

(i-i) £ = /(x'-f)' y(x0)=y0,yev-

In [1], Bond presented a family of block cyclic schemes suitable for the numerical

integration of (1.1). The approach developed by Bond can be regarded as a cyclic

approach [6], a deferred correction approach [9], a linear multistep method with an

off-step point [2], [3], [12], [16] or a block approach [19], [22], [28]. However, a rather

more fruitful interpretation is to regard these formulae as explicit Runge-Kutta

methods, and the purpose of this paper is to extend Bond's formulae in a Runge-Kutta

framework using Butcher's analysis.

Our aim will be to derive block formulae of order p which integrate p steps

forward and which contain built-in local error estimates at each step. An alternative

way of looking at this is to regard our formulae as being pth order explicit

Runge-Kutta methods integrating forward over a single step H = ph and yielding

OiH/p)p+x accurate solutions atp—1 equally spaced internal nodes. This problem

has been investigated by Iserles [17] for fully implicit Runge-Kutta formulae, and he

develops what he calls B and E classes of formulae. The main difference between

Iserles' approach and the approach we consider is firstly that we will only be

concerned with explicit and diagonally implicit Runge-Kutta formulae, and secondly

our formulae will be such that an estimate of the local truncation error is available at

all internal nodes. Block explicit Runge-Kutta formulae have also been considered

Received December 30, 1980; revised February 2, 1982 and June 21, 1982.

1980 Mathematics Subject Classification. Primary 65L05.

©1983 American Mathematical Society

0025-5718/82/0000-0710/S04.75

175

176 J. R. CASH

by Rosser [19] and by Sarafyan [20], [21]. However, the formulae which they present

have lower orders of accuracy at internal points of the block than at the end of the

block. In contrast to this, our formulae will be designed so that Oihp+x) accurate

approximations are obtained at all nodes, and we will explain later why we make

this restriction. Finally we mention that the central idea in this paper is very similar

to one due to Gear [11]. In [11] Runge-Kutta methods are proposed that yield

Oihp+x) accurate approximations to hsy(s\xn) for s = 1,2,...,p. These formulae

are not used to carry out the integration but instead generate the additional

information required to start linear multistep methods at high order. However, many

of the ideas given in [11] carry over to our approach, and the present paper should

be regarded as complementary to the paper by Gear.

One of the main reasons for considering the block formulae introduced in this

paper is that they allow us to change order easily and, perhaps more importantly,

they allow us to choose the best order (< 4) to use when starting. In an extensive

survey by Hull et al. [14], [15] it was found, for the test problems considered, that a

fourth order Runge-Kutta formula performs well when function evaluations are

simple and the imposed tolerance is not very stringent. For very strict tolerances an

eighth order formula due to Shanks performed very well, whereas the performance

of the fourth order Runge-Kutta formula was poor in this case. These results

highlight the need for us to be able to derive a variable step-variable order (VSVO)

Runge-Kutta algorithm if we are to be able to maintain efficiency over a wide range

of tolerances. Our experience on stiff and nonstiff problems indicates that, while in

the stiff case it is vital to be able to change order, in the nonstiff case it is often more

important to be able to select the correct order initially and to keep this order fixed.

The algorithm which we will describe attempts to choose the 'optimal' order initially

and then monitors the possibility of changing this order as the integration proceeds.

The VSVO algorithms which we derive in this paper have been implemented on

some test problems, and the results obtained indicate the superiority of the VSVO

approach over conventional fixed order Runge-Kutta formulae.

In the first part of this paper we will derive some explicit formulae for the

numerical integration of nonstiff problems and in the second part we will derive

diagonally implicit Runge-Kutta (DIRK) formulae suitable for the integration of

stiff systems.

2. Some Particular Formulae. All of the integration formulae which we consider in

this paper have associated with them a Butcher matrix of the form

c2 a2x a22 ■ ■ ■ a2q

(2.1) ; : ;

cc a<t\ a,2 ••■ aqq

bx b2 ■■■ bq

We have to modify this notation slightly to describe fully our block formulae, and

we will explain these modifications, when they are needed, later in this section. We

BLOCK RUNGE-KUTTA METHODS 177

first derive a formula of order 2. Butcher has shown that (2.1) has order 2 if

(2.2a) 2 *,=?!, ÍblC¡ = \,
;=1 i=l

and furthermore the principal term in the local truncation error of this formula is

(l-32bic2){f2} + (l-62biaIJcJ]j{2f}:
h3

(2.2b) PLTE = -j
¡i

where the terms involving / are the usual elementary differentials. Our formula

integrates forward over a step 2 at and so, in order to be able to use Butcher's

analysis, we need to 'normalize' this formula to a step h by dividing all elements of

its Butcher matrix by a factor of 2. A normalized 3-stage formula which generalizes

the corresponding formula given in [1] is

0

(2.3) 1/2

6/2

0

1/2 0
a/2 6/2 - a/2 0

bx/2 b2/2 1 - bx/2 - b2/2

Two strategies for choosing the free parameters could be

(1) To improve the computational efficiency of our formulae and/or

(2) To improve the stability properties.

We will give some consideration to aim (2) but mainly in this paper we will be

concerned with (1).

We start off our investigation by considering a more or less obvious approach to

the problem of satisfying requirement (1). As we shall see, however, this approach

yields a rather inefficient formula, and this helps to highlight a problem associated

with many existing block formulae. A second order formula requiring only two

function evaluations per block can be obtained by taking 6 = a — 0 and is given by

(2-4) kx=fix„,y„), k2=f(xn+x,yn + hkx),

ä(?i=ä + **i, ynï+)2 = yn + Hkl + k2),

yfti = yn + f (*, + k2), y%2 = y„ + 2hk2.

This formula produces second order approximations at both xn+x and x„+2 and an

estimate of the local truncation error in y^h is _y„<2^ — y^j for y =1,2. If, however,

we examine the principal local truncation errors associated with the second order

solutions .y^, andy¡¡2)2, we find that fory¡¡2^x

(2.5a) PLTE = ^[-H/2} + {2/}2]>

whereas for yj$2

(2.5b) PLTE = ^[|{/2}+{2/}2].

178 J. R. CASH

Of course the magnitude of the PLTE in any given situation depends very much on

the function being integrated since, in some cases, there may be cancellation

amongst the terms appearing in (2.5a) or (2.5b). However, since the constants

multiplying the elementary differentials in (2.5b) are larger than those appearing in

(2.5a), we would expect (2.5a) to be the more accurate formula in general. (For

simple problems where fix, y) = ax + by + c, with a, b and c constants, the PLTE

associated with (2.5b) is eight times that associated with (2.5a).) This expectation has

been confirmed by practical experience. Furthermore the accuracy obtained with

y(n+2 is exactly that which could have been obtained using a conventional second

order Runge-Kutta formula with step 2h, and so there is not a great deal of

advantage in using this block formula. Thus, when dealing with block formulae, it is

vitally important to examine the magnitude of the terms appearing in the PLTE as well

as the order of the formula. Thus it is not valid to compare two block formulae of the

same order merely by counting the number of stages. Indeed, we have programmed

(2.4) and found it to be generally less efficient than (2.9) even though the latter

formula requires one more function evaluation per step.

To overcome this problem we consider an alternative approach which demands an

"equi-distribution" of errors in the block scheme. In order to mirror the behavior of

conventional single step formulae we construct our block scheme so that if the PLTE

iny¡,2)x is of the form h3<j> + 0(/i4), then the PLTE in^„(2>2 is 2h3<p + 0(/z4).

The main reasons for adopting this particular approach are as follows:

(1) By adopting the equi-distribution of error (EDE) approach we have a theoreti-

cal reason for expecting our formulae to outperform standard Runge-Kutta for-

mulae. The EDE criterion attempts to ensure that for a smooth problem the local

error committed in integrating from xn+j to xn+i+x is the same for all i €E [0, p — I],

and this is roughly the behavior of standard Runge-Kutta formula used with fixed h.

Thus, if our block formulae can obtain Oihp+l) approximations at p grid points

using less function evaluations than is required by a pth order R-K formula to

perform the* same task, we would expect our block formulae to be superior. The

results of Section 4 indicate that block formulae developed using this criterion are

generally more efficient than standard R-K formulae.

(2) By demanding Oihp+x) accuracy at internal points we can obtain Oihp+x)

solutions at "off-step" points by interpolation. This means that we do not have to

choose h so that we "hit" output points, and this offers a significant saving when

output is required at many points.

(3) At each point in the block we have available a very cheap estimate of the local

truncation error in the solution of order p — 1. By basing our step control on

estimates of the error computed at a number of points rather than just one point (see

Section 3) we can hope to reduce the likelihood of serious underestimation of the

error and hence make the approach more reliable. The results presented in Section 4

do indicate that the block schemes are more reliable than the standard Runge-Kutta

formulae.

(4) After considerable numerical experimentation, see particularly [1], it was found

that the approach we have adopted gave the best numerical results out of the many

possibilities tested. An additional advantage is

BLOCK RUNGE-KUTTA METHODS 179

(5) By using the analysis given in [11] we can compute an estimate of the stepsize

to use after a rejected block.

Thus, if we reconsider formula (2.3), we have the following:

To computey^\.

(2.6a)

Tocomputej^:

(2.6b)

To compute^,:

(2.6c)

0 0
PLTE = ^{/}.

0
1 0, PLTE = /i2{/}.

1 1

h3
J_0_, PLTE = ^[-H/2} + {2/}2]-
i i
2 2

To computey^l2: use formula (2.3), where for order 2 and for equi-distribution of

errors we require

b2/4 + 0/2(1 - bx/2 - b2/2) = 1/2,

1 - 3[V8 + 02/4(l - bx/2 - b2/2)] = -1/8,

1 - 6[(1 - bx/2 - b2/2)i6/4 - a/4)] = 1/4.

One solution to these equations is 6 = 2, a = 0, bx = {-, b2 = 1, b3 = \ giving the

second order formula

Tocomputej>„(52:

(2.6d)

0
1 0
0 2 0 PLTE = ^[-{/2} + {2/}2].

1

The finally accepted second order solutions at aj + 1 and n + 2 are y^2)x, y^X2, and

the quantities yf\¡ — y^XhJ ~ 1»2, serve as an estimate of the local truncation error

iny(XXj. Applying this block formula to the scalar test equationy' — Xy, we obtain

yn+2/yn=\+2q + 2q2 + q3, q = h\,

and it can be shown that the interval of absolute stability of this formula is

approximately (—1.5, 0). This block formula does have some computational ad-

vantages over conventional Runge-Kutta formulae, and we will defer a discussion of

these until Section 3.

As an alternative we could adopt strategy (2) and choose the coefficients b2, a and

6 so as to improve the stability properties of our formula. Such formulae are only of

limited value—specifically formulae with increased real stability regions can be of

180 J. R. CASH

use in the numerical solution of parabolic partial differential equations, while

formulae with increased imaginary stability regions are used in the integration of

hyperbolic p.d.e.s. The price which we pay is that we lose the equi-distribution of

errors property but the gain is a considerable increase in the stability intervals of our

formulae. Applying (2.3) to the scalar test equationy' = \y and putting q = h\, we

obtain

(2.7) y-^=l+2q + 2q2 + 2i6-a)[l-^-b-±)q3.
yn * '

The problem of choosing the coefficients of q3 to give an extended real interval of

absolute stability has been investigated by Riha [18]. From Riha's analysis it follows

that if we choose

(2.8) 2(cJ-a)(l-^-|) = l/2,

then the interval of absolute stability of our block formula is (— 3.15, 0). We now

introduce a measure.

| interval of absolute stability | * number of steps in block

s number of function evaluations

This measure is similar to the scaled stability intervals considered by Watts [27] and

is a fair way of comparing the stability properties of two different formulae since in

effect it measures " the amount of stability" per function evaluation. Thus Ms = 2.1

for (2.8) compared with Ms — 1 tor a conventional second order Runge-Kutta

formula. In view of this it is worthwhile to introduce extra function evaluations

when integrating problems which are most efficiently integrated using formulae with

large intervals of absolute stability.

A final alternative is to choose our free coefficients so that the intercept of the

region of absolute stability with the imaginary axis is maximized. An investigation of

this problem has been carried out by van der Houwen [26] but the analysis is not yet

as complete as that given by Riha for the real case. Formulae with an extended

imaginary stability interval are important in the method of lines solution of

hyperbolic partial differential equations. The resulting hyperbolic system is normally

very large, its eigenvalue spectrum lies on or close to the imaginary axis and this

spectrum occupies a large section of the imaginary axis. Using an elementary

argument it can be shown that, in order to maximize the imaginary interval of

absolute stability, we need to take

and for this choice the imaginary interval of absolute stability is (0,2/).

We conclude this section by listing some block integration formulae of order 1 -4.

We will list formulae with improved stability properties of order 2 only and leave the

BLOCK RUNGE-KUTTA METHODS 181

derivation of higher order formulae as an area for future research. In what follows

the weights for solutions at internal points in the block are given under the dotted

lines. For example the third order formula is

yn+\ -y„ = «{-4k\ + 4^3)'

f 9 21 7 27)
Ä«-Ä = *l^*i +32*3 +32*4+32*sJ,

v -y=hl™k + ^-k + ^k +^-k)yn+3 yn /I\504/Cl +112^ 48 4 126 6r

All formulae are obtained using the equi-distribution of error condition and the

formulae are given using the standard R-K formalism for block methods with the

coefficients of the Butcher arrays for a pth order formula given for the stepsize

H=ph. We note that the lMs factor' is better than conventional Runge-Kutta

formulae for orders 2 and 3 but is worse for order 4.

First Order Formula:

yn+\-yn = hfn-

Second Order Formulae:

Equi-distribution of error

(2.9)

1

0

1/2 0

1/4 1/4 Ms = 1.03
0 1 0

1/4 1/2 1/4

0

1/2 0

1/4 1/4 Ms = 2.1

1/2 1/2 0

1/2 0 1/2

0

1/2 0

1/4 1/4 Imaginary Stability

0 1 0 -Interval (0,2/)

1/2

1

Maximum Real Stability

0

_l/2

1

Maximum Imaginary Stability

0

1/2

1/2 0 1/2

182 J. R. CASH

Third Order Formula:

(2.10)

0

1/3

2/9

2/3

4/9

1

0

0

1/3 0

4/27 2/27

1/12 0 1/4

0 2/3 0 0

8/81 -8/81 10/27 2/27 0

9/96 0 21/96 7/96 27/96

M. = 1.05

0

35
504

39
112

23
48

13
126

a, = 0.9173076923, a2 = -2.807692308, a3

a4= 1.073076923, a5 = 1.425.

0.3923076923,

The second order formula used to give an error estimate at ai + 3 is identical with

the above formula for the first 5 stages, and the 6th stage is given by

1 0

43/120 1/2 -41/80 109/240 1/10 1/10

Fourth Order Formula:

0

1/4

1/6
1/8
1/4

(2.11)

1/3
1/2
1/2
1/3

3/4

3/4

1

0

1/4

1/9
3/32
-1/8

0

1/18 0

1/32 0
-1/8 0

0

1/2 0

1/24 0 0 1/6 1/24
"61 a62 a63 °64 «65 °

a7, a12 an a1A <¡75 a76 0

0 1/2 0 0 0 0 0

2/27 -2/27 5/18 0 0 0 0

0

1/18 0

7/192 0 0 1/5 -1/24 81/320 5/96 0 0

"10.2 0 0 0 "10,4 "10,5 0

0 0

h
0 a

*7

9

12,8

M. 1/3

with

'61 -0.006790123455, a62 -1/18, a63 = 1/20, aM = 0.2024691358,

a65 = 0.14320987655, a71 = -0.077, a12 = 0.05, a73 = -0.243, 0.856,

'75 = -0.896, o76 = 0.81, a'10,1 0.6879807692, aW2 = -2.105769231,

a10i3 = 0.2942307692, a104 = 0.804807692, a105 = 1.06875,

BLOCK RUNGE-KUTTA METHODS 183

axxx = 1.013599649,
a,¿ = 2.101305181,

'11,5

'll,7

0.03836597482,

0.8905989659,

¿>3 = -1.316476004,

b5 = -0.0390625000,

b1 = 0.4508789062,
-2.42247142,

-1.1939428,

a125= 1.111468958,

ax21 = -4.733490737,

bx = 0.0003635169,

b4 = 0.0506860373,

b6 = 0.493281834,

bs = 0.2384047462,

12,1

12,3

a,,7 =

"11,4 —

«11,6 =

bx =

K =
b6 =

\ =
a12,2 =

fl12,4 =

«12,6 =

ö12,8 =

h =
b,=

b~i

-2.373563736,

-1.808316282

0.8880102464,
-0.1013997396,

1.4416666667,

0.2234700521,

1.8, bg = -1.527232143,

2.9828410875,

4.073007497,

0.5712931975,

0.6112942211,

0.3368658833,

0.1566864719,
-0.3737884895,

0.0975.

The formula used to obtain a third order solution at ai + 4 is the same as above with

the b¡, 1 < i < 9, replaced by b¡ where

¿>, = 0.001663007867,

b\ = 0.02844392849,

4 = 0.4957601898,
b\ = 0.2391,

b3 = 0.3637090175,

b\ = 0.1594404918,

b7 = -0.3853166355,

bQ = 0.0972.

Note that several of these coefficients are rather large. However, paradoxically, the

numerous formulae which have been obtained with smaller coefficients have been

found to be much less reliable than those given above. We see from this Section that

formulae (2.9), (2.10), (2.11) achieve order 2, 3, 4, respectively, but require only 1^,

2, 3 function evaluations per step. This is better than conventional explicit Runge-

Kutta formulae of order p which require p function evaluations per step for p < 4.

3. Computational Aspects. All of the formulae given in the previous section are

such that a pth order formula integrates forward in a block of p steps. The way in

which we have implemented our formulae allows us to change order only after p

integration steps have been completed, although it should be possible to modify

Gear's approach to enable us to choose a new step if a block is rejected. As we will

show in this section, the block approach does have three major computational

advantages in that the algorithm used to choose h is likely to be very reliable, our

block approach allows us to change order and also to compute solutions at

"off-step" points in a simple manner.

The first problem considered is that of error estimation. As is well known, the

local truncation error associated with high order Runge-Kutta formulae is generally

so complicated that the problem of error estimation has proved to be a difficult one

to overcome. Probably the most successful solution of this problem to date has been

embedding, which was developed in a series of papers by Fehlberg [7], [8]. This is the

approach which we will adopt in his paper. Note that the Fehlberg approach is

184 J. R. CASH

applicable since each block formula of order p has embedded formulas of order 1,

2,...,p — 1. In fact, using an interpolation formula, we could obtain embedded

error estimates at any point in the subinterval and not only at mesh points.

Denoting the true solution of our differential equation at x„ by yix) and the

numerical solution obtained at xn+x using a pth order Runge-Kutta formula by

Ä+i*»we have

(3.1) y(xn+x) -yn+hp = hp+\ + o(hp+2),

where <j> is the principal error function associated with the pth order formula and

where we have assumed that y„ is exact. Associated with the pth order formula

there is an embedded formula of order p — 1 which yields a solution yn+x x at

x„+l satisfying

(3.2) y(xn+x)-yn+Up-i = *Vi + o(hp+x).

Subtracting these two relations and assuming that the Oihp+2), hp+x<j>p and Oihp+x)

terms are negligible compared with the other terms, we have

(3-3) »'Vr>»+i,;"ÄH;-i'

Thus the error in the/?th order solution has a principal term

hp+\ = h(yn+Up -yn+i,p-i)-^- + 0(hp+2).
Vp—1

[This assumes that y is a scalar but the argument can be extended to the vector case.]

If we control the step length, h, by an estimate of

y«+i,p-y«+i,p-i = hP+\

this corresponds to controlling the error in yn+Up per unit step; cf. [24]. The

procedure which we now use to adjust the step is as follows. Assuming that a local

error tolerance, Toi, is specified and that an error estimate E¡ is obtained at ai + i,

i E [1, p], the step hx used to compute forward from n + p is (assuming ll£,+1 —

E,\\ < Toi, for all/' E [1, p - 1),

(3.4) A, = SF*fc*(Tol/||£||)1//,+ 1, È= max \\Ei+x-E,\\,
0<i=S/7— 1

where II • II is some convenient vector norm and SF is a safety factor. If ||¿|| > Toi,

the current block is abandoned and the integration is restarted from the point xn

using a step hx given by (3.4). In our practical experiments we took || • || as the

maximum norm, and if II £11 < Toi, we performed local extrapolation. A procedure

whereby local extrapolation is always performed may not be the most efficient,

especially for low accuracy requirements, but it is a convenient procedure for

allowing us to compare our block formulae with more conventional formulae.

The second problem which we consider is that of computing a solution at an

"off-step" point. If we denote by Gn the set of points to be used by the integration

formula and by Sn the set of points at which output is required, the normal

procedure is to adjust h so that Snd Gn. However, this procedure can be very

wasteful especially if Sn contains many points some of which are closely spaced (see,

for example, [23]). This output problem is not experienced by linear multistep

HB

BLOCK RUNGE-KUTTA METHODS 185

methods since they compute intermediate solutions essentially by evaluating an

interpolating polynomial passing through already computed solutions. Interpolation

can also be used with block Runge-Kutta formulae to compute intermediate solu-

tions. Having completed a block of p integration steps, we have p + 1 solutions

yn< yn+1> • ■ • >yn+p available. If we now fit a pth order interpolating polynomial Phix)

through the points (jc,-, y¡), i — n, n + l,...,n + p, we can compute a pth order

solution yv at any intermediate point x„ asyv = PhixA.

Finally, in this section, we consider an algorithm for changing the order of our

block implicit Runge-Kutta formulae. Comparison of codes by various workers have

shown that in some situations Runge-Kutta formulae are very valuable, especially

when function evaluations are inexpensive or when a problem has a number of

discontinuities which require 'restarts', if some care is taken to choose the correct

order initially and if the possibility of changing order is monitored as the integration

proceeds. In what follows we describe an algorithm which allows us to achieve this

aim. The algorithm which we describe has proved to be reasonably successful in

practice, but it cannot hope to be as good as order changing algorithms for linear

multistep methods. The reason for this is that successful codes based on linear

multistep methods are able to compute an estimate of the error which would have

been committed if a formula of degree one higher than the current one had been

used, without actually having to compute the higher order solution (cf. [10], [13],

[24]). They are able to do this because the form of the local truncation error

associated with linear multistep methods is particularly simple. However, this facility

does not seem possible with Runge-Kutta formulae, and the problem of when to

increase order is a stumbling block. The procedure which we use is an extension of

one given by Cash and Liem [5] for DIRK formulae. The first thing we need to do is

to work out the order of the formula we expect to use. As a result of extensive

numerical experiments we have found that in the range 10_1 to 10~9 we expect to

use the following order formulae:

10~\2; 10"2,2; 10"3,3; 10"4,3; 10"5-10~9,4.

Now, initially, we can choose the optimal formula to use by computing a fourth

order solution with step h together with the embedded 3rd, 2nd and 1st order

solutions. From this we can compute

Ei = estimated error per unit step in the z'th order

solution/' = 2, 3, 4

and

h,■ = h X SF X ((Tol/E,))'7' as the next step which could

be attempted.

Clearly if SF is taken too large it will result in inefficiency because of many rejected

steps, and if SF is too small, inefficiency will occur as a result of the step being too

far from optimum. Numerical experiment showed that a suitable choice for SF was

SF = 0.8 for order 2, 3 and SF = 0.9 for order 4. Having calculated h¡, we can

compute

w2 = 2 X h2/3, w3 = 3 X A3/6 and w4 = 4 X A4/12.

186 J. R. CASH

The quantity w, measures the distance that can be integrated forward per function

evaluation, and the order chosen isy where

W: = maxw,.

We now have to deal with two possibilities:

(a) If j is equal to or greater than the expected order, we integrate forward one

block and then examine the possibility of reducing the order by computing the

embedded solutions. We do not attempt to increase order.

(b) If j is less than the expected order, we integrate forward one block and

examine the possibility of reducing order. If our test tells us not to reduce order, we

increase the order by 1 and then integrate another block forward.

This process is carried out at the end of each block. Although this procedure is not

ideal it has proved to be quite successful on the test problems which we have

considered as the results of the next section show.

4. Numerical Results. In this section we present some numerical results obtained

using the block Runge-Kutta formulae developed in Section 2. There are three main

points which we wish to make. First, we wish to show that block Runge-Kutta

formulae are reliable for the integration of nonstiff problems. Secondly, we wish to

show that fixed order block formulae are competitive with conventional Runge-Kutta

formulae of the same order, and lastly we wish to show that our variable order

algorithm is both efficient and reliable. The test problems considered are sets A, B,

D and E given by Hull et al. [14], and these consist of twenty test problems. These

problems were run for tolerances 10~\ 10~3, 10~5, 10~7, 10~9, and the results

obtained are given in Tables 1-7. The table headings are self-explanatory except,

perhaps, percent deceived which counts the number of accepted solutions with errors

greater than the specified tolerance, and maximum error which gives the maximum

absolute error as a fraction of the tolerance in an accepted solution. It can be seen

from Tables 1-6 that the fixed order block schemes are generally more efficient than

the fixed order Runge-Kutta formulae and are more reliable. Also the variable order

formula performs well and is more reliable over all tolerances than any fixed order

scheme. The step control for conventional R-K was performed as described in [14, p.

622].

We finish with a few remarks regarding the implementation of our block for-

mulae. First, we note that we have allowed the Runge-Kutta formulae to change

step size at the end of each integration step, whereas block schemes can only change

step size at the end of a block, unless the block is aborted. For the very inexpensive

functions of the test set, step size changing may represent a considerable overhead,

but this overhead is not listed in the Tables of results. Secondly, we have always

insisted that a block formula completes one block step forward before computing

error estimates. For the fourth order formula, for example, a bad step results in 12

wasted function evaluations. It is possible to abort much earlier if things are going

wrong, but we have not investigated this possibility. Finally, we note from the results

that often we achieve more accuracy than is required especially with the fourth order

formula. This indicates that more research into efficient control of step length for

block formulae would be valuable.

BLOCK RUNGE-KUTTA METHODS 187

Acknowledgement. The author is grateful to the referee for many comments and

suggestions.

Table 1

Results for second order block formula for tolerances 10~ ',

Class A

Class B

Class D

Class E

FCN CALLS No. of Steps

1743

4245

6981

4566

1112

2730

4556

2948

Steps

deceived

4

1

5

1

io-3

Max. Error

1.15

1.01

1.19

1.07

Table 2

Results for second order Runge-Kutta for tolerances 10~', 10~3

Class A

Class B

Class D

Class E

2228

5402

9306

5880

1087

2668

4463

2909

5

6

17

1

1.26

1.12

1.19

1.10

Table 3

Results for third order Runge-Kutta for tolerances 10~', 10~3, 10~5

Class A

Class B

Class D

Class E

3933

10629

18552

10512

1239

3276

5511

3664

2

2

0

2

1.55

1.08

0.96

1.17

Table 4

Results for third order block formula for tolerances 10_1, 10~3, 10~5

Class A

Class B

Class D

Class E

3180

7356

14834

7980

1551

3522

7170

3822

0
0

0

0

0.94

0.91

0.91

0.86

188 J. R. CASH

S w

O-, so c-> cN O
— — so — r*"i
(N sO O C> OC

O^ OC r*~i O^ O
t - O h <5
rN ^ r*-. r-1 tJ-

— fjs m — r*"»
O — rsl o) r—
r-i m -rt -*t t~~-

\0 c-i r- *-o r*->
i^l W1 o in «*i
N ^ n n m

— «n

(N (N

O O o Ö O O O O O O O o o o o o o o o o o

<

u O »Û N >û
ce r- m m
— T TT

co tN x ^r t
CN r«-. t O t m oc

Z S sO sO ^f -£3 ^t
£j c3 ^ O^ sO r«i fN

•* oc ^ oc -^r
O tN O ^f OC

rM rN rs x oo
m — Cf. o 'O
u-i oo m — —

Tf OC ^ N N-S

u ni pj pj uj

0 ** T r- TT .o
ce O a. t IN
n í n M n

o r^ .o fi

y o o o o O O
D S i

o o o o o o o o o o o o o

ti
«

r-

-ft

<
j
u - r ; »c fl ï K c

C ¿í <~i *í t r.1 i~, - <í K t

z = n cr «5 _.
— — r-i

m ■* T o

^ O sO o o sO fN O '
r- — so
<N m d ■

, — r-iflTfirí«-(Nm'íiri-(NrritiflL-rim'ri/iL-Nri'íi/i
x ÛCCCû:ûûûDû2DODOÛ°ÛÛUÛQ°ÛÛDÛÛ

■- Êt~- o t — *t r-1 .C .O .G sC
I— C?. [— CT* .D W sO ^ *

í N n M 't ^ sfnî 4

3

Cu

Oí

y o o o o o o

<

Q.\D tJ X t sO
ü o> so r-i o "i

O O O O O

•f sO O O <N
oc r- tj- r-i cr-

z ^

o c o c o

Tf ^r so ^r

o o o c a

fN OC
— so
"O V)

7 i O « x C ri
n "= <^> <N O O «r>
y .^ ^r M - rs n
U, U —

S't (N vfi O
sO f*"> ""I so

OC fN — ^t r-i

(N sO © O O
fl r*1 ^J- sO OC
■o m r-i o r~~

O (N (N t O
so — in «c x
sO sD ""l ^O C^

O oc
C — m sC rN C

m r- m o
— O tN o
— «o r^i —

O r*"i -^ C*> sD
so ^O o r^ el

OC <J-l — — O''
sO O ci OC fi
r|- - m n M

©poo OOOOO O O O O O OOOOO OOOOO

<

u (N (N iN sO n tt o rt t Tt oc oc O O
sC ■* ^ sC sD

sO r-1 oc
<s-\ — (N

U- O

sO fN Tj" sO fN
<?■ r~~ oc :t> r— so <-*-) o ^- —

^í fi fN Vï u"i

SOC ^ fN (N
■"3- O r*i P-

Tf O- X vO Ti

<<<<<2<<<<<r:<<<<<2<<<<<

BLOCK RUNGE-KUTTA METHODS 189

I
1 g 3 S S £ ñ
% ¿3 ° "" "" °' °

Ti © O sO ©

d -: © © —

sooo — co ce r- — r*i m
©cecerN in \c sC J; oc
— © © — © © c © d

r— r- tï
t -c m
© © ©

— T3

© P © ©
©

O p o O P

■ ir, (N C^ Tt rt

Z ">

>n o> r- o O
T) — oo — —

(N O — m O
tj- ti p~ rN ri
— e-i fN

m CC Vi V)

z ¡s
So

— Vi o © o o TI Ti Ti O ^
(N O sO sO P^
fN sO TT t^. r^ m — —

m so C^ oo p-

"fNrntTiQ-MntTirs-oimUJUJIUWW- WWWPJU. r r~N C~i "3" Ti f—¡ — M f»l Tt Ti

■ LijLLjLLjajLlJ^LiJUjLLjLLjUj

en so ce r- ti
u. oc ti r— r-

2 ljj ö © © d © O — © :

t~~ — O rjs CC
Tf Ti Ti sO 00

© © © © ©

t t 't 't T

© © d d ©

3

á>be
S

SO 3

w Qí
►J >^« J§
< Is
H fe

JS

y '53 o o o o P

< _

d 2 <*■> ^- ■-* ^-

Z ¿ Ti Ti Ti
O S3 >C fN sO

£ 0 - (N <N

© © © O O

© r*i — Os ç>

O Ti Ti Ti ■

o © o o ©

© — fN —
X C " T
tN fN r*% m

ti so ti tj-

© © © O ©

TT "^ Tf Ti P-

i -nW^T'-Nn'TTi_-rs|nTtT'--rlí'i'tTiL-(NrnTtT

o QQQQû£QQCCQ = QQQCû2QCCQû2QOQaD

E

■- t1 w
rj- tí n ce r-

x x n M o
© r*i Ti ce p-

— © © d d
© ^r
— d

P- O sO Ti ©
CC -* tJ r- Ti

© C O © O

3

<
—;
U

© © o ©

2 «

© © © ©

f-ï — OC Ti

o o o o

Z
U ,
U- O

-- T) TI O TI O

■ t M >0 TI IN
TI O Ti T> TI

rf fN P- P-
— X X ^

s — M f, t Ti Q - M m Tf Ti o — fN CI Tj- Ti
ICÛŒOaCÛffl — CDCQ0222CQ — CÛCQQ5CQCQ

eO - x - r- t
i- fi © CC sO fl

g ¿j © © © ö ö

o os so o fN © '
fi r*ï © Ti Ti Tf

© O O ©

— o so fN r—
Tfr fï g\ OC ©

O O © © —'■

W © O © © © © © p © © o © © © P

<

■ O sC © sO Tí oc — — r- sop-r'iOm r*^Tip-mm
t M X t 1*1 P~ ^C Ti ©

>C í M t M
© fN OC OC fN

Ti — — ^- fN r— Tf

Z S Ti © Ti © Ti
(_; es Vi r*-, f^ r*"i tN

U- O ""

O O © Ti Ti

O - O' t sD
fN — OC fN —

X <<<<<-< <<<<<-<<<<<-<<<<<

190 J. R. CASH

x— OC P- CT» On OO
O © so rN ti —

Ov U> ro p- ti
Tf (N so On m
fN ce so m rn

— sO O^ © tN
On — O fN Ti
n T, t ^ x

so m r- vo m
Ti sO © fN T)
tN Ti r*i r"> m

— Ti
ti m
fN (N

y 'C o © © o o © © © © © o © © o o o © © o ©

á =
u o

z

CO — fN — so
sO On Ti rN —

fN fN

O ON Ti sO
ce p— m pn
- 'Ñt t

X T, X Tf ^t ©
N m t O "I "Ñt
ti r*"i fi — — NO

Z JS
U 13

» » >c o .o

tN r— ti

H X O Xt 5 2

— N n 1; t o — tsin^Tir1--rNnTíTio-rNrf|'tTio--fN|rnsíTi
UjUjUJUJW-WLljLLjUJLijSLtJÜjügLljLjjSuJW^

On sO ^t sO fN (N tN r~ oc m
r*-i O On Tf tN
p ^r n n tN

? h vO M t
O tt m Tj- p-

SO On Ti sO
tJ- sO — o
pNl (N f*i nO

© © © © © O © © © © © o o o

«s:

1|
>o
Is

r- -|

.< <s
H .g

I

< 'S

z «

Z ¿Ti
o « ^
tu O

^ t x "J m
: T Ti so fN c*i

cc fN r- © 28

OC sC ^t CC sO
Tt Ti © OC On
r*l r"i f ^1" -O

© OC fN fN

— fj" NO P- © Ti

ON © fN Ti

ci m pn ^t

o O Û û Q Q

^t f*1

— (N rn t T - - fNcn^J-Ti

oqcqqSqqqcc
— tN fi Tf T>

ü Q O G Q

tj- sO — vO fN
OC fl O1 - -
p rs| m m x

ce so r- m p-
© vO On sO sO
rf t Ti ^ Tf

P © © O O © o © © © © © © © O ©

5 o a. tN tN — —
•î fi P t

Tf © CC © fN
nO nO T fN r*1

fi TT sD -í O

Z ^

fN OC
— «o
sO Ti

Z ^£ so

u. o N

P"- so Ti so
oe fi en ps ■^t P- ON Ti tt

"* so © © o
— m tj- no oc
so m r-j on r—

© fN fN "st
sO — TI sO
sO -O Ti so

— ri m Tf ti n — Nr^TfTiQ-rJm'íTi
CC 02 £C CC 03 — CC CO CO CÛ CC — CO CC CC CO CC

3 ¿1

■*T oc ON tj- sO sO fl © SC
OC 0s Ti T Tj

o w t a- »n
sC sO r*1 P- fl

Ti — — On
On ci OO m
— Ti n PI

*? o © o © © o © © © © © © © © ©

■ "í rj x O Pl =c cc © ©
TJ" ^- SO sO

sC fN CC sO fN ce so oc g
sO — sO *fr '
Tt i"-> fN Ti i

z é. - * p-
O « OÍ <N —
U. O -

OC sO -íf OC P~
i © sC ^ M Tf P) Pl

tj- — © Tt © c-i r~~
rf O- CC *0 Ti

<<<<<-<<<<<-<<<<<

BLOCK RUNGE-KUTTA METHODS 191

Department of Mathematics

Imperial College

South Kensington

London S.W.7, England

1. J. BOND, Some Block Iterative Methods for the Numerical Solution of Systems of Ordinary Differential

Equations, Ph. D. thesis, Univ. of London, 1979.

2. D. G. Brush, J. J. Kohfeld & G. T. Thompson, "Solution of ordinary differential equations using

two 'off-step' points,"/. Assoc. Comput. Mach., v. 14, 1967, pp. 769-784.

3. J. C. Butcher, "Implicit Runge-Kutta processes," Math. Comp., v. 18, 1964, pp. 50-64.

4. J. C. Butcher, " Coefficients for the study of Runge-Kutta integration processes," J A ustral. Math.

Soc.,v. 3, 1963, pp. 185-201.
5. J. R. Cash & C. B. Liem, "On the design of a variable order variable step diagonally implicit

Runge-Kutta algorithm," J. Inst. Math. Appi, v. 26, 1980, pp. 87-91.
6. J. Donelson & E. Hansen, " Cyclic composite multistep predictor-corrector methods," SI A M J.

Numer. Anal., v. 8, 1971, pp. 37-157.
7. E. Fehlberg, Classical Fifth, Sixth, Seventh and Eighth Order Runge-Kutta Formulas With Stepsize

Control, NASA technical report no. 287, 1968.

8. E. Fehlberg, Low Order Classical Runge-Kutta Formulas With Stepsize Control and Their Applica-

tion to Some Heat Transfer Problems, NASA technical report no. 315, 1969.

9. L. Fox, The Numerical Solution of Two-Point Boundary Value Problems in O.D.E.s, Oxford Univ.

Press, New York, 1957.

10. C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall,

Englewood Cliffs, N. J„ 1971.
11. C. W. Gear, "Runge-Kutta starters for multistep methods," ACM Trans. Math. Software, v. 6,

1980, pp. 263-279.
12. W. B. Gragg & H. J. Stetter, "Generalised multistep predictor-corrector methods," J. Assoc.

Comput. Mach., v. 11, 1964, pp. 188-209.
13. A. C. Hindmarsh, GEAR: Ordinary Differential Equation System Solver, UCID-30001, Rev. 3,

Lawrence Livermore Laboratory, Univ, of California, 1974.

14. T. E. Hull, W. H. Enright, B. M. Fellen & A. E. Sedgwick, "Comparing numerical methods

for ordinary differential equations," SIAMJ. Numer. Anal., v. 9, 1972, pp. 603-637.

15. T. E. Hull & W. H. Enright, "Test results on initial value methods for non-stiff O.D.E.s," SI AM

J. Numer. Anal., v. 13, 1976, pp. 944-961.
16. J. J. Kohfeld & G. T. Thompson, "Multistep methods with modified predictors," J. Assoc.

Comput. Mach.,\. 14, 1967, pp. 155-166.
17. A. ISERLES,"On the ̂ -stability of implicit Runge-Kutta processes," BIT,v. 18, 1978, pp. 157-169.

18. W. Riha, "Optimal stability polynomials," Computing, v. 9, 1972, pp. 37-43.

19. J. Barkley Rosser, "A Runge-Kutta for all seasons," SIAM Rev., v. 9, 1967, pp. 417-452.

20. D. Sarafyan, Composite and Multi-Step Runge-Kutta Formulas, Technical Report No. 18, Louisiana

State University, Nov. 1966.

21. D. Sarafyan, Multi-Order Property of Runge-Kutta Formulas and Error Estimation, Technical

Report No. 29, Louisiana State University, Nov. 1967.

22. L. F. Shampine & H. A. Watts, "Global error estimation for ordinary differential equations,"

ACM Trans. Math. Software, v. 2, 1976, pp. 172-186.
23. L. F. Shampine, M. K. Gordon & J. A. Wisniewski, "Variable Order Runge-Kutta codes,"

Computational Techniques for Ordinary Differential Equations (I. Gladwell and D. K. Sayers, eds.)

Academic Press, London, 1980, pp. 83-101.

24. L. F. Shampine & M. K. Gordon, Computer Solution of Ordinary Differential Equations, Freeman,

San Francisco, 1975.

25. H. J. Stetter, Analysis of Discretization Methods for Ordinary Differential Equations, Springer-Verlag,

Berlin and New York, 1973.

26. P. J. van der Houwen, Construction of Integration Formulas for Initial Value Problems, North-

Holland, Amsterdam, 1976.

27. H. A. Watts, Runge-Kutta-Fehlberg Methods: Sealed Stability Regions, report number SAND76-

0323, 1976.
28. J. Williams & F. de Hoog, "A class of /(-stable advanced multistep methods," Math. Comp., v. 28,

1974, pp. 163-177.

