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Preconditioning and Two-Level Multigrid Methods

of Arbitrary Degree of Approximation

By O. Axelsson and I. Gustafsson

Abstract. Let A be a mesh parameter corresponding to a finite element mesh for an elliptic

problem. We describe preconditioning methods for two-level meshes which, for most prob-

lems solved in practice, behave as methods of optimal order in both storage and computa-

tional complexity. Namely, per mesh point, these numbers are bounded above by relatively

small constants for all h > h0, where h0 is small enough to cover all but excessively fine

meshes.

We note that, in practice, multigrid methods are actually solved on a finite, often even a

fixed number of grid levels, in which case also these methods are not asymptotically optimal

as h -> 0. Numerical tests indicate that the new methods are about as fast as the best

implementations of multigrid methods applied on general problems (variable coefficients,

general domains and boundary conditions) for all but excessively fine meshes. Furthermore,

most of the latter methods have been implemented only for difference schemes of second

order of accuracy, whereas our methods are applicable to higher order approximations. We

claim that our scheme could be added fairly easily to many existing finite element codes.

1. Introduction. Consider the numerical solution of elliptic boundary value prob-

lems discretized by finite element methods. We assume that the boundary is

polygonal or consists of planes. We note that in practical problems one often has a

fine enough grid already after the definition of the boundary and the minimal

number of vertices needed for a first (coarse) triangulation. Anyhow, if not so, in

most cases one makes only a few steps of mesh refinement. Hence the power of

multigrid methods—their optimal order of computational complexity—is most

often not achieved fully, because optimality requires a large number of recursively

defined meshes (for details see, e.g., [4] and for further references see [7]). Hence one

might as well consider other methods, perhaps simpler and more effective on a fixed

mesh, but which are not asymptotically optimal.

Here we shall describe a method which uses only a fixed mesh, but for which one

nevertheless achieves a low order of computational complexity and of seemingly

optimal order except for, from a practical viewpoint, excessively small meshes. To be

more precise, the computational cost per mesh point is bounded by c log N for

N < N0, where N is the number of mesh points, N0 is large enough to cover most

applications and c is small enough that the method is competitive with multigrid

methods. As is well known, the latter need recursion and the usual smoothing

followed by corrections of the solutions on the different mesh levels. We claim that

the new method is more suitable for implementation in existing finite element

packages. In fact most packages for the multigrid methods are only for second order

difference methods.
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The success of the new method is based on the following facts. Let p be the degree

of the piecewise polynomial functions used in the approximation of the solution.

Then,

(i) the number of vertex nodes in a " triangulation" of a domain in d dimensions

(¿ = 2,3) is only 0(A7//),

(ii) with a particular choice of basis functions one gets finite element stiffness

matrices with a 2 X 2 block structure, where the diagonal block of largest order,

namely that not associated with the vertex nodes, has a spectral condition number

which is bounded above by a number independent of h.

These observations were already made in [3] but there they were used only for a

diagonal block scaling (preconditioning). The diagonal block of smallest order was

supposed to be solved exactly by a direct or a multigrid method, and the diagonal

block of largest order was supposed to be solved by a simple iterative method.

We shall later see that a large gain in speed and in simplification of the method is

achieved if we use incomplete factorizations either of the diagonal blocks or as a full

block matrix preconditioning.

Although the method is applicable to a wide variety of partial differential

equation problems, in this study we consider only second order elliptic problems.

2. Preliminaries. We prove at first some general statements needed later. Let v, t, e

denote the number of vertex nodes (including those on a Dirichlet boundary),

triangles and edges, respectively, in a triangulation of a plane, bounded and

polygonal domain. Then e = v + t — 1. We assume that the triangulation is regular,

i.e., all angles exceed 60 > 0 where 60 is independent of TV, the number of nodes.

Let p > 2 be an integer. In addition to the vertex points, place p — 1 (disjoint)

nodes on each edge and (if p > 3), ip — l)ip — 2)/2 interior nodes on each

triangle. Note that the total number of nodes on each triangle is ip + l)ip + 2)/2

which equals the number of coefficients in a complete polynomial (in the Euclidean

coordinates *, y) of degree/). The nodes may be placed in regular positions on the

edges and in the interior as is illustrated in Figure 2.1, but in Section 6 we shall

present a more efficient choice of nodes (and basis functions) for/? > 3. We will also

then see that the method is applicable to the case/? = 1.

Figure 2.1

An example of regularly placed nodes for p = 3

The condition that all angles are bounded from below by 60 > 0 is easily achieved

in the following way. Let fi, be a coarse mesh constructed by a triangulation of the



PRECONDITIONING AND MULTIGRID METHODS 221

polygonal domain. This mesh is in general not uniform and may, for instance, be

finer in some parts of the domain where we expect that the solution is less regular.

With it we associate a mesh parameter h = 1. Let 60 be the smallest angle of all

triangles in the mesh. The coarse mesh is now uniformly refined by dividing each

edge by A"1 (an integer). Then the angles are preserved in the resulting mesh tth so 60

is still a lower bound; see Figure 2.2. For the following we assume also that the

original mesh has no angle > 7r/2. Hence this is so also for ßA. Actually, the mesh

refinement can be made locally, and still the angles are preserved as Figure 2.3

shows.

Figure 2.2

Uniform mesh refinement; solid lines correspond to mesh ß, and solid lines U dotted lines

correspond to mesh Q]/2

Figure 2.3

Local, angle-preserving mesh refinement

With every node (except those on a Dirichlet boundary) we associate a basis

function with the usual compact support and whose restriction to the triangle is a

polynomial of degree at most p and such that the set of the basis functions is linearly

independent. Then each polynomial of degree at most p is uniquely represented as a

linear combination of these basis functions. Note in particular that three, but not

more, of the basis functions defined on any one triangle may be linear.
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The total number of nodes in the triangulation is

(2.1) N = v + ip-l)e+{p-l)ip-2)t,

and as N -» oo, e/v -» 3 (and therefore t/v -* 2). Hence by (2.1),

(2.2) v/N^p-2,       N^oo.

If the interior nodes are ehminated by static condensation (see Section 6), then the

number of remaining nodes is

TV« v + ip — l)e

and

ü/TVo-(3/7-2)-',       TV-* oo.

In a similar way, one finds that for a corresponding three-dimensional problem the

ratio of vertex and total number of nodes

v/N ->p~3,       N -» oo.

Another fundamental result we shall need later is the following.

Consider the boundary value problem

(2.3)
« = o,x e r„ 2a>jj^ni= «>x e r ~ ri = r2'

i.j J

where «, are the components of the unit normal. We assume that the (symmetric)

matrix [a¡jix)]fj=x is uniformly positive definite, b > 0, | at. | and ¿> are uniformly

bounded from above on fi and that meas(r,) J= 0. It is only for ease of presentation

that we have not considered more general boundary conditions. With this boundary

value problem we associate the bilinear form

aiu,v) = f
Ja

v      3«  3t)   ,  ,
3*, 3*,

'.7 '        J

dil. u, v E V,

V= {veHxiQ),v = OonVx}

and the variational formulation

a(u,v)= jfvdti+<£ gvdT2,   Vu e V.

a (•, •) is symmetric, coercive and bounded so that, as is well known, for every

/ G L2(ß), g G L2iT2) there exists a unique solution m G V.

The generalized C-B-S inequality,

|fl(a,o)|< [aiu,u)aiv,v)}x/2   Vu, c G F,

is easily proven.
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The upper bound is not taken if V«, Vt> are linearly independent, but it may (for

instance if b = 0) become arbitrarily close as V«, W become closer to being

linearly dependent. If Vx, V2 are finite-dimensional subspaces of V with only the

trivial element in common and such that Vx contains the constant function we get an

even stronger result:

(2.4)    \a(u,v)\^y{a(u,u)a(v,v)}x/2,       0 < y < 1, Vw G Vx, Vu G V2,

vxnv2={0).

Here y depends on the type of basis functions chosen for Vx, V2 but it is independent

on h. For the previously defined triangulation we let Vx be the subspace spanned by

the set of basis functions {X,} associated with the vertex nodes. These basis

functions should be such that the constant function is contained in the subspace. In

particular, we may let the basis functions be a complete set of linear functions. V2 is

spanned by the remaining set {fy} of basis functions and hence the constant

function is not contained in V2. For a particular mesh the corresponding number

y0ih) may be calculated in the following way. Consider the bilinear form

a,(u,v)= f
v      du  dv
1 a,7â7 — f buv
•>j 3*, 3*,

dti,

where e, is the Ith triangle (in an arbitrary ordering of the triangles). The correspond-

ing number

(2.5) Y/(M =      max     \\ai(u,v)\{a,(u,u)al(v,v)yi/2]
u £ V\, v £ V2

is calculated, and by summation we get

Io(u,v) 2 | a,(u, v) |< 2v/a/(". ")     a¡(v, v)
i i

1/2

YoCOl 2a,(u,u)2a,(v,v)
i i

1/2
y0(h){a(u,u)a(v,v)} 1/2

where y0ih) = ma\,y,ih). Note that because of the uniform mesh refining, there

exists ay, y0ih) < y < 1, which is independent of the mesh parameter h. (In fact,

YoCO ~* y as h ~* 0.) For some particular examples, see Section 3.

Consider now the element matrix &, associated with the triangle e, and associate

the local orders 1,2,3 to the vertex nodes and 4,5,... ,q with the remaining nodes.

For e¡, being an element at a Dirichlet boundary, we consider subsets of these nodes,

and we then proceed in a similar way as follows: The matrix &¡ has a 2 X 2 block

form

where

«,=
A,    C,

C\    B,
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A,= B/ =
0     0
0    B,

Let
'A,    0"

.0     0.

and consider the following quotients between the quadratic forms associated with &,

and with the diagonal block part of &,.

Note at first that by (2.4) we have (since | axa2 \< jia2 + a\))

(2.6) (l-y)[a(u,u) + a(v,v)]

< a(u, u) + a(v, v) + 2a(u, v) = a(u + v, u + v)

<(l + y)[a(u, u) + a(v, v)]    Vu G Vx, Vv G V2.

With

u = 2 «W, » = 2 «,°#> w = u + v,
i=\ 1=4

we get

a<'y&ia(l) = a,(w,w),       a(V') = fl/(«.")    and   a<'>'B,a<'> = fl/(o, o).

Hence by (2.6)

(1 - y^a^A, + B,)a<'> < o^a« < (1 + y,)«^, + B,)^",

where y, is the constant defined in (2.5).

Finally, by summation over all triangles e„ we get the global correspondence

(2.7) (1 -y)a'(A + B)a<o'(îo<(l + y)a'(A + B)a   Va£R".

We then make a global ordering of nodal points such that vertex nodes are

numbered first. Then the resulting assembled matrices have the following properties,

which was already observed in [3].

Lemma 2.1. Let the set of basis functions {X,} and [<bj] be defined as above. Then

the matrices A = [aiXj, À,)] and B = [aity, <>,-)] are positive definite and have spectral

condition numbers k, = 0(/T2), h -> 0 and k2 = Oil), h -> 0, respectively.

Proof. The result for the matrix A is well known (see e.g. [4]). In particular,

positive   définiteness   follows   because   meas(r,) ¥= 0.   For   the   matrix   B, =

[«/(^.4>,)]^=4Weget

0 < /xt/tya, < a,(v, v) < ffîa'.a,   Vu = 2 <*i,<t>,'\
¡ = 4

where u*/*, ¡uf* are the extreme eigenvalues of B¡. Note that n(¡X) is positive because

constant functions are excluded from the space V2. By summation over the triangles

e¡ we get

0 < min/x'/Wa < a'Ba </?0 max ¡ifWa,

where p0 ( = 2) is the largest number of triangles meeting at any same nonvertex

node. Hence

k2 = k(5) </>0 max/^0)/min/4l),

and this number is bounded above by a number independent on h, because of the

uniform mesh refining.    D
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Lemma 2.2. The spectral condition number of

&,       &■■
A

LC
is bounded from above by (1 + y)/(l — y) and \\F\\2 < y, where F = A X/2CB x/2.

Proof. The first part follows at once from (2.7) because

a'âa
(2.8) l-y< 1 + y   Va G R*, a ¥= 0.

a'(A + B)a

For the second part we note that

A'i/2     °  U^172     °       l1   F

so by (2.8), the eigenvalues of [°, £] are in the interval [-y, y]. Hence

\\F\\2={P(FF')Y/2<y,

where p( • ) is the spectral radius.    D

Note that the above upper bounds are independent of h, that is of the number of

nodes N. The first part of Lemma 2.2 was proved in [3] in a slightly different way.

3. Preconditioned Iterative Methods. The discretized version of (2.3) is

(3.1) a(u,v)= f fvdx+j) gvds   Vu G Vh(p) = Vx ® V2,

where u G Vj¡p) and V¡¡p) is the finite-dimensional subspace of V consisting of

continuous, piecewise polynomials of degree at most p. With the previously defined

ordering of the nodes we get a linear system of algebraic equations on the form

(3.2)

Let

A

C

& =
A

a

,   where tk= j fv dx + j gv ds, v
k

k

1,

2.

U = (U!,U2)',     f=(f1,f2)'.

Then (3.2) is equivalent to éBu = f, and we shall study iterative methods to solve this

system of equations. A basic iterative method can be stated

(3.3) e(u(m+1)-u(m)) = -j8m(tîu(m)-f),       m = 0,1,...,

where G is a so-called preconditioning matrix and ßm are iteration parameters. Q will

be chosen as a product of two sparse triangular matrices and is symmetric, positive

definite. It has the same block partitioning as 6B. The rate of convergence of (3.3)

depends on the spectral condition number k, of Q~X/2&Q~X/2. For instance, if the

conjugate gradient method is used to accelerate (3.3), then the number of iterations

to reach a fixed relative accuracy is bounded above by a number proportional to \kx,

see, e.g., [1].
In the sections to follow we shall consider various choices of Q. The most efficient

among these involve (modified) incomplete factorizations of the block diagonal
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matrices A and B. We briefly recall the basic results regarding modified incomplete

Cholesky (MIC) factorizations; for details see [6]. These methods are modifications

of the methods presented in [9].

The MIC methods will be applied to the matrix A and can be stated

LV = À = A + D + R,

where D is a positive diagonal matrix and R is the defect matrix being positive

semidefinite and having row sums equal to zero. The degree of accuracy of the

factorization can be controlled by letting L contain more or less nonzero entries. For

well-structured (model) problems, where A has nonzero entries only in certain (sub-)

diagonals, we use the notation MIC(ú?) to indicate that L contains d more nonzero

diagonals than (the lower part of) A.

Applied to a weakly diagonally dominant matrix, the MIC factorizations are

stable. If further A is an L-matrix, i.e., if atJ =£ 0, /' =£j (which is the case in our

applications), then «(i-'/^i"1/2) = Oih~x), h^O (while k(^) = 0(/T2)). More

precisely, there exist constants C,, C2, C3 independent of h such that

(3.4) C, < z'Az/z'Äz < C2 + C3h-X   Vz G RN',

where N' = 0(A"2) is the order of A. For instance, for a model Laplace problem

over the unit square with uniform right-angled triangulation and linear i.e., (3.4)

holds with C, = 2-, C2 = 1, C3 = 1/tt for the MIC(O) method and C3 = 0.68/tt for

the MIC(l) method.

4. Diagonal Block Preconditioning. In this section we let 6 = fy = [$ ¿] where

A, B may be regarded as approximations of A, B, respectively. We assume that they

are symmetric and positive definite.

Let a¡iu,v), b,iu,v) be the bilinear forms corresponding to Ä, B, i.e., the

restrictions to the /th element of a'Äß, a'Eß, with

«= 2 «/></>,    v=ißl$\
i=\ 1=4

Let a(,), b°\ i = 0,1, be positive numbers such that

3

a<%(«, u) ^ a¡iu, u) < a^àiiu, u)    Vm = 2 «i(*(/\
/=!

b<%(v, v) *£ a,(v, v) < bf>b,(v, v)     \/v=2 ßt^P-
i=4

(4.1)

We have

\'/2„ /..   .^1/2(4.2)     \al(u,v)\<yla,(u,u)/ al(v,v)/  < {yt¡a,(u, u) + \yfcxa,(v, v),

where f, > 0.

In the following theorem we give an upper bound for the condition number of
öD-'/^öD"'/2.
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Theorem 4.1. Let &, fy be defined as above. Assume that (4.1) and (4.2) are

satisfied. Then

(4.3)   k, = «(öD-'/^öD"1/2)

<max-¡
i  ¿>r

l-Y,2^

i4 i+^
,(0)

¿><°>

7(0)

1-^

X
1 M'>

1 -
„<•)

bf>'

a)     , i

*i°

1/2

1/2

+ Ä*

/Voo/. An upper bound for the eigenvalues of ty x& is found in the following way.

By (2.6) and (4.2),

a,iu + v, u + v) < (1 + y,S,)a,iu, u) + (l + y,^x)a,(v, v)

< (i + tA)«î^i(«, «) + (i + v¿r>,0)¿>, o).
Hence

(4.4) a,(M + v,u + v)<(l+ y,ßt)af>[ä,iu, u) + £,(©,©)],

if f, is such that (1 + y^,)^ = (1 + y,?,"1)*^, that is,

ll/2¿><>;o)-i , /¿r/ap-iy, bp

\ 2y,
+

7«>)

Hence

(1 + y,?,K> = (¿><°> + a<°>)/2 + {[(¿W) - «<°))/2]2 + ^%(0)Y/2)'/2.

(Note that the upper bound (4.3) is sharper than the trivial upper bound we get with

f, = 1, namely

a,(« + », u + o) < (1 + Y,)max(aJ0), ft}"») [^(u, ii) + i,(o, ©)].

Assume that ¿>{0) 5= a;(0). (This can always be achieved by scaling.) Then in fact

(l+Yi)Af»-(l + Y,A)flP

= y,*,*0' 1 - af\
i,(0) _  „(0) / / A(0) _     (0) \ 2 \ V

=o.)

Similarly we get a lower bound. Let y, < £, < y, '. Then

(4.5) a,(u + v,u + v)>(l- y¿Jx)a,(u, u) + (1 - y,*,)«,^, c)

>(i-Y/€i)*íI)[a/(«.«) + ¿i(«'.o)].

where £, is such that

(1 - y¿;x)a^ = (I - y,m\

i.e.,

(i)

2Y, j        6}»

i/i
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and

(1 - TAW*

= «»(1 - Y;2) *}«> + a\
in

b^ + a^\2 + aMW
1/2

>0.

Finally from (4.4) and (4.5) the result follows by summation over all elements.    D

We note that in the case è{0) = af\ ft}1' = a(,X) (4.3) reduces to the trivial bound

'l+Y/*Pl
(4.6) k, < max-, T

Y/ ftj»

In particular, for A = A, B = B we have

(4.7) - f HK, < max-.
1+Y

1-Y/J       l-Y

which we already derived in Lemma 2.2.

We also remark that we can often obtain a sharper bound than that given in (4.3)

by calculating (on each element) upper and lower bounds X(}\ X^ of the quotient

(4.8)

Then,

a,iu + v,u + v) _ v *

a,(«,«) + 0,(0,0) ,=, (=4

k, ^maxX^'/minXV*.

(A similar approach was used in [2].)

In Figure 4.1 we have plotted the bound on the condition number k, as a function

of h'x when B = diag(5) and Ä is a MIC(l) factorization of A. Here p = 2,

[au]2j=x = I, 6 = 0VxGß = {(*,, *2) G [0,1] X [0,1]} and we assume a uniform

right-angled triangulation of Q. This problem shall be referred to as the model

problem. The bounds a¡0) and a}1' for the eigenvalues of Ä~XA were taken from (3.4).

160 i

80

20

2 4 8 16 32 64 128 h"1

Figure 4.1

The upper bound for the condition number k , as a function of h'] for p = 2, B = diag( B ) and À

a MIC( 1 ) factorization of A. Model Poisson problem. The scales are logarithmic and the slope of

the "line" k = Ch~' is indicated.
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We note that the condition number is only slightly increasing for h > h0, say

h0= 1/8, but for h « h0 it grows like 0(A_1), h -> 0. By use of a more accurate

incomplete factorization one can make h0 smaller; see the numerical tests in Section

6.

By calculating upper and lower bounds of the quotient (4.8) we have also found

that k, is (often) rather insensitive to k0 = k(ä"'5). For our model problem and

p = 2, k, increases only by a factor 3/2 when B = B (k0 = 1) is replaced by

É = diagiB) (k0 » 6).

5. Full Block Incomplete Factorization. Let, as before, LXL\ = Ä and L2L2 = B be

two incomplete factorizations of A and B, respectively. We consider precondition-

ings of & by a full block incomplete factorization on the form

e=<$=
L2       0 v2

0

L2XC B C

C    Ä + CB-XC

Note that we have reordered the system so that

& = \B    C'~
[C    A .

Since Ä and B are symmetric and positive definite, so is 'S. Let a¡, b¡, i = 0,1, be

lower and upper bounds of the following quotients of the bilinear forms correspond-

ing to B, B and A, Â = Ä + CB~XC, respectively:

0<p, <a(ü,o)/£(o,o) <o0    VoGK2,

0 < a, < a(u, m)/J(m, u) < a0    Vm G Vx.

We assume that Ä and B are scaled such that

bx<l<b0<y-2,   ax^l<a0<y-2.

Theorem 5.1. Let &, <S:, a¡, b¡, i = 0,1 be defined as above. Then

«(^"'éE) = max/x y min/x,,
i

where

(5.1)     maxju, < 1
1        aj-' + ftr'

1-Y2
1

+
«r1 - b\1 \2

+ (b~xx - l)(axx - l)r
1/21

(5.2)     minu^l
1-Y2

1 -
< + v

"è^2+(l-a0-')(l-ô0-')Y2

1/2
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Proof. We assume at first that a, < 1. Let o = 2 a,d>,, u = 2 jß,A,, and let ti, be the

eigenvalues ot&~x<5. We have

M:=[«',0']^p]/k,0']ff

_ ft*(o, o) + 2a(o, ») + a(m, u)

a(u + o, « + o)

_ .   .  bjv, v) - ajv, v) + a(u, u) - aju, u)

a(v, o) + 2a(o, u) + a(u, u)

(o,1- l)fl(o,o) + (fl1-1-l)a(«,«)

(1 - yÇ)a(v,v) +(1 - y$-])a(u,u)

We choose f such that

< 1 + ,     Y<f<y-1,VMGF,,oGK.

¿I1 - 1 _    1 - Yf

axx - 1       1 + y$-
i.e. f =

l-'o
2y

+
2y

1/2

Then (5.1) follows, and because of symmetry (a, <-> bx) we realize that this bound is

valid also for a, = 1. In the same way we get

^      (l-fc0-|)a(o,o) + (l-q0-1)fl(«,»)

11' (l-y|)a(o,o) + (l-yr,)a(«,M)'

where

t
1 -s0

2y
+

2y       +S°

1/2 1 - fro'

1 - fl¿'

Hence (5.2) follows and the theorem is proved.    D

We consider now some special cases:

Case (i): B = B. Then bx = b0 = 1 so

(5.3) KÍ^-'ffi)
ay - Y

*o' - Y2

= ic(i-U)
1 -q,y2

1 - «oY2

Co«? (ii): B = B, a0 = 1. Then from (5.3)

k(A~xA) - y2
K(f-'rl)

1-Y2

In particular, if B = B, Ä = A, then from Lemma 2.2, A < À < Ail + y2). (Here,

inequality stands for inequality between the corresponding quadratic forms.) Hence

(5.4) K($-xâ)<l/(l-y2).

Case (iii): Ä = A, É > B. Then ax = (1 + y2)"1, a0 = b0= 1, 6, = *"', where

k0 = kíB~xB), and we get

(5.5)    k($-x&)<1
1 Y2 + k„-1

1-Y2[ 2

•^Ko/(1-Y2)    asK0^oo.

+
1-Y2\2

+ («c0- Oy4
1/2
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Case (iv): Ä = A - CÉ~XC' (that is A = A), B> B. Then a, = a0 = bx = 1,

bx = KqX and

(5.6) K(f-xâ)^(K0-y2)/(l-y2).

Case (v): Ä = A — CB~XC, B = B where É is any matrix, e.g. a diagonal matrix,

such that B > B. Then b0 = bx = a0= 1, a, = [1 + (1 — Kö')y2]"', where k0 =

k(B'xB) and

(5.7) K(f-'S)<(K0-y2)/(Ko(l-y2)}.

We note that Cases (iv) and (v) involve making an (incomplete) factorization of

A — CB'XC' (or A — CB~XC), which makes it necessary to assemble this matrix.

However, in practice k0 is often much larger than y (see Section 6), which leads to

minor differences between the (estimates of the) condition numbers in Case (ii) and

Case (v) and in Case (iii) and Case (iv), respectively. Hence it does not pay off to

make the more complicated factorization (of A — CB'XC).

We assume that B is obtained by a (stable) IC factorization of B so k0 = k(5"'5)

= Oil), h — 0. (In particular B might even be equal to diag(Z?).) Since B is in

general not an Af-matrix, it might be necessary to use shifted incomplete factoriza-

tions (SIC) [8] or in some other way ensure a stable factorization. For Ä = A we

then easily see that k(tÎ"'(î) = 0(1), h -» 0 as well. As in the diagonal block

reconditioning, we get kí<5~x(1) = 0(/i"'), h -> 0 if Ä is a MIC factorization of A,

where values of a0, a, can be derived from (3.4). However, the condition number

behaves in the same way as in the diagonal block case, i.e., it is almost independent

of h for h > h0, where h0 is dependent on the degree of accuracy of the MIC

factorization.

Let us now compare the upper bounds for the condition numbers «(^'(î),

*(§""'(£) of the diagonal and full block preconditionings. At first note that in the

case B = B, Ä = A, by (4.8) and (5.4),

kÍ<%-x8,)/kÍ<5-x&) = (1 + y^ ~ y2>) = (1 + y)2 < 4.

In practice y is close to one, and hence we can expect about twice as many iterations

for the diagonal block as for the full block preconditioning. On the other hand, the

full block method needs more computational work per iteration (e.g. the solution of

6 triangular systems) so it will be preferable only if we use incomplete factorizations

of B (and A).

In the full block preconditioning the bounds of k(^_16Î) are proportional to k0,

while (as already pointed out in Section 4) in the diagonal block method «(^"'él) is

fairly insensitive to k0. This indicates that the full block factorization is more

effective relative to the diagonal block factorization for more accurate (but not too

accurate) incomplete factorizations of B than for less accurate factorizations.

6. Examples and Numerical Tests. As our model problem we take

/6 i) |-v(flV«)=/    infi,

1 u = 0 on 3ñ,

where fi is the unit square, a = 1 and / is a constant function. We make a uniform

right-angled triangulation (with triangle sides of length h,hJ2h)io obtain Qh.
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In case p = 2 we choose linear basis functions associated to vertex points and

quadratic functions associated to the midpoints of the edges, see Figure 6.1. For

p = 3 we add four cubic basis functions, the standard Lagrangian cubic basis

functions associated with one point on each side and the midpoint; see Figure 6.2.

=   l-x-y 4xy

|>5  = 4 (l-x-y) y

K  = 4(l-x-y)x

Figure 6.1

Basis functions for p = 2 ion basic element)

t>7  = ^-(y-l/3)xy

t>8 = ^(2/3-x-y)y(l-x-y)

27
(l-x-y)/(x-l/3)x

'10 27(l-x-y)xy

Figure 6.2

Additional basis functions for p = 3

The corresponding element matrix is

«i

6    -3
-3       3
-3_     0

-8 " ~4~

4    -4
4      0

-3

4
4

4 i   16
0 i  -8

-4 i  -8

4       4
-4       0

0     -4

16

0
0

16
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for p = 2 and

l

240

240 -120
120 120
120 _ _0_

320 160
160 -160
160 _ _0_

180 90
90 -90
90 _ _0_

0    0

-120

0

J20
160
0

-JI60

90
0

-90

0

-320

160

J_60_" 640

-320
-3_20_

" 360

-72
-288_

0

160
-160

0 _
-320

640
0 _

-504

144
0 _

432

160
0

-160

-320

0
640
-72"

-216

360

432

-180

90
90_

360
-504
-72_

810
81
81_

-486

90
-90

_ 0
-72"

144
-216

81
810

_ 0
-486"

90
0

_-90
-288

0

_360
81
0

810

0

0
0

_0_
0

432
432

-486
-486

_0_
1944-1

for/? = 3.

Construction of Local Finite Element Matrices. We note that the 3 X 3 and 6X6

principal submatrices of the element matrix for /? = 3 are the element matrices

corresponding to /? = 1 and p = 2, respectively. In general, for p > 2 we add to the

set of basis functions for V¡¡P~X), p + 1 complete basis functions for V¡¡p) \ Vj¡p~x).

In this way we can build up the element matrix for p = q successively from those for

/?= 1, /? = 2,...,/? = q— 1. For /? s* 3 we now eliminate all interior nodes (by static

condensation), i.e. in the case /? = 3 node nr. 10, see Figure 6.2. In general the

number of interior nodes is (/? — 2)(/? — l)/2. Besides the reduction of the number

of unknowns this has the desired effect of reducing the condition number k0 =

kíD'xB), D = diag(-B). (In our model problem with /? = 3 k0 was reduced by a

factor about 2/3.)

The Case of Linear-Linear Basis Functions. The method presented in this paper

can also be applied to /? = 1 in the following way. Let the basic triangle consist of

four uniform triangles of size h/2, see Figure 6.3. To the vertex nodes we associate

the same linear basis functions as in the case /? = 2,3. To the remaining nodes we

associate piecewise linear basis functions which are linear on each subtriangle, i.e.,

the standard linear basis functions corresponding to h/2.

l-x-y 0

2x-2y-l

2y

2x

2y

l-2x

0

< i-2y

(x,y) e I

(x,y) c II

(x,y) e III

(x,y) e IV

(x,y) e I

(x,y) e II

(x,y) <l III

2-2x-2y     (x,y) e IV

(x,y) € I

2y (x,y) e II

2-2x-2y     (x,y) e III

0 (x,y) e IV

Figure 6.3

Basis functions for p = 1



234 O. AXELSSON AND I. GUSTAFSSON

We get the following element stiffness matrix, where the entries are obtained by

assembling over the four subelements;

r*,=

6
-3
-3
-6

3
3

3
3
0
3

-3

0

-3

0
3
3
0

-3

-6

3
3

12
-6
-6

3
-3

0
-6

12
0

3
0

-3
-6

0
12

We note that here Vx = V¿X), V2 ® Vx = V¡¡%, vxnv2 (0}, and hence the

method can be regarded as a two-level method for linear finite element approxima-

tions.

Comparisons of Various Diagonal and Full Block Preconditioning Methods. Since we

have a uniform mesh and constant material coefficients, we can calculate y and k0

from one single element matrix not meeting a Dirichlet boundary. These numbers

are then also valid as upper bounds for elements at a Dirichlet boundary since then

we consider subsets of nodes (basis functions).

Let X0 be the largest eigenvalue of B, and let k0 = k(D"'5), D = diag(5). We will

consider some different preconditionings already discussed in Sections 4 and 5.

These give rise to the methods <D1L/, /' = 1,...,6, with condition numbers «,, / =

1,...,6, as described in Table 6.1. In Table 6.2 we give values of y and the

corresponding bounds of k¡, i = 0,...,6, calculated from the general expressions

given in Sections 4 and 5, for our model problem and p = 1,2,3. k2 is calculated by

direct use of (4.8).

Table 6.1

Various diagonal block (DB) and full block (FB) preconditioning methods

Method DB/FB Case in Section 5

DB

DB

FB

FB

FB

73

V
V

-1 -It
A-A  CD  C

A-AQ1CD 1Ct

(ii)

(iv)

(iii)

(v)

Table 6.2

The values of y, «,,1 = 0,... ,6, for our model problem with p = 1,2,3

.707

.816

.846

5.9

5.9

17.6

5.9

9.9

12.0

10.4

15.2

31.9 3.6

10.7

15.5

59.4

11.4

16.9

61.1

1.84

2.7

3.4



PRECONDITIONING AND MULTIGRID METHODS 235

As was pointed out already above, the gain in the condition number by making a

factorization of A - X'¿CD~XC' (methods <Dt4, 91t6) instead of A (methods 9H5, 9H3)

is minor. In all tests we got the same number of iterations for ty\L4 and 91t5 as well as

for ^?1L6 and 91t3. We also recall that we can come arbitrarily close to the results for

exact factorizations of A by using accurate enough incomplete factorizations. Also

note that the factorization work for A is relatively small compared to that for B and

other arithmetic operations in the method, because the order of A is relatively small.

In Tables 6.3 and 6.4 we give the number of iterations needed in the conjugate

gradient (CG) method to reduce the relative residual error by a factor e = 10"4 for

various preconditioning methods and for different values of/? and h. The iterations

were stopped when (r\r*) < e2(r°,r°), where r* = éEu* — f, A: = 0,1,..., and

u° s 0. Later on we will also consider more accurate starting approximations. In the

tables we indicate the methods 91L,, i = 1,2,3,5 for which the analysis is made in

Sections 4 and 5 and for which the bounds of the condition numbers are given in

Table 6.2.

Table 6.3

The number of iterations for the diagonal block factorization methods for various (incomplete)

factorizations of A and B and for p = 1,2,3, e = 10"4 and different sizes of the mesh

-1

Exact fact.of B

Factorizations of A

MIC(O) MIC(2) MIC(4) exact

B appr. by D

Factorizations of A

MIC(O) MIC(2) MIC(4) exact

IC(0) of B

MIC (4)

of A

10

13

18

9

9

10

12

13

16

21

10

11

12

14

10

10

10

11

10

10

10

10

10

12

lb

19

9

10

10

il

10

10

10

9

10

10

10

13

14

17

22

11

12

13

15

11

12

12

12

12

12

12

12

10

11

11

11

i

11

14

3

10

12

3

10

12

3

10

12

18

19

21

24

17

18

18

18

17

18

18

18

17

18

18

9

13

14

M.

In the diagonal block method we also tried B = wdiag(5), w ¥= 1, but it turned

out that w = 1 is optimal (or close to optimal).

We note that when systems with the matrix B were solved by iteration in 91t3 (the

method proposed by Bank and Dupont [3]), then 3 and 6 iterations were needed for

/? = 2 and 3, respectively, to yield the same number of outer iterations as in our

method.

We see that if we use a sufficiently accurate incomplete factorization of A, the

number of iterations stays the same as for the exact factorization of A for h > h0.

For instance, if p = 2, hQ = 1/32, then MIC(4) is sufficient and if p = 3, h0 = 1/12,
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then MIC(2) is sufficient. By considering the total work i.e. the number of opera-

tions (multiply-adds) we find that (see also Table 6.5) among the diagonal block and

full-block factorizations, respectively, those indicated by double lines in the tables

are preferable. In the following these methods will be denoted diagonal block (DB)

and full block (FB) factorization, respectively.

Table 6.4

The number of iterations for the full block factorization methods for various (incomplete)

factorizations of A and B and for p = l,2,3,e= 10"4 and different sizes of the mesh

Exact  fact,   of B

Factorizations of A

MIC(O) MIC(2) MIC(4) exact

IC(0) factorization of B IC(-l)
of B

Factorizations of A

MIC(O) MIC(2) MIC(4) exact

MIC(4)

of A

B appr. by AD

Fact, of A

I MIC(4) exact

4     3     3     3

4 3     3     3

5 4     3     3

10

3 3

4 4

4     4

10

10

h

ii

h

10

10

10

10

2 2

5 5

5     5

6 6

7 7

7     7

11 ;  15

12 | 18

12    20

15

18

19

"'3 "'5

In the following table we give the computational complexity and storage require-

ment for these methods for p = 1,2,3, h > h0 and e = 10"4. Note that in the case

/? = 3 the work estimate for the DB method is valid for h0 = 1/24 as well. These

values of h0 are in most cases small enough to get a small enough discretization error

because, as is well known, for smooth enough problem data the L2-error of the

solution is of order Oihp+x), h -» 0. The work estimates include factorization work,

and no consideration has been given to the fact that we have u° = 0 and that some

elements in the matrices are zero because of the actual triangulation and problem

data. Hence, these estimates are in principle also valid for more general (variable

coefficient) problems (if the number of iterations stays the same). Within parenthe-

ses we also give the figures obtained if we do consider the number of zeros in the

matrix.

Table 6.5

The work (W) and storage (S) per unknown required for the DB and FB methods for p = 1,2,3,

h»hnande= 10"4

Method DB

1 2 3

1/32 1/32 1/24

240(220) 260(240) 420(390)

7 7 6

FB

1 2 3

1/32 1/32 1/12

140(130) 180(170) 340(310)

9 9 10
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When comparing these numbers one should bear in mind that the higher order

methods ( p > 2) give in general the same discretization errors as a lower order

method (/? = 1) for a much coarser grid. We comment further on this later in this

section.

We note that the FB method needs less computational effort than the DB method,

the difference, however, being relatively smaller for larger values of /?. The DB

method might sometimes be preferable because of its less need of storage and since

it is simpler to implement. In this method we only need to assemble A (in order to

make the incomplete factorization) and the diagonal of B. As is well known, one may

calculate the product 6E-x, needed in the CG method, from the element matrices

without having to assemble and store the global matrices.

For the storage requirements in Table 6.5 we have assumed that fî-x is calculated

in this way. In our model problem we have only one element matrix and in more

general problems one may have only a small number of different element matrices in

which case the storage requirement will be only slightly greater than that given in

Table 6.5.

In Figure 6.4 we have drawn the number of iterations as a function of h~x for the

full block method, /? = 2 with IC(0) factorization of B and different (approximate)

factorizations of A. The discrete behavior of the number of iterations has been

smoothed out by calculating (the real number) k = kin e2/ln{irk,rk)/ir°,r0)}

when the iterations have been terminated for (r*,r*) < e2(r°,r°). The figure il-

lustrates how the point, where the 0(/r1/2) behavior of the number of iterations

comes into effect, depends on the degree of accuracy of the incomplete factorization.

The scale is logarithmic and the slope of the line k = h'x/1 is indicated.

Iterations   (k)

10

9

k=0(h

' MIC(O)

,   MIC(2)

MIC(4)

Exact

16 32T

Figure 6.4

The number of iterations for the FB method, p = 2, e

(approximate) factorizations of A

10"4 as a function of h ' for different



238 O. AXELSSON AND I. GUSTAFSSON

More General Test Problems. We have also tested problem (6.1) with discontinu-

ous material coefficient; a = 1 for x < { and a = d, x > {-. The number of iterations

depends only slightly on d, see Table 6.6. We note that the estimated values of the

condition numbers in Table 6.2 are valid also in this case.

Table 6.6

The number of iterations for the FB and DB methods for p = 2, e = 10"\ h e [1/32,1/4] for

different values of the discontinuity parameter d

method

FB

DB

5

12

10

6

13

100

6

14

1000

6

14

For smoothly varying coefficient a we expect the same or almost the same rate of

convergence as for a = 1. For e.g. a = 1 + x2 + y2, p = 2, h = 1/8 we namely find

(by actually computing these values) that the change in k0 and y from the case a = 1

is only 1.2 and 0.07 percent, respectively. Obviously, for smaller values of h the

change is even smaller.

Furthermore, we have obtained the same or almost the same rate of convergence

for unisotropic problems. Even in this case the derived estimates of the condition

numbers (in particular also of y) hold.

Work Estimates. Let us now compare the work needed in a model problem to

obtain a desired accuracy for/? = 1 and/? = 2. If the solution u is smooth (i.e. if the

problem data /, g, ß is smooth) then the errors in the L2-norm of the solution is of

order Oihp+'), h -» 0. Hence the number of unknowns N(p), p = 1,2 (needed to get

a discretization error less than e) are related by

(6.2) 7V<2> = C(/V(1))2/3.

We consider the problem (6.1) with / chosen such that u = (1 — x)2x2(l — y2)y2.

Then for e = .3 • 10~4, Nw = 225 (/i = 1/16) and Na) = 49 (/i = 1/4) nodes were

required, respectively.

To solve this problem with /? = 2 by the FB method we also consider the task of

choosing a good starting approximation. To this end we solve the problem with

/? = 1 on a coarser grid (A = j) by the preconditioned CG method (or by recursive

use of the method described in this paper similarly to the multigrid method). The

obtained solution is linearly interpolated to the finer mesh to yield a starting

approximation for the iterations on this finer mesh.

This latter idea is used in [2] and [6]. We note that we obtain the solution on the

coarser mesh by solving iteratively a system with matrix A for which we already have

made an incomplete factorization. This system does not have to be solved to

excessively high accuracy, often only a couple of iterations suffice. In our test

problem one iteration (in fact the incomplete factorization is exact for this small

system) was needed on the coarser mesh to obtain the starting approximation and

then only two iterations were needed on the finer mesh to get a total error of the

same size as the discretization error (say two times the discretization error). This

corresponds to an operation count of about 78jV(2) «> 17jV(I) operations. This work

estimate should be used in comparisons with methods using finite differences or
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linear finite elements. Because of the relation (6.2) we expect even better work

estimates (related to Nm) for smaller discretization errors i.e. for larger values of

N(X). In our test example e = 2 • 10"5 required N(X) = 3969 (A = 1/64) and JV(2) =

361 ih = 1/10), respectively. In this case three iterations were needed on the coarser

and finer meshes and we got a computational cost of about 126A/<2) « 11.5iV(1)

operations.

The Factor log N. In connection with working on two level grids we remark that

the factor log N in the work estimate in Section 1 can be dispensed of in the

following well-known way.

Assume that we first solve the problem on the coarser mesh &h to an accuracy of

Oihp+x), i.e. to an accuracy of the same order as the discretization error on this

level. We then use interpolation of order p to get an initial approximation on the

finer grid ti(h/k), k > 2 an integer. (This is achieved by simply evaluating the finite

element solution onto the new mesh points.) Now we only have to achieve a relative

accuracy of order il/k)p+x (i.e. independent on h) to get a final error of the size of

the discretization error on the finer mesh. Hence in the estimate for this number of

iterations, no factor log N appears.

Initially, on the coarser mesh we may get such an accurate solution by recursively

working on coarser and coarser grids, but as we already have pointed out (this being

one of the main points of this paper), because of the small size of the problem on the

coarser meshes we eventually may solve the system exactly or by iteration to almost

full accuracy. In fact in the work estimates for the multigrid methods one often

assumes that the solution on the coarser grid is already given.

7. Extensions, Conclusions and Comparisons With Other Methods. The methods

presented in this paper are readily generalized to other types of meshes e.g.

quadrilateral meshes. For bilinear f.e. based on a rectangular mesh division of the

model problem we expect an even faster rate of convergence since calculated values

of y, k,, /' = 0,...,6, are smaller than if we have a triangular mesh. Actually, the

derived estimates are even better than in the linear (/? = 1) triangular case, so the

number of iterations would be smaller than what we get in that case; see Section 6.

Figure 7.1

Element in a three-level method, p = 2
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As already pointed out our method can be regarded as a two-level method. The

idea can be generalized to a multi-level method; see also [3]. For simplicity, we

consider a three-level approach to the case /? = 2 and a right-angled triangulation,

where each element consists of four small elements, see Figure 7.1.

With the vertex nodes (1,2,3) we associate linear functions (with support on the

whole element) and with the midpoints of the edges (4,5,6) we associate piecewise

linear functions being linear over each subtriangle. (This corresponds to the case

p = 1 in Section 6.) With the remaining nodes we associate piecewise quadratic basis

functions, the standard Lagrangian basis functions of degree /? = 2 corresponding to

h/2. We get a stiffness matrix with the structure

& =
_ _i_

Cí i A,     C,

e2 = o
0

C2 i

0

¿2

0

c¡

0

0

A,

and let ex = o

o

0

A2

ci

0

be diagonal block preconditionings to â.

In a similar way as in the two-level case we get that kíAx) = Oih 2), h -» 0,

kíA2) = Oil), h^O, KiA3) = Oil), h -» 0 and order iAx) = 0(TV/16) (in general

0{N/ip2'~2)d) in an /-level method in d dimensions). Apparently, this will lead to

a smaller h0 (compared to the same degree of accuracy of the incomplete factoriza-

tion of A, ) than in the two-level method. However, y (corresponding to the indicated

block-partitioning of â) and «(ß^'eE) are larger than in the two-level method, about

.850 compared to 0.816 and 13.7 compared to 5.9, respectively. If we consider the

three-block diagonal preconditioning Q2, we get even larger values. Furthermore, the

matrix is more dense due to the fact that basis functions associated to vertex nodes

have larger support. We conclude that in the approach we use here it is not

preferable to use more than two levels. At this point we remark that the work

involving A, i.e. the work on the coarser mesh, is minor compared to the entire work.

For instance, for the DB method, /? = 2, this work amounts to only about 1 /6 of the

total work to solve the model problem.

The computational complexity for the DB method is comparable with that for the

method based on spectral equivalence presented in [2] for/? = 2 and TV = 1000. For

N = 4000 the DB method is about 25% faster. For/? = 1, the methods presented in

this paper are slower than MICCG methods based on standard f.e., unless h is

excessively small. This is so because the matrix is more dense, due to the fact that the

basis functions have larger support.

If in the diagonal block method the systems of equations with matrices A and B

are solved by a direct method (Gaussian-elimination) and by iteration, respectively,

the work estimate is more than 600 operations per unknown for /? = 2, N = 4000

and more than 1000 operations per unknown for /? = 3, N = 1200. Hence we have

reduced the work by a factor of about 0.4 by using incomplete factorizations; see

Table 6.5. The storage requirements are more than halved. An alternative to our

method might be to solve the system with matrix A approximately by some other

method e.g. a multigrid method.
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For three-dimensional problems we expect the new method to be even more

competitive than other methods because in a ¿-dimensional problem the order of the

matrix A is only OiN/pd), where TV is the number of unknowns.

We conclude that we have derived a class of methods having complexity in

arithmetic operations and storage effectively independent of h for h> h0, where h0

is sufficiently small to cover most applications. Compared with other iterative and

direct methods, the methods are highly competitive with respect to computational

cost as well as to storage requirement.

The efficiency of the method is comparable to the best implementations of

multigrid methods for solving model problems [7]. Our method is however applicable

to more general problems with no or a small increase only in work estimates and

avoids the problem of working with several levels. The derived upper bounds for the

computational cost are valid also for discontinuous, unisotropic and smoothly

varying material coefficients.

The rate of convergence of the usual multigrid methods seems to be much more

sensitive to variable and/or unisotropic coefficients and to general domains. In [10]

it is reported that 25 to 80 operations per mesh point are needed in various

implementations of the multigrid method but the actual computing time for general

domains was increased by a factor of 4 to 5 compared to the model problem on the

unit square. In general, overhead operations seem to contribute to a large portion of

the computing time for the multigrid method on general domains, whereas this

matters little in our method.

We also remark that, if one examines multigrid methods applied to a fixed

number of grid levels, one finds that the method can be formulated in terms of a

preconditioned iterative method.

To summarize our arguments of this slightly lengthy paper we claim that, in

practice, in the multigrid method one works with few levels of grids. Then one might

as well consider simpler iterative methods which are also more suitable for general

(high order) finite element methods and which on actually mostly used meshes and

domains gives about the same computer times or, at least if /? > 1, much smaller

computer times in order to calculate a solution to a given order of accuracy. Such a

method, a two-level preconditioned conjugate gradient method, has been presented

in this paper. The method is also highly competitive to earlier similar methods of

preconditioned conjugate gradient type. Finally, it is easy to program and is well

studied for implementations in existing software for the finite element method.
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