
mathematics of computation
volume 40, number 161
january 1983, pages 193-206

Block Runge-Kutta Methods for the

Numerical Integration of Initial Value Problems

in Ordinary Differential Equations

Part II. The Stiff Case

By J. R. Cash

Abstract. The approach described in the first part of this paper is extended to include

diagonally implicit Runge-Kutta (DIRK) formulae. The algorithms developed are suitable for

the numerical integration of stiff differential systems, and their efficiency is illustrated by

means of some numerical examples.

1. Introduction. In a recent paper [2], Cash and Bond have derived a class of block

cyclic integration formulae suitable for the numerical integration of the stiff dif-

ferential system

(i-i) j¡¿=f(x,y), y(xo)=y0, ^«-

These formulae were derived and analyzed as block implicit linear multistep meth-

ods. However, a much more convenient way of investigating them is to consider

them as block diagonally implicit Runge-Kutta formulae. In the second part of this

paper we extend the analysis presented in Part I to derive a new class of block

DIRK formulae. These formulae have the implicitness necessary for the efficient

solution of stiff differential systems but do not call for the large computational effort

normally required by fully implicit Runge-Kutta formulae. This new, much more

general, approach allows us to derive formulae with many advantages over the

formulae derived in [2] and among these advantages are:

(1) Better accuracy.

(2) Better stability.

(3) A better algorithm for estimating the local truncation error and hence for

adjusting the step length of integration and varying the order of the formula being

used.

The better accuracy and stability comes from the fact that, by writing our

formulae as block DIRK methods, we have numerous free parameters at our

disposal and these can be used to advantage. The better order and step changing

algorithms result from the fact that, although the error estimation procedures given

in [2] generally perform well in practice, they are not asymptotically correct in the

sense that they do not necessarily yield the correct error estimate in the limit h = 0.

Received August 10, 1981; revised February 24, 1982 and June 21, 1982.

1980 Mathematics Subject Classification. Primary 65L05.

©1983 American Mathematical Society

0025-5718/82/0000-0712/$03.75

193

194 J. R. CASH

Furthermore, there are classes of problems for which the error estimates given in [2]

perform very poorly [11]. A direct extension of the error estimation algorithm given

in Part I of this paper is inappropriate since this in effect gives an error estimate per

unit step, and our numerical experience with block methods indicates that this is not

the best way to control the error when integrating stiff differential systems. Instead

we will present a different error estimation algorithm which is asymptotically correct

as h -» 0 and which has been found to perform well in practice. A different way of

building up the block will also be described, and this has been found to be much

more efficient than that described in [2].

2. The General Approach. In this section we describe our general approach to the

problem of deriving efficient block diagonally implicit Runge-Kutta formulae.

DIRK formulae were first proposed by Norsett [14] and have more recently been

investigated and extended by Alexander [1], Crouzieux [7] and Cash [5]. The idea of

using Runge-Kutta formulae in a block form is an old one—going back at least as

far as Milne [13] and more recently developed in the implicit case by Shampine and

Watts [16], Williams and de Hoog [17] and Gear [8]. However, investigations of

implicit block integration formulae have been based on fully implicit Runge-Kutta

formulae, and an investigation of the potentially more efficient class of block DIRK

formulae has not been considered. In part this is due to the fact that block formulae

are sometimes only proposed as starting procedures for high order linear multistep

methods [8]. As we shall see later, DIRK formulae lend themselves naturally to

efficient implementation in block form and have several computational advantages

over other Runge-Kutta formulae for the integration of stiff differential systems.

As the starting point of our analysis we consider the second order implicit

integration formula given in [2]

(2.1) >$, =j$i-i + hf(xn+i, yV), i = 1,2,Ä<» sÄ,

Ä=Ä-, + hf(xn+¡, y<%) - \AUX\ i = 1,2,3,^ =Ä.

where Ahy¡¡X) =y¡$.\ — y¡¡X) and where we assume that the solution has already been

computed up to and including the point ixn, y„). Our first step is to express this

formula as a Runge-Kutta method of the general form

(2.2) yn+i-yn = h^biki, kl=fixn + c,h,yn + h2"IJkJl l.<i<q.

A particularly convenient way of expressing our Runge-Kutta formula is to use the

well-known " Butcher Matrix" notation whereby (2.2) is represented in the form

(2.3)

BLOCK RUNGE-KUTTA METHODS 195

Here A is the q X q matrix a^ and b, c are vectors of dimension q. Using this

notation we can write formula (2.1) for the computation of ̂ 3 as

(2.4)

1
1 1

1/2 -1/2
1 -1

3/2 -3/2

1 1
1 1 1

3/2 -3/2 1 1 1
see also [6, p.l 15]. This formula has the important property that as well as providing

a second order solution at xn+3 it also provides both first and second order solutions

at xn+x and xn+2. In addition, if (2.4) is expressed in the more general form

1

(2.5)

a 21 '22

a 31

'41

a 32

'42

'52

a 33

'43

'53

'44

'54 '55

'51 '52 '53 '54 '55

the formula used to compute yj¡JJ„ j G [1,2], /' G [1,2] and ; j = 2, i = 3 is

(2.6) yU>.sn + i

20-1)-

yn + h 2 a2(j-l) + i,m'im-

Thus, for example, the formulae used to compute yj¡X)x, y^xl2, y^l\, yÜ+2> JÍ+3 are

respectively

1 1 1

T 2
1
1 1

1 1

1

1

1/2

1/2 -1/2 1

1
1 2

1/2 1 1
2

1
1

1/2
1

1

1

•1/2 1
-1 1 1

1 1 1

and (2.4).

We see that our five stage block formula (2.4) provides 5 separate solutions and, as

will be seen later, this rule generalizes in that our general w-stage formula yields aaj

separate solutions.

Our aim now is to generalize formula (2.4) to (2.5) and to choose the extra free

parameters at our disposal so as to improve the computational efficiency of our

method. This is not entirely straightforward because formula (2.4) has proved to be

remarkably efficient. What we need to do is to isolate the precise reasons for this

efficiency and then to make sure that (2.5) also shares these properties. The main

reasons for the efficiency of (2.4) are:

(1) At each step we solve for a yj$¡ value rather than for an "/ value". This

property, which is also shared by some other implicit Runge-Kutta formulae, makes

the process of prediction much simpler, and also we are able to use many of the well

tried devices incorporated by Hindmarsh [9] in his version of GEAR. In particular,

196 J. R. CASH

when computing y$.x, y¡,2+2, we already have the (normally very good) approxima-

tions yffti, y^2 available and, furthermore, we have a built-in local error estimate

yjfti — yjfti available for the error in y¡¡X)¡, i = 1,2. This is highlighted if we consider

the first three steps of (2.1) which are

y!i+>2=y&i + hf(xn+2,y$2),

y%i=yn + hf{xn+i,y<,2+xi)-\U+,2-2y$l+yn).

We see that when computing y ¡ft, we already have the iterate y$x available and,

furthermore, fixn+x, y^i) Wl'l also De available. Thus the computation of y^lx is

normally very cheap. Our numerical experience has shown that the five-stage block

formula (2.4) generally requires considerably less computational effort than is

required by a conventional five-stage DIRK formula. Also formula (2.4) obtains

second order accuracy at three grid points using 5 stages, whereas, for Alexander's

second order formula, to obtain comparable accuracy at the same three grid points,

6 stages are required. Furthermore, for reasons just explained, the computation

required to use (2.4) is normally much less than it would be for Alexander's or

similar schemes (see also the results of Section 6). Finally, we remark that all

formulae in this paper require less function evaluations per step than are required by

conventional DIRK formulae of the same order to achieve comparable accuracy.

This leads us to make the important point that, although in the explicit case we can

normally compare the efficiency of two (nonblock) Runge-Kutta formulae of the

same order by counting the number of stages, in the case of implicit Runge-Kutta

formulae such a comparison may not be valid. Indeed, when comparing block DIRK

formulae with conventional DIRK formulae such a criterion is almost invariably of

little value since stages in block formulae normally require much less computational

effort than stages in conventional DIRK formulae. The other properties we require,

and these are shared by some other implicit Runge-Kutta formulae, are:

(2) Our formulae are strongly 5-stable [15].

(3) Our formulae simultaneously produce approximations at a sequence of points.

In general we require that our pth order formulae should produce pth order

solutions at p + 1 equally spaced points.

(4) The coefficient matrix of the modified Newton scheme used to solve for yj$t is

independent of both i and /'. This property is recognized as a very useful one for a

numerical integration method to possess.

The reason why we consider the equi-distribution of errors approach has been

explained in the first part of this paper and need not be elaborated upon. Thus, in

conclusion, we can say that we adopt the particular approach described in this paper

because a) the equi-distribution of errors approach offers some important computa-

tional advantages which are discussed in Part I, b) our formulae have the advanta-

geous properties (l)-(4) just described, c) our formulae of orders (2)-(5) require less

function evaluations per step than are required by conventional 5-stable DIRK

formulae to achieve comparable accuracy, and furthermore, as will be explained in

Section 5, our formulae can be implemented more efficiently than conventional

formulae. All of this indicates that our formulae should be significantly more

BLOCK RUNGE-KUTTA METHODS 197

efficient than standard DIRK formulae, and this expectation is borne out by the

numerical results presented in Section 6. We also note that, since each block is self

starting, it is only the last LTE in the block which is propagated forward. If an

accurate solution was required only at the end of the range of integration, we would

not require the equi-distribution of errors property but would only require an

accurate solution at the end of each block. However we will not consider this

problem in the present paper.

Our aim now is to derive a class of block DIRK formulae which allow variable

step and variable order but which maintain the computational advantages (l)-(4)

outlined above.

3. The General Class of Formulae. One particular class of formulae which satisfies

the requirements set out in Section 2 has the form (2.3), where A is a lower triangular

matrix with unit diagonal and c = (1,2,1,2,3,1,2,3,4,...)r. There are several

important computational and theoretical consequences arising from considering this

class of formulae, and these can best be explained by reconsidering our second order

formula (2.5). It is straightforward to verify that if (2.5) is to yield first order

approximations at n + l,n + 2 together with second order approximations at ai + 1,

n + 2, ai + 3, it must have the particular form

(3.1)

1
1 1

1/2 -1/2 1
2dx -1 2-2dx 1

— — 3d2 3d3 3d2 ~ J~ "^3

|-3¿2 3d3 3d2 -|-3¿3 1

Two important theoretical points which we wish to make are as follows. Since, for

example, y¡/23 is computed over a step length 3h rather than h, Butcher's general

analysis for Runge-Kutta methods [3] is not immediately applicable. However,

because of our special choice of c¡, the order relations for our formulae still take a

very simple form. For example, the conditions for the block formula (2.6) to have

order 4 are

2ja2(j-l)+i,m ~ '> 2ja2(j-\) + i,mCm ~ ~2l '
m m

V 2 _ _ -3 V - _ -3
Z¡a2(j-\) + i,mCm ~ 2l ' Zi a2(j-\) + i,mam,nCn ~~ fil '

(3.2)
''20- 1) + /,mcm ~ 4' ' Li "20-1)

23_J.4 v --_"*
a2(i-\) + i,mCm ~ ~Äl ' Zl a2(j-\) + i,mCmam,nCn~ ol '

m

^1 2 _ -4 V _ __ -4
Zi a2(j-\) + i,mam,nCn — ~yy ' ' Zt a2(j-\) + i,mam.nan,pCp ~ ja1 '

m,n,p

for j =1,2. This is equivalent to multiplying all coefficients in (3.1) by f and using

Butcher's analysis. These order relations generalize for higher order in a straightfor-

ward way. The second point which we make is that, because of the special form

198 J. R. CASH

taken by Eq. (3.1) we have

(3.3) 2aucj = ^cn i = 3,4,5.

For higher order equations there are several more relationships of this type, and this

makes the derivation of high order equations particularly straightforward since many

of the order relations are trivially satisfied. It is worth remarking that in order to

derive our fifth order formula, given in the next section, we need only to solve six

linear equations.

We now return to the problem of choosing the free coefficients appearing in (3.1).

We will choose two coefficients to get an equi-distribution of errors and the other

coefficient to ensure L-stability. The principal terms in the local truncation errors

associated with the second order formulae are

(3.4a)

(3.4b)

(3.4c)

at n + 1

atn + 2

atn + 3

y\h%yf2 + ^h%2f,

3nJyyf T g " 1-f'l

i/,3/ /2+27¿3
4 " JyyJ 6

2d3 d2

3 3 fy2f-

To get a reasonably equal distribution of errors we choose dx = 3/2, d2 = 11/9 +

2d3. This leads to the final second order block formula

(3.5)

1
1

I
2

3

.1-u

1
_~ 2

-1

3b
£+«

-3b 1

6b 3b ±+u 2~,b

and it is easy to show that a sufficient condition for this formula to be strongly

5-stable is \b\< 1. The easiest way of comparing the local truncation errors of the

original formula (2.4) and the modified formula (3.5) is to consider a linear equation

since in this case no cancellation of terms in the local truncation errors can occur. A

simple calculation shows that for linear equations the LTE's associated with (2.4) are

up to 5 times as large as those associated with (3.5), and our numerical experiments

have confirmed that (3.5) is generally the more accurate of the two formulae for both

linear and nonlinear problems.

4. Some Particular Formulae. Having formulated our general approach in the

previous section we are now in a position to give some particular formulae. We shall

again list our second order formula, both for the sake of completeness and also

because it allows us to describe the precise way in which our formulae are being

presented.

BLOCK RUNGE-KUTTA METHODS 199

Order 1.

1 1

Strongly S-stable giving first order solutions at ai + 1 and aj + 2.

Order 2.

1_
2
3

I-6b
6

1~2

-1

3b
11

1

-1

+ 6b

0.256.

2~3b

Strongly 5-stable giving second order solutions at ai + 1, ai + 2, ai + 3. Thus, to get

our complete order 2 formula we join the order 2 block onto the bottom of the order

1 block (see Eq. (3.5)). This procedure extends in an obvious way for all orders.

Thus, for example, to get the complete third order formula we join the order 3 block

given below to the bottom of the order 2 block and join the combined blocks to the

bottom of the order 1 block giving a 9 stage formula.

Order 3.

2d4 + 8/3

2e4 + 10/3
0

y + 2«4 + 2g7

-4/3 - d4

-5/3 - e4

0

-21/12 -2d4

h

dt 5/12 1
e4 1/3 -I — e3 — 2f4

f4 -1/4 9/4-/3

g4 - g? 5 - 2g4 - g6 - 2g7 g4 Ä5 86

-u
«7 «3

A -M*4 ~ 25 ' 1 - --2 f =± f- ÜL> h g4 ' h 42' g7 = 5,
2' 4

_J0 _j0 35
64 — T ' 66 11' 65 _ 11'

This formula is 5'(a)-stable with a = 89.98°. Third order solutions are produced at

AI + 1,AI + 2, AI + 3, AI + 4.

Order 4.

0 ° Pm Pn P)3 P34 Pis Pi6 P-si 1

0 0 ?4| ¡742 <743 Í44 <745 ^ ^47 <748 1

0 0 w51 v

0 0

0 0

"53 W54

0 0 0

»56

8/3

0 0 0 0 0

'57 »"58

■1 8/3
79

24

w59

-4/3
91"24

1
0

149

24

1
41_'24

P31 = -0.41, p32 = -22p3x/5, p33 = 5p3X/3 + 4p32/3, p34 = 31/24 - p3x,

P35 = -59/24 - p32, p36 = 37/24 - p33, p31 = -3/8.

q4X = -0.23, q42 = -22q4X/5, q43 = 5q4X/3 + 4q42/3, q^ = 1.19,

q45 = -8/3- q42, q46 = 4/3~q43, q41 = -l/3, q4i = %/3 - q4X - q44,

w5x — 0.08, w52 = -22w5,/5, wS3 = 5w51/3 + 4w52/3, wS4 = 0.55,

v55 = -0.49, w56 = 7/8 W,53' W,57 -3/8, w58 = 63/24

w59 = -9/8 w,52 U'.55-

200 J. R. CASH

This formula is strongly S-stable and fourth order solutions are produced at n + 1,

ai + 2, ai + 3, ai + 4, ai + 5. The PLTE at ai + 4 is -(14/45)6^ while that at ai + 5

is (49/144)/i V-
Order 5.

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

"II

«21

0 0
"44

0

16

"26

<*36

«46

"51

17a

"27

«37

"47

" 52

a28

a38

"4«

a53

"410

a 55

1

a56

a

a

= 1.21,

9473~7200 '

178" 45 '

'36
729
400'
21

«42 - - 40 '

28
«47 - 90 .

49
144'

'52

363
1,2 " ~ 800 '

_ 2511,7 ~ 720 '

_ 1181*13 " 720 '

'21 0.6,

-7T> a25-8A a26-
503
360'

a3X = -0.26, a32 = 0.0975, a33 = 1.41,

a
27

37 " 80 '

a43 = -1,

a

a

358

90 '
425

144'53

_ 621
038 ~ 400 '

277
û49 - - 90

175
054 ~ " 72

a,á-

«22

51319

13320 '

0.225,

29

90'
- -3.2,

_29
40'

a45 - 2,

<^4in

a

-II~ 45 '

25

6 '55

_ 727*15 ~ 300 '

23

a

li

_ 499~450'

-3.16,

_ 7
1 ~~ 5 '

619"360'

1715" 4608 '

115

4608

This formula is S(a)-stable with a > 89° and produces fifth order solutions at

ai + 1, ai + 2, ai + 3, ai + 4, ai + 5. The PLTE at ai + 5 is (475/1440)/i6j„vi-

5. Computational Aspects. The main problems with which we shall concern

ourselves in this section are:

(1) The solution of the algebraic equations defining the required solution.

(2) An algorithm for adjusting the step length of integration.

(3) An algorithm for varying order.

Our algorithm for solving the algebraic equations requires little comment since it is

based on a modified Newton iteration scheme, and these are now widely used in

practice. When obtaining an initial approximation toy^¡ we use

(a) 7„(i7 '' if this has been computed.

ih)y!,+i^\ otherwise.

We choose to use these initial approximations since the function values (or close

approximations to them) associated with these quantities have already been com-

puted, and this normally makes the computation of the next iterate particularly

cheap. Thus, when computing yj¡J2¡, the equation which we are seeking an approxi-

mate solution of is

(5.1a) y&t = 2 + */(*„+,. y&),

BLOCK RUNGE-KUTTA METHODS 201

where 2 is a known sum. We seek to find a solution of this using the modified

Newton iteration scheme

(5.1b) [/ - hJ][y$tt, -yy+\,p-i] = -y<¡i\p-i + hf(xn+i, y®tt,-x) + 2 ,

p=l,2,...,M,y^i=y(^M.

If j > 1, we can use the initial approximation y¡¡J+\fi = y¡¡+~^X) and thus an approxima-

tion to the derivative fixn+i, y}¡J+\t0) will also be available. In view of this, when

applying (5.1b) with p — 1, we require no function evaluation and only one

backsolve. It is this property in particular which makes our schemes computationally

efficient and explains why, for the results of Section 6, a backsolve is not necessarily

accompanied by a function evaluation.

For the modified Newton scheme (5.1b) a minimum of four iterations were

allowed and a solution of (5.1b) was accepted when two iterates differed in a

weighted least-squares norm by less than 2 Tol/5, where Toi is the requested

tolerance. Solutions at off-step points were computed in a straightforward way by

interpolation. Finally, we note that since our iterates are an approximation to the

solution of (5.1a), once that our final iterate yj$t has been computed, we can

compute an approximation fixn+i, yj¡+\) tofixn+i, y¡$¡) using the relation

(5.ic) f(xn+i,y!,+\) = {yn+\-2)/h.

We prefer this to computing/(x„+J, y$t) since the latter amplifies the errors myj¡{¿¡

which may result in instability and also it saves one function evaluation.

To explain our algorithms for changing stepsize and order it is convenient to

consider our first order block scheme which we write symbolically as

1st order 1 2

2nd order 3 4 .

Our order and stepchanging algorithms have been greatly influenced by STRIDE [4].

In particular, the embedded estimate^, — y^l¡ is used to approximate the error in

the first order solutions y¡¡+¡, i = 1,2. Having obtained these error estimates, we

investigate whether or not it is economical to increase order. To do this we need to

estimate the local truncation error in y(2)2 and this brings us to an interesting point

regarding truncation errors. If we consider the backward Euler rule, the usual

expression for the local truncation error on the assumption >>„ = v(x„) is

(5.2) l.H. = y(xn+x) - y(xn) - hf(xn+x, y(xn+x))

= zjV(*.)-y/w(*-) + 0(*4)-

However, if we apply Butcher's analysis, we obtain

(5.3) T.E. = -Çy"(xn) - Çfvyf2 - \h3f2f

which is different from (5.2). This is only a normalization difference but it does

present us with the problem of deciding exactly what we are going to approximate in

practice. We feel that Butcher's definition is more appropriate, and so we use this

from now on. Using this analysis, we obtain the following relations:

202 J. R. CASH

(5.4) y(xn+l)-y^x = -y/,/- y/y,/2 - f h3f2f + 0(h<),

y(xn+2) - y^2 = -h2fyf-\h%yf2 - \h%2f+ o(h%

y(xn+i) -^2+>, = ^h%yf2 + \h3f2f+ o(h<),

y(xH+2) -y$2 = \h3fyyf2 - \h3f2f+ o(h<).

Also

(5.5) zn = -\{f(xn+2, y$2) - 4f(xn+x, y$x) + 3f(x„, yn)}

= h%f+0(h4).

Eliminating the second order terms in h from (5.4) and solving for h3fyyf2 and

h3f2f, we obtain

(5.6a) P„ = 20#, -j®,) - (jfía - jfía) = -\h3f2f+ 0(h%

(5.6b) -\ [y$x - xS, + \zn -3Pn}= h3fyyf2 + 0(/i4).

Using these two relations we can estimate the local truncation errors TE1, TE2 in

the second order solutionsyj$,, y$.2.

Defining

Ex = max Ly. - y$1, E2 = max{ ||TE11|, ||TE2||},
/=1,2" "

where

1/2

jSjl^-^y/Maxfl,^,,)]2

we can compute

(5.7) ai, = ai(To1/£,)1/(,+ 1), 1 = 1,2,

which is the predicted step that can be used with the /'th order formula. [In practice

we use a slightly smaller step size to minimize the likelihood of block rejection.] This

enables us to compute

wx = 2hx/4, w2 = 3h2/S,

which gives a measure of the distance that can be integrated forward per iterate

computed (cf. [2, p. 442]). If w, > w2, we accept the first order solutions and carry

on to the next block. If w2> wx, we compute the solution v„(53, local extrapolation is

performed at ai + 1, ai + 2 so thaty^i\,y^+2 are the finally accepted solutions, and

we continue forward with the second order scheme.

We denote the second order scheme symbolically by

1st order 1 2

2nd order 3 4 5

3rd order 6 7 8

BLOCK RUNGE-KUTTA METHODS 203

We see that error estimates for the first and second order solutions are immediately

available through embedding, and an error estimate in the third order solution can

be computed using an extension of the procedure previously described. Thus we can

decide whether to keep the order fixed, decrease it by one or increase it by one, and

this is what is normally done with linear multistep methods. Order changing for

higher order equations is simplified by constructing the fourth and fifth order

formulae so that the PLTE's at the end of the blocks are total derivatives. These can

be estimated in the usual way by finite difference approximations and errors in

lower order solutions are estimated by embedding. Using these error estimates the

order changing algorithm just described extends in a natural way.

Finally, we note that once a stepsize h' has been computed using (5.7) the actual

stepsize taken, h, is less than the computed stepsize h! with the relationships being

h = 0.W order =1,

h = 0.15h' order = 2,

h = 0.8/1' order = 3,

h = 0.S5h' order = 4.

It was found to be advisable to adopt this strategy since it minimizes the likelihood

of expensive block rejections; see also [9].

6. Numerical Results. In this section we shall compare our algorithms with existing

DIRK methods. We will show that for the test problems considered our order and

step changing strategies are satisfactory and the results obtained are competitive

with those previously published for DIRK methods. We have also made compari-

sons on other test problems using our implementation of Alexander's scheme, and

the results which we list in this section seem to be fairly typical. The three test

problems considered are

(1) y'x = 0.01 - (0.01+yx+y2)(y2+ 1001 yx +1001), yx(0) = 0,

y{ = 0.01 - (0.01 +yx+ y2)(l + y2), y2(0) = 0,

(2) Cl,

(3) C5,

where Cl and C5 are test problems taken from Enright, Hull and Lindberg [5, p.

298]. These test problems were chosen firstly because they allow us to compare our

results with certain previously published ones [5] and secondly because Alexander [1]

reported difficulty in solving at least one of these problems. In Table 1 we compare

the performance of Alexander's strongly S-stable third order scheme [1], the third

order scheme given by Cash [5, p. 295] and the third order block scheme of Section

4. For the first two methods a function evaluation always entails a back substitution

for the Newton iteration scheme. However, as was explained in detail in Section 5,

this is not the case for our block scheme, and so we explicitly list the number of

backsolves required. Because many of our Newton iterations use an already com-

puted function approximation (see Section 5) the number of function evaluations

required by our block methods at low tolerances is very small and this is reflected in

the results of Tables 1, 2. As can be seen from Table 1, the gain in efficiency of the

block scheme over the other two DIRK schemes is significant. The headings in Table

1 are self-explanatory apart from Rel. Err. which gives the relative error at the end of

204 J. R. CASH

P¿ — cn <n tn
0¿ I I I I
w tu tu tu tu
rr; O vo O m
U — — — "-1

O N 1*1 «
lili

W W U W

fl VI M
I I I

PU tu PJ

■SI

aj
H
C/5

5 O ■* •* Q
VO 00 (N Q 2 ■* Q

O O O
- IN ^

<

Tf vo fN en

CO
BJ
>
-J
O
CO

© ci © On
M Tf <N t>
« (N tJ- oo

r-- vi oc ©
Tfr as m —
cn ci r- Tt

ci no «i
O VO 00
vi —- no

— CM

r- - a oo- r- .. 5 ci ci no ^-t
vi <n ci ci

— m r~-

■*t m on
NO NO CN
— -^ (N

3
<
H

oís

to
ix
tu
H

m in *o m
lili

PU PU tu tu

oo — o »o
tT »n r- oo

CN m m
I I I

PU PU PJ

r- oo »n
es vo o

CN

I I I
PU PU PU

■s-
?

^ cN m
no ci rsi

— ci

< «o — —

On Cl Tf Q
(N On r*- On
on o -^r on

no oo »n
fN Cl nO
vi m cN

—. ^t

§

°3 ^ * ici VO
K I I I I
tu tu tu tu tu

(N CN ^r
I I I

tu tu PJ

CN »Cl VO
I I I

PU PU PU

«J Oh
73 (Jj

s E

u
<

fN O no 00
oo — r- on

— — CN)

OO ON ON 0O
© On </"! r-
CN m © m
- - (N m

on r- on |
On ON CN
r- CN CN

— (N

m ^j- oo
ci »n m
ci on r-
— — n

© © © © © © © ©
O

c- eu s

BLOCK RUNGE-KUTTA METHODS 205

the range of integration. Finally we should emphasize most strongly that the

implementations of the algorithms discussed in this paper have purposely been kept

very simple and are in no way optimal. This is done so that we can easily compare

actual methods themselves rather than sophisticated implementations of different

methods. It is to be expected, as our preliminary results together with the results of

Alexander [1] have shown, that a proper implementation of the DIRK methods

discussed would give much greater efficiency than is indicated by the results of

Tables 1, 2.

In Table 2 we present the results obtained using our variable order algorithm

based on the ideas of the previous section. Again we see that the increase in

efficiency over the schemes presented in [1], [5] is significant. We have also found

that, over all tolerances our variable order algorithm is more efficient than fixed

order algorithms based on the methods of Section 4 and this leads us to believe that

variable step-variable order block DIRK formulae offer a promising approach to the

numerical integration of stiff differential systems.

Acknowledgement. The author is grateful to Professor J. D. Lambert for many

helpful suggestions and also to an anonymous referee, whose many comments greatly

improved this paper.

Toi. F"

PI 10~2 7

10"3 65

10"4 155

10"5 339

P2 10~2 63

10~3 135

10~4 310

10"5 738

P3 10"2 134

10~3 577

I0"4 1188

Department of Mathematics

Imperial College

South Kensington

London S.W.7, England

1. R. Alexander, "Diagonally implicit Runge-Kutta methods for stiff ordinary differential equations,"

SIAMJ. Numer. Anal., v. 14, 1977, pp. 1006-1021.
2. J. Bond & J. R. Cash, "A block method for the numerical integration of stiff systems of ordinary

differential equations," BIT, v. 19, 1979, pp. 429-447.
3. J. C. Butcher, "Coefficients for the study of Runge-Kutta integration processes," J. Austral. Math.

Soc.,v.3, 1963, pp. 185-201.
4. J. C. Butcher, K. Burrage & F. H, Chipman, STRIDE: Stable Runge-Kutta Integrator for

Differential Equations, Report No. 20, Dept. of Mathematics, University of Auckland, New Zealand.

1979.
5. J. R. Cash, "Diagonally implicit Runge-Kutta formulae with error estimates," J. Inst. Math. Appl.,

v. 24, 1979, pp. 293-301.

Table 2

Results for variable order

BACKSOLVES JAC STEPS Rel ERR

30 6 12 12E-1

139 20 27 .58E-3

298 28 49 .86 E-4
751 39 97 .10 E-4

179 15 50 .37E-2

489 20 97 .37E-3
839 19 142 .11E-3

1552 12 217 .75E-5

260 16 59 .48E-5

1466 16 237 .41 E-7

2798 20 427 .23 E-7

206 J. R. CASH

6. J. R. Cash, Stable Recursions, with Application to the Numerical Solution of Stiff Systems, Academic

Press, London and New York, 1979.

7. M. Crouzieux, Sur l'Approximation des équations Différentielles Opérationnelles Linéaires par des

Méthodes de Runge-Kutta, Ph.D. thesis, University of Paris, 1975.

8. C W. Gear, "Runge-Kutta starters for multistep methods," ACM Trans. Math. Software, v. 6,

1980, pp. 263-279.
9. A. C. Hindmarsh, GEAR: Ordinary Differential Equation System Solver, Rep. UCID-30001, Rev. 3,

Lawrence Livermore Laboratory, Livermore, Calif., 1974.

10. K. R. Jackson & R. Sacks-Davis, "An alternative implementation of variable step-size multistep

formulas for stiff ODEs," ACM Trans. Math. Software, v. 6, 1980, pp. 295-318.
11. J. D. Lambert. Private communication, 1980.

12. B. Lindberg, "Characterization of optimal stepsize sequences for methods for stiff differential

equations," SIAMJ. Numer. Anal., v. 14, 1977, pp. 859-887.

13. W. E. Milne, Numerical Solution of Differential Equations, Wiley, New York, 1953.

14. S. P. N0RSETT, Semi-Explicit Runge-Kutta Methods, Mathematics and Computation, No. 6,

University of Trondheim, 1974.

15. A. Prothero & A. Robinson, "On the stability and accuracy of one-step methods for solving stiff

systems of ordinary differential equations," Math. Comp., v. 28, 1974, pp. 145-162.

16. L. F. Shampine & H. A. Watts, "Astable implicit one-step methods," BIT, v. 12, 1972, pp.

252-266.

17. J. Williams & F. de Hoog, "A class of A -stable advanced multistep methods," Math. Comp., v. 28,

1974, pp. 163-177.

