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An Extension of Ortiz' Recursive Formulation of

the Tau Method to Certain Linear Systems of

Ordinary Differential Equations

By M. R. Crisci and E. Russo

Abstract. Ortiz' step-by-step recursive formulation of the Lanczos tau method is extended to

the numerical solution of linear systems of differential equations with polynomial coefficients.

Numerical comparisons are made with Gear's and Enright's methods.

1. Introduction. This paper concerns the extension of Ortiz' [13], [17] step-by-step

recursive formulation of Lanczos' tau method [9]—[ 11] to the numerical integration

of linear systems of differential equations with polynomial coefficients.

Let us consider the differential problem:

(1.1) \A(x)y'(x) + B(x)y(x) + F(x) = 0,    xE[x0,xñn],

(1.2) [y(x0)=y0,

where y(x) = [yx(x) • ■ • y„(x)]T is the vector of the v unknown functions, A(x) =

(aiJ(x)8u), B(x) - (bu(x)) and F(x) - [fx(x) ■ ■ ■ f(x)]T are two matrices and a

vector of order v whose elements are respectively:

(1.3)

(1.4)

au(x) =  2 akjXk,       bu(x) =  2 bkjxk,
k=0 k=0

f(x) =  i fkxk.
k=0

Thereafter the system (1.1) will be synthetically written as:

Dy(x) + F(x) = 0,       xE[x0,xtm],

having introduced the differential operator D defined by:

D

a))(x)-^ + bxx(x)   bx2(x)---bXv(x)

b2X(x)   a22(x)— + b22(x)---b2Xx)

K){x)   bv2(x) •■•a„(x)— + b„(x)

Received July 20, 1981; revised March 15, 1982 and October 18, 1982.
1980 Mathematics Subject Classification. Primary 65L05.

©1983 American Mathematical Society

0025-5718/83/0000-1368/S04.00

27



28 M. R. CRISCI AND E. RUSSO

Following Lanczos' idea [9]-[ll], the solution of (1.1)—(1.2) is approximated by a

polynomial vector y*(x), of degree p, which is the exact solution of a perturbed

system, obtained by adding to the right side of ( 1.1 ) a polynomial perturbation term.

The polynomial y*(x), which is called the r-solution of (1.1)-(1.2), satisfies, then,

the differential problem:

(1.5)

(1.6)

\Dy*(x) + F(x) = Hm(x),

The perturbation term Hm(x) is constructed in such a way that (1.5) has a

polynomial solution of degree p, and a norm of Hm(x) satisfies an extremal

condition on [xQ, xñn].

Generally Hm(x), following Lanczos, is taken as a linear combination of powers of

x multiplied by Chebyshev polynomials.

As Ortiz [18] pointed out, the above method is of order p, in the sense that if the

exact solution of (1.1), (1.2) is itself a polynomial of degree less or equal to p, the

method will reproduce it.

Ortiz [17] has developed a step-by-step approach to the tau method along the

following lines: let us divide the integration range [x0, xiin] into subintervals

[xn, xn+x]. The value in xn+x of the solution of the given differential problem (1.1),

(1.2) is approximated by the value in xn+x of the T-solution obtained applying the

method above described in the subinterval [xn, xn+]], taking as the initial condition

the value in xn of the solution constructed in the previous subinterval [xn_,, xn].

Therefore, denoting with yn the approximate value of y(x) in xn, the differential

problem:

(1.7)

(1.8)

' Dy*(x) + F(x)

y*{x„) =y„.

Hm(x),    x E[x„,xn+X],

has to be solved for each interval [x„,xn+x], in order to give yn+x = y*(xn+x).

Hm(x) is the polynomial vector:

Tm-a,(x) 2 Tkxk

A=0

a2

(1.9) Hm(x)=    Tm_a2(x) 2 rkxk
k = 0

Tm-alX)   2   T,V
k = 0

where rf and a, are parameters to be determined, and Tm_a(x) are Chebyshev

polynomials defined in [x„, xn+x].

The methods under consideration have been proved to be A -stable, for every order

p, in [3].

In order to facilitate the construction of the solution, it is convenient to introduce

the canonical polynomials, defined as follows: The ith canonical polynomial of
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order m associated with D is the polynomial vector Q'P(x) such that

(1.10) DQi1{x) = xmei,

where e¡ = (e{),j = l,...,v,e{ = Ô,,,

As Ortiz points out in [13], the advantages of the introduction of the canonical

polynomials are manifold: the solution y*(x) can be easily expressed as a linear

combination of Q¡"(x), and they are independent of the integration range and the

initial condition.

However, there are some problems connected with the Q¡"(x) and their construc-

tion; it is possible that some Q¡"(x) do not exist and the definition (1.10) does not

hold but has to be generalized and more precisely stated. Besides, it is possible that

some operators D have multiple canonical polynomials. These questions have been

discussed by Ortiz [13] for the one-dimensional case. We extend them and his

recursive technique for the generation of the canonical polynomials in Section 2. The

class of integration methods is developed in Section 3, and for clarification the

resulting algorithm is applied to an example in Section 4.

Finally numerical results are reported in Section 5, where the method is compared

with Gear's [6], and Enright's [4], [1] methods. From the comparison carried out on

both stiff and nonstiff standard test problems, it follows that the proposed method

compares very favorably with the other two with respect to efficiency and reliability.

2. Canonical Polynomials. This section is concerned with the extension of Ortiz'

theorems [13] to questions related to existence, uniqueness and construction of the

canonical polynomials. We follow his approach; proofs can be extended without

essential modifications.

Definition 2.1. They'th generating polynomial of order k associated with D is the

polynomial vector:

(2.1) Pk(x) = Dxkej,      j=\,...,v.

Obviously Pk(x) is a vector whose ¿th component is a polynomial of degree at most

equal to k + h¡, where h¡ is given by

(2.2) h, = max(r„, max {su)\,
x. Kjíf       J    >

with the further convention that the degree of a polynomial identically equal to zero

is—1.

Let Q be the set of finite linear combinations of generating polynomials

(2.3) fi = {i: s wwl
[j=\ neTj J

where I\ is a finite subset of N0.

Now the set S, of the indices m such that Q¡"(x) does not exist can be

characterized:

Definition 2.2. S, is the set of indices v such that there is no polynomial in ñ whose

/th component has degree v and whose j th component, for every j j= i, has degree

less than v — h¡ + h¡.
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The nonexistence of some Qin(x) causes the definition (1.10) to be generalized, in

such a way as to allow for the so-called residuals. For this purpose we extend to

systems Ortiz' [13] definition of the residual subspace.

Definition 2.3. The subspace of residuals of D is the subspace Rs spanned by the

vectors

Rs,=xse,,       s ES,, i = 1,...,j>.

This being stated, the canonical polynomials can be exactly defined.

Definition 2.4. The /th canonical polynomial of order m associated with D is the

polynomial vector Q\n(x) such that

(2.4) DQ?(x) = xme¡ + R?(x),       i = l,...,v; m E N0 - Sk,

where R™(x) E Rs is the /th residual polynomial of Q™(x).

For every m, Q"(x) can be multiple. In this regard, let UD be the subspace

spanned by the eventual polynomial solutions Vt(x) of the homogeneous system

Dy(x) = 0. The following result extends Ortiz' theorem 3.1:

Theorem 2.1. For every i E {l,...,v}, the multiple canonical polynomials Q"'(x),

m E NQ — S¡, differ by an element of UD.

Proof. The proof is by contradiction. Let Q™'(x), Q™z(x) be two /'th canon-

ical polynomials of order m E N0 - S¡, and Q?>(x) - Q,"*(x) & UD. Then

D[Q¡"'(x) — Q™2(x)] is a linear combination of generating polynomials. But it

contradicts the definition (2.4), from which it follows that

D[Qr(x) - Qr-(x)] = RT'(x) - R?>(x) E Rs.

Therefore, it is suitable to introduce the equivalence relation Ei defined in

{Q¡"(x)} such that

(2.5) Qri(x)E,QHx) ~(ß,"*(*) - QT'(x)) G UD

and to consider the quotient set L,

(2.6) Lt={tT{x)) = {QT"(x)}/Ei,       i=l,...,v,mEN0-Si,

instead of the set g, = {QTk(x)]. Ortiz [13] called the set L = (L,} the Lanczos

class of equivalence associated with the operator D.

Obviously, if the operator D has no polynomial solutions, £,m(x) coincides with

the canonical polynomial Q™(x).

Now the effective construction of the £,m(x) has to be discussed.

For this purpose it is suitable to introduce the following notations:

(2.7) d¡ = max{í„-, ru ~ I],       i = l,...,v,

(2.8) áj = nún\mn^{hi-siJ},(hJ-dJ)\,      j=l,...,v,

i*j

and to consider, as in [13], the generating polynomials

P/+^(x),     j=l,...,v.

The quantities Ay have been defined so that, for every j, Pf+iij(x) has at least one

component, say /th, whose effective degree is n + h,. From the definition (1.10) it
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follows formally that D~x applied to P"+aj(x) defines x"+is,'eJ as a linear combina-

tion of the Q\n(x), m = 0,1,...,« + h¡. These can be regarded as recurrence

relations for Qf+h'(x) in terms of x"+A'e, and Qk(x),j = 1,...,p, k = 0,1,.. .,n +

h,-l.

However, in the most general case, the nonexistence of some Q"'(x) requires a

more precise discussion.

Let Wn(x) = (w"j(x)) be the matrix whose columns are the vectors P/+A>(x).

There is in the /th row of Wn(x) at least one polynomial of effective degree n + h¡,

and so Wn(x) can be written:

1  Puxk 2  Pki2xk---   2  PÍxk
k=0 k=0 k=0

(2-9) W„(x)

2 pï\*k 2 Pv2xk■■■ 2 plxk
\    k = 0 k = 0 k = 0

Obviously pkj = 0 for k greater than the effective degree of w"j(x).

Let P„ be the matrix

(2.10)

P"nh'     PU"'

Pn2)+"2    Pu"2

P\v

P2v

Pv\ Pv2 P„
n + h„

Since at most the diagonal elements contain a factor n, de^-P,,) is a polynomial in

n of degree less than or equal to v; therefore, if det( Pn ) is not identically zero, the set

(2.11) ^={«:det(Pj = 0,ne^o}

is finite and card^) *£ v.

Now a recursive relation for the elements t\"(x), i = l,...,i», can be stated. In this

regard, the following result extends Ortiz' theorem 3.3 [13].

Theorem 2.2. For every i E [l,.. .,v) the elements of L¡ are connected by the

following recursive relations:

(2.12)    trh'(x) = 2 dir
r=l

where

,m + h

v    m+hj-\

er~2      2    P?£k(x)
7=1      * = 0

kdS,

mE N0- <fr.

(dir) = (/>;)■'

and pkr are the coefficients of the elements of (2.9) for n = m.

Proof. Let x?+h' De the class of equivalence modulo E¡, i G {\,...,v}, of the

polynomial

(2.13)   ArHx) = 2 d,r
r=\

m + h,-\

xm+H- 2    2   pfrQk(x)
j=\      k = 0

keSj

m E NQ - ty.
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The application of D to xf\ using (2.4), after some algebraic manipulation, yields

(2.14) DxT+hix) = 2 *m+h' 2 dlrp?r+hJej + RT+hix).
j= 1 r= 1

As it is

v

2 d,rPjrh> = 8U.
r=\

(2.14) can be written as

DxT+h'(x) = xm+h>ei + R™+hix).

Hence x7+h' can be identified with £™+h<(x).

From this and from Theorem 2.1 an extension to systems of Ortiz' Corollary 3.3

[13] follows:

Corollary 2.3.  For every i E [1,2,.. .,v)  the canonical polynomials Q™(x),

m E N0 — ty, are connected by the following recursive relations:

\

(2.15) QT+hix) = 2 dir
r=\

m + h,-\

x>»^er-  2      2    pfrQk(x)
7=1      k = 0

k$S,

plus an arbitrary linear combination of elements of UD.

3. Development of the Integration Formulas. As stated in the introduction, in order

to derive the integration formulas, the differential problem (1.7), (1.8) has to be

solved, and the solutiony*(x) has to be computed in xn+x.

From the results of the previous section, it follows that >>*(*) can be expressed as

a linear combination of canonical polynomials, of the form

(3.1) y*{x) =22 d'Q^x) + 2 gjVj(x),
7=1/=0 7-1

msj

where the following position has been made:

aj

(3.2) d}= 2 r/c^   -f/.
k = 0

In the above M- = max{w, tf), q is the number of the polynomial solution V¿(x) of

the homogeneous system Dy(x) = 0, ay are integer numbers given by

1      [Sj, q<J<r,

Sj = card({s: s E S¡, s < m}).

cm-a is the coefficient of x* in the Chebyshev polynomial Tm_a(x) defined in

[xn, xn+x], tj, fk are, respectively, the degree and the coefficients of the polynomial

(1.4). rj, gj are parameters to be determined by imposing j;*(;c) to be the solution of

(1.7), (1.8).
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So, combining (3.1) with (1.7), from the linearity of the operator D and the

canonical polynomial definition, it follows that

v     [    M.

(3.4) Dy*(x) + F(x) = ¿
i=\

2 d}(xieJ + RJ(x))+ 2//^
i=0 ;=0

\ i<$Sj

= 2 2 *' 2 c-^.
j=\,=0      k = 0

To satisfy this equation the coefficients of the same powers xk must be equal. For

every y = l,...,i», the resulting equations for the coefficients of xk are identically

satisfied when k E N0 — S,, while, when k E S¡, they yield Sj scalar equations.

Denoting by [u]k the coefficient of xk in theyth component of a polynomial vector

u, these equations can be written

(3-5) 2    2 d¡,[R'p(x)]kj-dk = 0,       kESJ,j=l,...,v.
p=\  (=0

i<£Sp

Further equations are obtained by making (3.1) satisfy the initial condition (1.8).

Denoting by [w]j they th component of a vector w, these equations can be written

v       Mp q

(3-6)        2    2dl[Q'p(xn)]j+2g,[V,(xn)]J=[yn]J,       j=l,...,v.
p=\   1=0 i=l

i<tSp

From the above discussion, it follows that the linear system (3.5), (3.6) consists of

v + 2y=)í, scalar equations.

Therefore, to make, in this system, the number of the unknowns rj, gy equal to the

number of the equations, as the number q of the g, is determined by the differential

operator, the number ay of the rj must satisfy

(3.7) 2 «7 = " + 2 5, - q.
7=1 1=1

Moreover, from (3.5) a, must satisfy also

(3.8) *j>ij,      j=l,...,v.

a7 are not uniquely determined by (3.7) and (3.8), therefore they can be suitably

chosen as in (3.3).

Finally, the following class of one-step methods is obtained from (3.1), (3.2), (3.5),

(3.6),

v    Mi q

(3-9) yn+i = 2   2 d;Q'(xn+x) + 2 g^(*B+i),
7=1,=0 7=1

et¡

(3.10) d'= 2Íc'-ka¡-f/,
k = 0

M,
\k

(3.11) 2    2d¡,[R'p(x)]j-dk = 0,       kESJJ=l,...,v,
p=\   1=0
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A/„

(3.12)      2    2dp[QP(x„)]j+2gi[Vi(x„)]j=[y„]j,      j=l,...,v.
p=\   1=0 ;     I

Remark. If the first-order differential system is originated by a differential

equation of order v, choosing the following perturbation term

0

(3.13) Hjx)

Tm-aiX)   2   %kXk

A=0

we recover Ortiz' form [13] of the Lanczos tau approximant for a differential

equation of order v.

4. An Example. The methods derived above are, in this section, exemplified on a

simple differential problem, in order to better clarify the use of the resulting

algorithm.

For this purpose, the following problem is considered:

Ux2 + \)y\(x) + y2(x) = 0,      _v,(0) = 1,

\y2-(x)+xyx(x)+y2(x) = 0,    y2(0) = 0.
(4.1)

The canonical polynomials will be, now, constructed as developed in Section 2.

The generating polynomials are

P"(x)
nxn+x + nx

v.n+1

n-1

P2"(x)
x" + nx'

and, applying (2.2), (2.7), (2.8), it follows that

A, = l,    h2 = 0,

A, = 0,    A, = 1.

Therefore the matrix Wn(x) is

„,,   ,      lnx"+x + nx"~x
Wn\x) =

and accordingly Pn is

,n+l x"+x + (n+ ^x")'

n     1

1     1

Applying Theorem 2.2 with elementary algebraic passages, as D has no polynomial

solutions, the following recursive relations for the canonical polynomials are de-

termined:

1

(4.2)

er(*) = 77—7 (*"~'ei - x"e2 - (» - i)er2(^) + «e?-1**)),

Qï(x)

n-2

-^{-x"-xex + (n-l)x"e2

+ (n-l)Qr2(x)-n(n-l)Q"2-i(x)),

nEN0-{0,2).



AN EXTENSION OF ORTIZ' RECURSIVE FORMULATION 35

Therefore it is sufficient, in order to determine S¡, to verify if 0 and 2 belong to Sx

and/or S2.

From the definition (2.2) it follows that neither 0 nor 2 belong to S2, because

Po2(x) ¡I x2 + 2x

belong to Ü. Analogously 0 g S,, since 2PX° + P¡ + P2 = (x0) belongs to ß.

Therefore

{2}, S2= 0.

Now the canonical polynomials and the associated residuals can be constructed.

Qx0(x), Ql(x), Q\(x) are derived from the definition (2.4), the others by (4.2). It

follows that

Ö?(*) =

Q°2(x)

Q\(x) ■

x + 2

-x2

-x-2

x2 + 1

X +  1

-x2 + x- 1

Qi(x),

Qî(x) --

Q\{x) =

Ql(x)

Qt(x)

Qt(x) =

X

x2 - 2x - 8

-x3 + 5x2 - 2x + :

-x2 + 2x + 14

2x3 - 8jc2 + 2x - 2,

3

2x2 + 4x + 28
X'

T
i

'ix4 + 4x3 - I6x2 + 4x - 4

— + 6x2 - 12x - 48

\ 2
x4 - 12x3 + 48x2 - \2x + 12

R°x(x)

R°2(x)

R\(x)

0
0/'

0

0/'

0

or

^) = (°o)'
R2(x) do not exist,

R2^ = [Xo\

\3xQ

R\(x)

R\(x)

R24(x)

-6x2\

0    /'

21    1~YX

0

69   ,\
-X      \

2

0    /

From (1.9), (3.3) the perturbation term is

(T,° + T11x).rm_1(x)
Hm{x) =

r2°Tm(x)

From (3.1), (3.2), with elementary algebraic passages, the solution y*(x) of the

perturbed system can be written
m—1 m—1 m

(4.3)    y*(x) = t,° 2 Cm_xQ\{x) + r\  2 c'm^Q\+x{x) + t2° 2 c'mQ'2(x).
i=o i=o i=o
i¥=2 i¥=\
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The (4.3) has to be evaluated at every discretization point, and the t parameters

are determined at every step by solving the linear system (3.11), (3.12).

In particular, setting m = 3, the integration formula is

yn+) = t,° 2 c'2Q\(xn+x) + t,1 2 c2Qfx+x(xn+x) + r2° 2 4Q'2(x„+x),
1=0 1=0 1=0

1=*1

with the t parameters being solutions of the following system, whose first equation is

obtained by setting the expression of the residuals in (3.11)

"-c2V+(3c22-c0t;-6C33t2o = 0,

T?2c2[Q\(xn)]j + Tx2c2[Q<x+\xn)]J+
1=0 1=0

i¥=\

+ r202c1[Q,2(xn)]i=[yn]J,       y =1,2.
i = 0

5. Numerical Results. Numerical experiments have been carried out in order to

test the performance of the methods (3.9)—(3.12). For this purpose, the above

methods have been implemented into a fixed-order, variable-step algorithm, taking

as error estimate the difference between the values obtained by two methods of

successive orders. As the methods have been proved to be ,4-stable [3], they have

been evaluated on problems both stiff and nonstiff. They have been compared with

Gear's methods and with Enright's second derivative multistep methods, using,

respectively, the routines EPISODE [2] and SECDER [1]. The comparison has been

carried out on some significant test problems picked out from those proposed by

Hull [5], [7] and Krogh [8]. These problems, listed in the Appendix, have been

classified in the following classes:

(A) Stiff problems with real eigenvalues. These are three systems, of varying size,

with stiffness ratio: 200, 105, 105.

(B) Stiff problems with complex eigenvalues. These are four systems with real

eigenvalues -0.1, -0.5, -1, -4, and two complex eigenvalues -10 ± ia, where a takes

the values 3, 8, 25, 100, so that it is possible to see the behavior of a method as the

eigenvalues approach the imaginary axis.

(C) No stiff problems. These are three systems; the first has solutions asymptoti-

cally tending to 1, the second has oscillating solutions, the third has an inherent

instability.

In order to test the performance for different ranges of accuracy, each system has

been solved for four tolerances, namely TOL = 10"2, 10~4, 10"6, 10~8.

The method (3.9)—(3.12) utilized (and implemented into the routine TAU) is that

of order three for TOL = 10"2, four for TOL = 10~4, five for TOL = 10"6, 10"8.

Also EPISODE uses these orders in most of the cases, whereas SECDER generally

uses orders higher than these.

All the calculations have been carried out in double precision floating-point

arithmetic with a 60 bit mantissa (approximately 18 decimals) on the Univac

1100/80 computer of the University of Naples.
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The comparison criteria have been chosen in such a way as to reflect both the

efficiency and the reliability of a method.

The measures of efficiency chosen are:

(1) TIME—the total computing time, measured in seconds. It includes also the

time for calculating the exact local solution in each step.

(2) STEP—the number of integration steps, performed to cover the whole

integration range.

The measures of reliability chosen are:

(1) MAX LOCAL ERROR—the largest local error committed in all steps taken;

the error is measured in units of the tolerance and it is defined as the maximum

norm of y„(xn+x) — y„+l, where yn(x) is the true solution through the previously

computed point (xn, yn).

(2) GLOBAL ERROR—The maximum norm of the absolute error at the end of

the integration interval. It is measured in units of the tolerance.

Numerical results are presented in Tables I, II, III. They show that the proposed

method compares very favorably with the other two methods. In fact, it is better

than the other two as concerns the efficiency, and it is better than EPISODE and

comparable to SECDER as concerns the reliability.

This behavior is observed for all tolerances and for almost every problem. At the

present time high quality software, implementing the above methods in a variable-

order, variable-step algorithm, is in progress. Users of this package will be requested

to supply, for the differential system that is to be integrated, the degrees and the

coefficients of the polynomials au(x) and btJ(x), as quoted in (1.3).

6. Acknowledgment. The authors are indebted to E. L. Ortiz for his valuable

comments on the paper.

Appendix

Class A—Stiff systems with real eigenvalues

Al[5]

y\ = -0.5yx yx(0) = 1

y2 = ~y2 y2(°) = !
'^'=-100^3 y3{0) = 1

ti = -90^4 *(0) = 1

x E [0,20]

Eigenvalues: -0.5, -1, -90, -100

A2[5]

y'i = -i5y, y¡(o)= i  /= i,...,io

x E [0,1]

Eigenvalues: -1,-32, -243, -1024, -3125, -7776,
-16807, -32768, -59049, -100000
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A3[5]

y[ = -104j, + 100.y2 - 10^3 + y4

yi = -lQ3y2+l0y3-l0y4

y'-i = -y-i + l°y*

y¡ = -o.\yA

x E [0,20]

Eigenvalues: -0.1,-1,-1000, -10000

Ji(0) = 1

*(0) = 1

^(0) = 1

74(0) = 1

Class B—Stiff systems with complex eigenvalues [5]

y\ =

y2 =

y¡ =

rt =
yí =
y¿ =

-lOjv, + ay2

-ayx - 10y2

-y*

-■sy¡
-Ay6

yM
y2(o)

ä(o)
ä(o)
ä(o)
y6(o)

x G [0,20]

Eigenvalues: -0.1, -0.5, -1, -4, -10 ± ai

Bl    a = 3

B2    a = 8

B3    a = 25

B4   a = 100

Class C—No Stiff system

Cl[7]

y\ - -y\ + J2 Ji(°) =2

y2 = y\ - 2y2 + y%      ^(o) = °

>á = ^2 - ^3 ä(o) = 1

x e [0,20]

Eigenvalues: 0,-1,-3

C2[8]

fj'í=A ^1(0) = 0

\y'i = -yx      y2(P) = i

x g [0,20]

Eigenvalues: /, -/
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C3[8]

y\ = y2      Ji(o) = i

j2=Ji      y2(o) = -\

x E [0,20]

Eigenvalues: 1,-1
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