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Additive Runge-Kutta Methods for Stiff Ordinary

Differential Equations

By G. J. Cooper and A. Sayfy

Abstract. Certain pairs of Runge-Kutta methods may be used additively to solve a system of n

differential equations x' = J(t)x + g(t, x). Pairs of methods, of order p < 4, where one

method is semiexplicit and /(-stable and the other method is explicit, are obtained. These

methods require the LU factorization of one n X n matrix, and p evaluations of g, in each

step. It is shown that such methods have a stability property which is similar to a stability

property of perturbed linear differential equations.

1. Introduction. In a recent article [2] the authors showed that certain pairs of

methods may be used in an additive fashion to solve an initial value problem for a

system of n differential equations

x'=f(t,x),       x(a) = x0,       a<t<b,

where, for a particular step length h, a given additive method is associated with a

sequence of decompositions

{/ = /,(m)+/2<m)}.

In this article we consider the case where {f\m)} is a sequence of linear mappings so

that

(1.1) f(t,x)=ßm)(t)x + g(m\t,x),       m= 1,2,3,...,

and, in particular, it is assumed that, for some norm on R",

||g<m)(i, u) - g(m)(t, e)|| < L\\u - »||    V«, o6R",iE/,

for m = 1,2,3,..., where [a, b] is contained in the open interval /. It is also

supposed that each element of {J(m)} and {g(m)} is continuous on /. Other

assumptions, which are needed to obtain order conditions for additive methods, are

detailed in the previous article [2].

The aim is to obtain additive methods suitable for solving stiff systems of

differential equations. Although / may be given directly in the form (1.1), it is

necessary to choose the sequence of decompositions so that the Lipschitz constant L

is small. Usually {J(m)} is chosen as an approximation to the Jacobian of/evaluated

at some sequence of computed values. The elements of {/(m)} are often chosen to be

independent of t. We consider pairs of Runge-Kutta methods where one method,

which is .4-stable and semiexplicit, is applied to the linear (stiff) part of the

decompositions. The other method, which is explicit, is applied to the nonlinear part.
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208 G. J. COOPER AND A. SAYFY

In the previous article [2] the authors gave a few examples of low order additive

methods of this type.

An additive method consists of a pair of methods, an i A, Bx) method and an

i A, B2) method, of the type described by Butcher [1], and is represented by the triple

of real s X s matrices i A, Bx, B2). In this article we consider only methods of

Runge-Kutta type where

A =

0 0     1

0
0 1

Such methods are represented by an array p | Bx | B2 | c or

P\

P2 '22

"s2

'2s

ßu

P\l

ßll

ß22

ßsl ßs

ßu

ß2s

ßss

and it is assumed that

(1.2) = 2bu= 2ßtr
j=\ 7=1

1,2,...,5.

A method consists of a sequence of steps, with step length h, where each step

contains s stages,

(1.3) y(n,)=y(m-l) + h  J  b¡JJ^(tm_x + hCj)y}m>

7=1

+ h2ßug^(tm_x+hCj,y^),
7=1

for / = 1,2,... ,s and m — 1,2,3,_The consistency vector c defines the points at

which the method gives approximations to the solution of the initial value problem,

and the order vector p gives the order of convergence of each stage. That is, suppose

the numerical integration is over the finite interval [a, b], and let tm = a + mh,

m = 0,1,... ,M, where tM = b. Then there are constants K, C and H such that, for

h<H,

ym)-x(tm_x + hcl)\\<Khp',       i=l,2,...,s,m= 1,2,..„M,

provided that \\y$0) - x0\\ < Chp\ It is supposed that cs = 1 and the (scalar) order

is defined to be p = ps, which corresponds with the conventional definition of order

of a Runge-Kutta method.

We are concerned with linearly implicit methods where Bx is a lower triangular

matrix and B2 is a strictly lower triangular matrix. That is, the i A, Bx) method is a

semiexplicit Runge-Kutta method, and the i A, B2) method is explicit. Since the

iA, Bx) method is to be ,4-stable, at least one diagonal element of Bx must be

nonzero and, in particular, the possibility bss =£ 0 is allowed. On the other hand, ( 1.2)
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implies that bxx = 0. For a linearly implicit methody\m) — y^m  X) and

y¡m) = jT"" + h 2 bijJ^K^-i + hcj)yjm) + h 2 ß,ß(m){tm_x + hcp y}mX),

7=1 7=1

for i = 2,3,...,s and m = 1,2,3,_At most s — 1 evaluations of g<m> are needed

in step m. Suppose that the nonzero diagonal elements of Bx are equal and that the

elements of c, which correspond to these nonzero elements, are equal also. Then each

step requires the LU factorization of one n X n matrix of the form

I-hbJ(m\tm_x + hc),

and it is not necessary to evaluate /(m) at other points since

J(m)(t)x = f(t, x) - g(m)(i, x),       m= 1,2,3,....

Nevertheless, it is usually more efficient to employ decompositions where the linear

terms are independent of t because then there is a gain in efficiency when the same

decomposition is used in successive steps.

In the next section we give a number of linearly implicit i A, Bx, B2) methods of

Runge-Kutta type, where the i A, Bx) method is A -stable. Such methods can be

obtained with ps = s — 1 where s < 4. When ps = 4, it is necessary to choose s = 6

but only four evaluations of {g(m)} are required.

In the third section we establish a stability result for such methods applied to

perturbed linear systems of differential equations. Consider the initial value problem

x' = Jx + git, x),       xia) — x0,       t>a,

where the eigenvalues of J have negative real parts and where II git, u)\\ = o(ll«ll).

That is, it is assumed that

||g(/,«)||<*(ll«ll)ll«ll    Vi/GR",r>a,

where $ is continuous and <¡>(0) = 0. It is known [5, p. 274] that there is an e > 0

such that if ||x0|| < e, then ||x(?)ll has limit zero. Now consider a linear implicit

i A, Bx, B2) method of Runge-Kutta type where the i A, Bx) method is A -stable.

Suppose that this method is used, with a fixed step length h, to integrate the initial

value problem on [a, oo), where the given decomposition is used throughout the

numerical integration. For an arbitrary y$0) the method gives a sequence [y^m)], and

it is shown that there is a 8 > 0 such that if II y$0) II < 5, then the sequence {11 y^m) \\ )

has limit zero.

One problem with this result is that it is difficult to assess the effect of a

perturbation. Another problem is that the result applies to a single decomposition

where the linear part remains constant for the entire numerical integration. Numeri-

cal results indicate that the methods are satisfactory for much more general

sequences of decompositions.

2. The Conditions for Order and ,4-Stability. In the article [2] the authors obtained

order conditions for a general additive method. For additive Runge-Kutta methods

the order of the last stage ps = p is of principal interest and the conditions given

below refer to this stage alone. The order of convergence of other stages may be

determined after the method has been obtained.
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It is convenient to express the order conditions in terms of

a-l6.(ff) = $ - „ 2 ¿„c,
7=1

A(a) = c? - a 2 A/f

/' = 1,2,...,s, a = 1,2,3,..

where the assumption (1.2) gives

(2.1) 6,(1) = ßi(l) = 0,       i =1,2,...,5.

Subject to this assumption, an additive Runge-Kutta method is of order/) ^ 4 if and

only if

(2.2.1) bs(o) = 0,     a<p,

(2.2.2) ßs(o) = 0,    c<p,

(2.3.1) 2Vr,*,(°) = 0, o + T^p,

(2.3.2) 2*.i«r1A(«) = 0, a + T</7,

(2.3.3) 2A,<í~I*i(») = 0, a + r^/j,

(2.3.4) 2A/*r'A(<0 = 0, a + T</7,

(2.4.1) 2*.i2My(2) = °. ^ = 4'

(2.4.2) 2^2My(2) = 0' /' = 4'

(2.4.3) 2*,i2AA(2) = °. ^ = 4'

(2.4.4) 2*„2A/,(2) = 0, p = 4,

(2.4.5) 2Ai2My(2) = °.    ^ = 4'

(2.4.6) 2ßs,2biJßJ(2) = 0,     p = 4,

(2.4.7) 2A<2AA(2) = °>   p = 4>

(2.4.8) 2Ai2AyA(2) = 0'    ^ = 4>

where a and t take all possible positive integer values, and where each summation is

from 1 to s. These conditions simplify greatly when ßsi = bsi, i = 1,2,...,s.

The aim is to obtain linearly implicit i A, Bx, B2) methods of Runge-Kutta type,

where the i A, Bx) method is A -stable. Since the i A, B2) method is a conventional

j— 1 stage explicit Runge-Kutta method, the order of such an additive method

cannot exceed s — 1. If 5 > 5, the other cannot exceed s — 2. The conditions for the

additive method to be of order p «£ s — 1 must be satisfied together with conditions

for A -stability.

Necessary and sufficient conditions for a semiexplicit Runge-Kutta method to be

/1-stable have been given by the authors [3] and by Norsett [6]. We give these

conditions for an i A, Bx) semiexplicit Runge-Kutta method, where at least one

diagonal element of Bx is zero, in terms of parameters a0, a,, a2,..., and ß0, ßx,
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ß2,....Letßr,r = 0,1,2,..., be defined by

II   (l-rbrr)=ß0-rßx + r2ß2-
r=\

so that ß0 = 1 and ßs = ßs+ x = • • • = 0. Let e„ e2,... ,es be the natural basis for Rs

and let e = e, + e2 + ■ • • +eJ be the vector with unit elements. The terms

ejfife,       r= 1,2,3,...,

are the sums of the elements in row s of Bx, B2, B3,..., and for a method of order p

it is known that

(2.5)

Now define as = as+j+i

e/iTe = -y,       r=l,2,.

= 0and

(2.6)    ar = ßr- ßr_xe?Bxe +■■■ + (-l)rß0ejBre,       r = 0,1,.. .,s - 1,

so that a0 = 1. Then a method of order p is A -stable if and only if brr > 0 for

r = 1,2,...,s and

2  y'!* ("D^vAr-/, - «2,-,«,) >0     Vy > 0,
r=7T      j=0

where it is the integral part of p/2 + 1 and the asterisk denotes that the terms with

j = r are halved.

Some low order cases are considered now. In these cases p = s — 1 so that

a0,ax,a2,... are completely determined by the diagonal elements of Bx. These

elements are chosen so that the ^-stability conditions are satisfied. The remaining

elements of Bx and B2 are obtained by satisfying the order conditions.

For p < 2 the /4-stability conditions can be satisfied when ß, has just one nonzero

diagonal element b, and for p — 1 it suffices that b > 1/2. The order conditions give

the methods represented by the array

1 0

1 -b

0 0 0 0

b>

When p — 2 it is necessary to choose b = 1/2. The order conditions give, in

particular, the methods

0

t
2

2

0

0

0

t
2

,1-1

0

0

1

r«

0

0

0

t
2

ix^O.
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When/? = 3 the /I-stability conditions imply that Bx must have at least two nonzero

diagonal elements. Suppose that these two elements are equal to b. Then the stability

conditions are satisfied only if b is the larger root of 6b2 — 6b + 1, and the order

conditions may be solved to give, in particular, the methods

0

3b

8/i -9b 12bn

12/1

J_
4

0

b

1 -3b

4/1

3-4/x

b   0

0

0
2

3

8/1-3

12/1

J_
4

0

0

J_
4/1

3-4/1

0

0

0   0

/i   0

where b = (3 + v/3)/6 and ¡i¥=0.

Now consider the case where p = 4 and s > 5. Suppose that 5, has at most two

nonzero diagonal elements so that ß3 = ß4 = • • • = 0. Then the conditions for

^-stability can be satisfied only if a3 = a4 = • ■ • = 0. But it follows from (2.5) and

(2.6) that

-ß
2+\ßl

= íA-¿A+¿.

and the stability conditions cannot be satisfied because the diagonal elements of Bx

are real. Now suppose that s = 5 and that Bx has at least three nonzero diagonal

elements. Then it may be shown that the order conditions cannot be satisfied. (The

details are not given here but are available on request.) That is, when p = 4 and

s = 5, there is no linearly implicit iA, Bx, B2) method of Runge-Kutta type where

the i A, Bx) method is yl-stable.

Suppose that p = 4 and s = 6, and suppose that 73, has exactly three nonzero

diagonal elements so that ß4 = ß5 = • • • = 0. Then the i A, Bx) method is A -stable if

and only if the diagonal elements of Bx are nonnegative, a4 = as= • • • = 0, and

ß2 > a\. Let the three nonzero diagonal elements be equal to b. Then the condition

a4 = 0 gives 24¿>3 - 36¿>2 + 126 —1=0, but ß2 ^ a\ only when b is the largest

root b = 1.06857902130.... By definition as = as+x= • ■ ■ = 0, so that the only

stability condition still to be satisfied is a5 = 0. It follows from (2.5) and (2.6) that

this is equivalent to the condition

e6r^e
1
A-702 + ^702^     6™ '  24'

which must be satisfied together with the order conditions. Although a variety of

methods can be obtained, the arrays

2/>
0

b

1 -4b

4
b
2

-2b

6/>

1 - 6b - 8fc2

1 -4ft

0

0

0

/.

4b

1 -4b
2

3

0    0

0    0

0    0

0    0     0    0

T    o    0     0    0

10    2     0    0

0     0
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26

1 - 6b + %b2

2

b
4

1 -2b

2

J_
3

2b(l - 2b) b

1 -2b        1 -6b

4
6b- 1

2

0

0 0

0 0

0 0

0 0

1-26    0    0

3 j»

0     0    0    0     0    0

j     0    0    0     0    0

^■ooooo

0-00     00

0     0    0     1     0    0

where b — 1.06857902130..., give two methods which are particularly efficient.

These methods require just four evaluations of {g(m)} and, in this respect, are

comparable with explicit Runge-Kutta methods of order four. Each step requires the

LU factorization of one n X n matrix.

3. A Stability Property. In this section we establish a stability result for linearly

implicit i A, Bx, B2) methods of Runge-Kutta type, where the i A, Bx) method is

A -stable. It is likely that the result holds also when the methods are not linearly

implicit.

The result deals with the behavior of a method when applied to a stable linear

perturbed system of differential equations. Let x be the particular solution of the

system

x' = Jx + git, x),       t > a,

which has the initial value x(a) = x0. The solution u = 0 of the linear system

w' = Ju is exponentially stable [5, p. 113] if and only if Re A < 0 for all X e \[J],

where X[J] is the spectrum of /. Now suppose that the trivial solution of u' = Ju is

exponentially stable and that IIgit, u)\\ = o(||m||). Then it is known [5, p. 274] that

the trivial solution of u' = Ju + git, u) is also exponentially stable. In particular,

this implies that there is an e > 0 such that if IIx0 II < e, then IU(r)|| has limit zero.

Suppose that an i A, 73,, B2) Runge-Kutta method is used to integrate this stable

perturbed differential system on [a, oo). The method gives, for a fixed positive step

length h,

y(m) — y(>" X) + h2b,JJy}m) + h2ßug{tm-]+hcJ, yj
(m)

7=1 7=1

for /' = 1,2,... ,s, and m = 1,2,3,_Suppose that the method is linearly implicit

and that the i A, Bx) method is ,4-stable. It will be shown that there is a 5 > 0 such

that if || ̂ (0) || < 8, then the sequence {|| y$m) ||} has limit zero.

With this end in view, and to introduce a matrix notation for the methods,

consider column vectors in RN, where N = ns, of the form

Y =

y\

G(t,Y)

g(t + hcx,yx)

g(t + hc2,y2)

g(t + hcs, ys)
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where yx, y2,...,ys are column vectors in R". For any r let I denote the r X r identity

matrix. Let B X / be the tensor product of an arbitrary s X s matrix B = {b^} and

an arbitrary n X n matrix J,

BXJ

bxxJ

blxJ

b,iJ

bX2J

b22J

bslJ

bisJ

b2J

b..J

Then an i A, Bx, B2) Runge-Kutta method may be expressed in the form

y(m) _  jr(m-l) + „ßf  x Jy(m) + ^ x /(?(/„,_„ Y(m)),

where Y}0) is given and Y}m) = AX IY{m\ m =1,2,3,.... Now suppose that the

method is linearly implicit and that the i A, Bx) method is .4-stable. It will be shown

that for some norm on RN there is a A > 0 such that if 11 Y}0) || < A, then the sequence

{III/5(m)||} is strictly decreasing and has limit zero. It follows that {ll^"0!!} has limit

zero.

Theorem. Suppose that the trivial solution of u' = Ju is exponentially stable and let

IIg(r, u)ll =0(||w||). Suppose that the iA, Bx, B2) Runge-Kutta method is linearly

implicit and that the iA, Bx) method is Astable. For any fixed positive h and arbitrary

y$°\the method uniquely defines a sequence {.Vjm)} where

yi,m) =y(m-l)  + h   ¿   b¡jJyj(m)  +  Ä'2   ßijg(tm_x   + hCjí y}»»),

7=1

for i = 1,2,...,s, and m = 1,2,3,..., and there is a 8 > 0 such that if \\ js(0)|

then the sequence {Wy^W} has limit zero.

<8,

Proof, (i) Since the diagonal elements of Bx are nonnegative and since the

eigenvalues of / have negative real parts, the matrices / — hbuJ, i = 1,2,... ,s, are

nonsingular. Further, B2 is strictly lower triangular, so that the method uniquely

defines the sequence {Y(m)} where Y}0) is given and

K(") = (/ - hBy X J)-'[Y}m~X) + hB2X 7G(/m_„y(M))],        m= 1,2,3,....

We are concerned with the vectors

(3.1)    Ysim) = A xf(i-hBx xy)_l[y/B,-1> + hB2x /G(rm_,,y(m))],

m= 1,2,3,...,

and, in particular, it has to be shown that \\A X /(/ — hBx X J)~x\\ < a < 1 for

some norm. This is equivalent to showing that the spectral radius satisfies

p[a X/(/

To this end, suppose that the i A, Bx) method is applied to the scalar initial value

problem x' = Xx, x(0) = 1, where X is a constant. Since N = s, the method gives

AY{m) = Ait - hXBx)~xAY{m~X),       m =1,2,3,...,

forafixed positive step length h. Since the method is /1-stable, p[yl(7 — hXBx)~x] < 1

for any X with Re X < 0.

hBx XJ)   '] < 1.
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The result is now obtained by transforming A X /(/ — hBx X J)~x. There is a

permutation matrix P, depending only on s and n, such that PTB X JP = J X B for

an arbitrary s X s matrix B and an arbitrary n X n matrix /. For given J there is a

unitary matrix S such that SHJS = T a triangular matrix. Thus it has to be shown

that p[M] < 1, where

M = PTI X SH A X 1(1 - hBx X J)~l f X S P = Í X A(f - hT X Bxy\

Since M is block triangular and each diagonal block has the form Ail — hXBx)"'

with X £ X[J], it follows that p[M] < 1.

(ii) For fixed t let U be defined as a function of Ys by

U= Ys + hBx XJU+hB2XJGit,U).

It has to be shown that II G(r, U)\\ = oi\\Ys\\) for any norm but, since norms on R^

are equivalent, it suffices to show this for the particular norm

\\U\\ = max ||u,||.
1«í«:í

For this norm it is clear that II G(f, U)\\ = o(l|I/||), so that it is sufficient to show

that there are positive constants E and K such that if || Ys || < E, then \\U\\ < K\\ Ys ||.

That is, it has to be shown that if II ys II < E, then || u¡ II < K \\ ys ||, where

i-i i-i

ys + h2 b,^ + h2 ßug{t + hcp uj) ,       i = 1,2,... ,s.
I 7=1 7=1

Since || git, u)\\ = o(l|u||), for any positive L there is an e > 0 such that if ||u|| < e,

then ||g(r, u)|| <L||«||. Let K = cs'x where

il-hbuJ)  '

max \\il-hbuJ)~ 1+AIMI S   \b,j\ + hL2  |A
7=1 7=1

and c > 1 because ¿,, =0. Choose E so that KE < e. It follows by induction that

ll^ll^c'-111^11,/= l,2,...,i, and therefore ||G(r,i/)|| = 0(117,||).
(iii) It follows from (3.1) that for some norm

||rj<i|<«[||T/'"-1 + /i||G(rm_1,y<'»>)||J,       m =1,2,3,...,

where a = \\A X fit - hBx X J)~x\\ < 1 and ß = h\\B2 X I\\. Choose a so that

a<a<l and consider some fixed value of m. Since ||G(fm_,, >/<m))|| =

o(H Y}m~l) II), there is a A > 0 such that if || Y^m~ " II < A, then

\\G{tm-i,Y™)\\*^\\Ys(m-"\\       (aß+0),

and this gives II 7s(m) || < all Y^X) || so that II Ys(m) || < A. It follows that if II Y}0) \\ *£ A,
then the sequence ( || Y}m) \\} is strictly decreasing and has limit zero.

This result has no direct practical application in the sense that it cannot be used to

measure the effect of a perturbation. This is so even though the condition ||g(r, w)||

= o(||u||) may be replaced by the conditions ||g(r, w)|| < ¿Hull and h < H. (This

implies that the numerical solution may be bounded when the solution of the

differential system is unbounded.) More importantly, the theorem assumes the use of

a single decomposition where the linear part remains constant throughout. It seems

to be difficult to obtain a similar result for a system of the form x' = Jit)x + git, x).
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As before, if the trivial solution of u' = /(?)« is exponentially stable and II git, u)\\

= o(||u||), then the trivial solution of u' = Jit)u + git, u) is exponentially stable.

However, the stability property can no longer be characterized by simple conditions

on the spectrum of Jit). Nevertheless, the theorem suggests that additive methods

have a role to play in the solution of stiff problems.

4. Numerical Results. Some numerical results are given to illustrate that the

additive methods, obtained in this article, are stable in quite general situations. The

results indicate that these methods may give competitive procedures for solving stiff

problems.

We give results for only one method, the additive Runge-Kutta method repre-

sented by the array

0

1 -V3

6
5 + >/3

12
1_

4

0
3 + >/3

6
1 + J3

4

J_
4

0

0

3 + /3
6

_1_
2

0

0

1
2
\_

4

0    0

0    0

0    0

This method was applied to various systems x'= fix) using the sequence of

decompositions given by

f(x)=J(m)x + g(m)(x),       m= 1,2,3,...,

where {J(m)) is the Jacobian of / evaluated at the sequence of computed values
{yim~l)}.

Consider the stiff initial value problem, given by Gear [4],

-0.013*, - 1000x^3,

-2500*2X3,

*■(<)) = 1,

*2(0) = 1,

x'3 = -0.013*, - 1000*,*3 - 2500*2*3,    *3(0) = 0,

where the Jacbian has real eigenvalues. Table 1.1 gives some typical values of these

eigenvalues. This problem was integrated using a step length h = 0.1, and Table 1.2

compares the numerical results obtained, at t = 1 and t = 50, with the (rounded)

solution values.

Table 1.1

Eigenvalues of the Jacobian

t = 0

0
-0.0093

-3500

f = 25

0
-0.0069

-3287

/ = 50

0
-0.0088

-4104
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Table 1.2

Comparison of results (h = 0.1)

1 t = 50

Exact Numerical Exact Numerical

0.990 73192

1.009 264 41

0.000 003 67

0.990 731 89

1.009 264 50
-0.000 003 61

0.597 654 70

1.402 343 41

0.000 00189

0.597 654 66

1.402 343 44

0.000 001 89

We also give a second set of results, obtained with h

by Gear [4],

-55*[ + 65*2

*2 = 0.0785(*, -*2),

*3 = 0.1*,,

*,(0)

*2(o)

*3(0)

1, for another system given

1,

1,

0,

where the Jacobian has complex eigenvalues. Typical values of the eigenvalues are

given in Table 2.1. Table 2.2 compares numerical results obtained with the solution

values. For both problems the results given are the rounded values obtained after

computation with 12 significant digits. Results for other methods are similar.

Table 2.1

Eigenvalues for the second problem

t = 0

0.0062 + 0.01 i

0.0062 - 0.01 i
-55

í = 300

0.0014 + 0.014 i

0.0014 - 0.014 i
-63.5

r = 500

-0.015

-0.004

-81

Table 2.2

Results for the second problem (h = l)

t= 10 i = 500

Exact Numerical Exact Numerical

1.360 59181

1.152 32104

0.036 059 18

1.356 753 78

1.152 322 69

0.035 675 38

88.926 078 46

87.276 035 35

8.792 607 85

88.925 900 60

87.275 999 91

8.792 590 06

A number of comparisons have been made with semiexplicit Runge-Kutta meth-

ods. These methods require the use of a modified Newton iteration where, in each

step, the Jacobian is kept constant throughout the iteration. For both types of

method, the Jacobian was evaluated at the start of each step. When only one

iteration per step is used the semiexplicit methods require about the same amount of
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computation as the additive methods but are less accurate. When more iterations are

used the methods seem to be slightly more accurate than the additive methods but

require more computation.

School of Mathematical and Physical Sciences

University of Sussex

Brighton BN1 9QH, England

Department of Mathematics

College of Science

University of Baghdad

Baghdad, Iraq

1. J. C. Butcher, "On the convergence of numerical solutions to ordinary differential equations,"

Math. Comp., v. 20, 1966, pp. 1-10.
2. G. J. Cooper & A. Sayfy, "Additive methods for the numerical solution of ordinary differential

equations," Math. Comp., v. 35, 1980, pp. 1159-1172.
3. G. J. Cooper & A. Sayfy, "Semiexplicit /f-stable Runge-Kutta methods," Math. Comp., v. 33, 1979,

pp. 541-556.
4. C. W. Gear, "The automatic integration of stiff ordinary differential equations," Proc. IFIP

Congress, 1968, pp. 81-85.

5. W. Hahn, Stability of Motion, Springer-Verlag, Berlin and New York, 1967.

6. S. P. Norsett, "C-polynomials for rational approximation to the exponential function," Numer.

Math., v. 25, 1975, pp. 39-56.


