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The Accurate Numerical Solution of

Highly Oscillatory Ordinary Differential Equations*

By Robert E. Scheid, Jr.

Abstract. An asymptotic theory for weakly nonlinear, highly oscillatory systems of ordinary

differential equations leads to methods which are suitable for accurate computation with large

time steps. The theory is developed for systems of the form

Z = (A(t)/e)Z + H(Z,t).

Z(0, f) = Z„,       0</< 7\0<e« 1,

where the diagonal matrix A(t) has smooth, purely imaginary eigenvalues and the components

of H(Z, i) are polynomial in the components of Z with smooth (-dependent coefficients.

Computational examples are presented.

1. Introduction. Mathematical modeling of a chemical, electrical, mechanical or

biological process often leads to a differential system whose Jacobian has at least

one eigenvalue with either a large negative real part or a large imaginary part. Even

when the underlying structure is quite complicated, one generally can analyze the

stiffness of such a system through the simple scalar equation:

dy/dt = ay,       t^ 0,

(11) V(0) = V("v  ■ ' Case I: Re{-a) » 1,

CaseII:|Im{fl}|» 1.

Unless one is prepared to compute with an excessively small time step, most

conventional numerical methods are ill-suited to the problem for reasons of stability

or accuracy. For example, in Table 1 we consider several generic schemes as applied

to the system (1.1) with mesh width h.

On considering the stiff limit (\ah\^ oo with Re{i//7} *£ 0), we find that the first

method is unstable while the second and third are stable. Moreover, the solution of

(lb) decays rapidly on the grid points, while the solution of (lc> can be char-

acterized as grid oscillations. These observations do not contradict the general theory

which has been developed for the nonstiff limit (|a/i|-> 0) but rather indicate that

one cannot expect convergence in the stiff limit.
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Table 1

METHOD FORMULATION/SOLUTION \ah\^°° (Re{ah}<0)

Forward t vN+1 = vN(l + ah)

Euler \vo=yo \vN\^>°° (N>0)

<la> vN = (l+ah)Nv0

Backward l vN+ t(l -ah) = vN

i"*
Rule K=*> ^-^(-l^o (^>0)

Euler \v0=y0 \vN\^0 (N>0)

<lb> vN=[ll(l-ah)]Nv0

Trapezoidal      ( vn+i(^ ~a^ß)= vn(^ + aV2)

<lc> vN=[(ï+ah)/(l-ah)]Nv0

Nevertheless, for Case I the solution of (lb) is qualitatively similar to the solution

of the differential equation (1.1). Much has been made of this salient feature of the

backwards Euler formulation, and many schemes with similar stability properties

have been proposed for stiff problems of this type (see, for example, Lambert [15]

and Kreiss [13]). With the exception of a thin boundary layer, such problems have

nicely behaved solutions. Our aim is a detailed numerical analysis of the highly

oscillatory case (II), in which the rapid changes are expected to persist.

Since the fundamental work of Poincaré, mathematicians studying oscillatory

phenomena have developed an extensive arsenal of perturbative techniques including

multiscaling, averaging, and the near-identity transformation (see, for example,

Kevorkian and Cole [12], Nayfeh [24], and Neu [23]). For the most part, these tools

are difficult to implement numerically since the analytic manipulations require a

competence not to be expected of a collection of FORTRAN statements. However, a

number of computational schemes have been proposed for certain restricted versions

of the general problem, which has been characterized as "almost intractable" by C.

W. Gear [9].

Many researchers have attempted to extrapolate the effects of the oscillations

from grid point to grid point. For certain problems in which the high frequencies are

known in advance, Gautschi [8] developed linear multistep methods which are exact

for trigonometric polynomials up to a certain degree, and later Snyder and Fleming

[28] proposed an aliasing technique applicable to Certaine's method for solving

ordinary differential equations. Multirevolution methods [10], [29] were first intro-

duced by astronomers to calculate future satellite orbits by using some physical

reference point such as a node, apogee or perigee; these ideas were further developed

by Petzold [25] and Petzold and Gear [26], whose methods extrapolate the effects of

the oscillations for many cycles by first calculating for one cycle near each grid

point. Fatunla [7] also introduced schemes designed to follow many cycles with each

time step.

Others less concerned with the details of the oscillations have proposed filtering

techniques designed to eliminate entirely the effects of the fast modes. In their study

of linear problems with well-separated, slowly varying large frequencies, Amdursky
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and Ziv [3] used left and right eigenvectors corresponding to the high frequencies to

project the solution onto the manifold of smooth components. Lindberg [16] used

temporal filters to remove the grid oscillations resulting from the applications of the

trapezoidal rule. More recently Kreiss [14] has shown that for a large class of linear

and nonlinear problems oscillations can be suppressed by a proper choice of initial

conditions. And finally G. Majda [17] has demonstrated that for the linear problem

time-filtered solutions have the full accuracy of the filtering method as long as the

system has constant coefficients, the fast and slow scales have been separated, or the

initial data have been prepared by Kreiss's technique; otherwise, the computed

solutions are only first-order accurate.

Since, for many problems, the effects of the oscillations cannot be blindly

suppressed or crudely approximated, a number of analytical-numerical methods

have been proposed to further exploit the underlying mathematical structure.

Miranker and Hoppensteadt [11], [18], [19] analyzed the theoretical and practical

difficulties of implementing a method of averaging for such problems; however, they

only executed their strategy to solve linear equations with constant coefficients.

Amdursky and Ziv [2] also studied the linear problem with slowly varying large

frequencies by using a formulation similar to averaging. Nonlinear problems of the

form

(1.2) d\/dt= (A/e)\ + g(t,X),       t>0.

X(0) = X0,
0      1
-1     0 0 < e « 1,

were studied by Miranker and van Veldhuizen [20], who introduced a Fourier

expansion in the fast scale (f = t/e). Miranker and Wahba [18], [21] also analyzed

such oscillations by developing a calculus of stable averaging functionals to replace

the standard point functionals of analysis.

While our approach is similar to this last group in that we use analytical as well as

numerical techniques to calculate the solutions accurately, we treat nonlinear sys-

tems in considerably greater generality than has previously been attempted. To

illustrate the approach, we first consider the scalar problem

(1.3) u' = {ia/e)u + u2,       t/(0, e) - u0,       0 < t < T, 0 < e « 1,

where a is a nonzero real number and, in accordance with standard notation, e is a

sufficiently small positive real number. The substitution

(1.4) u = exp(iat/e)x

reduces the stiff system (1.3) to a formulation in which the right-hand side is

bounded but rapidly oscillating:

(1.5) x' = e\p{iat/e)x2,       x(0, e) = x0 = u0,       0<t<T.

In this introduction we refer to terms with factors such as exp(('a//e) as oscillatory;

terms without such factors are called nonoscillatory. For sufficiently small e system

(1.5) can be solved explicitly by separation of variables

(1.6) x = x0[l — ex0(e\p(iat/e) — l)/(/'a)]"'

00

= x0 2  [x0{exp(iat/e) - l)/(/a)]V.
k=0
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For less tractable equations, or course, this method is unworkable, and solutions

must be uncovered by more general techniques. On investigating the dominant

balance of (1.5), we intuitively expect the rapidly oscillating terms to be less

important, and accordingly in Section 4 we demonstrate that

(1.7) max |jc(/, e) - x0\ = 0(e).
t

This analysis leads to an obvious change of variables:

(1.8) x' = exp(iat/e)[(x2l/e) + 2x0x + ex2],        x(0, e) = 0,        x = x0 + ex.

The 0(\/e) oscillatory term cannot be neglected; however, after the substitution

(1.9) x=yx(t, e)+x,       yt(t, e) = -i(xl/a)exp(iat/e),

we have the more manageable system

(1.10) x' — (-2ixl/a)exp(i2at/e) + 2x0xexp(iat/e)

+ e[(-ixl/a)exp(iat/e) + x\  exp(iat/e),

x(0,e) = i(x2/a),

and again, by the results of Section 4, we can neglect oscillatory terms and 0(e)

terms to give

(1.11) max\x(t,e)-wl(t)\= 0(e),
t

where w{ satisfies the system

(1.12) w[ = 0,       Wi(0) = i(x2/a).

Thus, the first-order approximation to the solution of (1.5) is given by

(1.13) x = x0 + e(w{(t)+y](t, e)) + 0(e2),

where w,(i) is nonoscillatory andt^/i, e) is oscillatory.

We systematically develop this methodology for nonlinear systems in Sections 2,

3, and 4, where the balancing of terms is justified by a functional Newton iteration.

Integration by parts yields the first oscillatory correction as in (1.9), whereupon the

elimination of secondary terms determines the first nonoscillatory correction as in

(1.12). When this procedure is repeated after linearization, corrections of higher

order are likewise generated; the solution is then represented by an asymptotic

expansion of the form

(1.14) x(t,e) ~2K(0 +yk(t,e))ek,
k

where each wk(t) is bounded and nonoscillatory and each yk(t, e) is bounded and

oscillatory. We characterize the terms of (1.14) as the solutions of equations which

are easily resolved with a large time step, that is, a time step which need not be small

compared with e. Given this asymptotic representation for the solution, we develop

in Section 5 a formal procedure which generates the terms of the series so that

repeated linearizations are unnecessary; moreover, our formalism is well-suited to

computational implementation since the analytic manipulations are simply the

Taylor expansions of polynomials. Our approach is conceptually similar to the

generalized method of averaging as developed by Bogoliubov and Mitropolsky [4].
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One can treat problems with variable coefficients in a similar fashion. For

example, we consider a nonautonomous variant of (1.5),

(1.15) x' = exp(ia(t)/e)x2,       x(0,e)=xo,       0 < t < T,

where a(t) is a smooth real function with

(1.16) min|a'(Ol>0.
i

As in (1.6) the solution is readily obtained by separation of variables:

00

(1.17) x = x0[l - x0F(t, e)]'1 = x0 2 [x0F(t, e)]\
A:=0

where

(1.18) F(t,e) = f'exp(ia(t)/e)dt.

The right-hand side of (1.18) can be integrated by parts to give an asymptotic

expansion

(1.19) F(t,e)~cxp(ia(t)/e){e[-i/a'(t)]+e2[a"(t)/(a'(t)f} + 0(e')}\Q,

and after the substitution of (1.19) into (1.17) we have an expansion of the form

given in (1.14). Without the assumption (1.16) this procedure is unworkable because

the mathematical structure of F(t, e) changes significantly over any interval where

a'(t) vanishes. This behavior characterizes the general theory, where the expansions

first may become nonuniform and then eventually break down entirely due to the

failure of integration by parts.

In a future paper we shall extend our results so as to handle these circumstances,

which can be described mathematically as a turning point or physically as a passage

through resonance. In general, however, if there is no well-defined separation

between the frequencies of the fast and slow modes of a system, then one is not

really solving a problem with different time scales.

2. Reduction to the Nonstiff Formulation. We consider the general system

(2.1) Z'={A(t)/e)Z + H{Z,t),    Z(0, e) = Z0,       0 < í < 7\ 0<e«l,

where:

(i) Z is an «-dimensional complex vector.

(ii) Z0 is independent of e.

(iii) H(Z, t) has components which are polynomial in the components of Z with

/-dependent coefficients in C(t) (p > 0).

(iv) The matrix A(t) is in diagonal form with purely imaginary entries:

(2.2) A(t) = diagi(X,(0)    (Re{M0}=0),   A(t)ik) = \k(t) & C(t).

Here A(t){k) is the /cth component of the vector A(i), and C(t) is the set of all

i-dependent functions with p continuous derivatives. In this paper | f | denotes the

maximum norm of the vector f. If the nonlinearities are not polynomial, then one

often can make local approximations to achieve this form. In any case smoothness

requirements appear to be necessary for both the independent and the dependent

variables. The assumption on the diagonal structure of A(t) is needed to guarantee a
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bound on the growth of the solution. For example, the matrix

(2.3)

has eigenvalues

(2.4)

1
+ 0    0

d    0

A . = i/e ± ¡d/e .

Thus,if A(t) has such Jordan structure, then an 0(1) perturbation of the system

will cause the solution to become unbounded as

(2.5) e-0.

We also note that a smooth g-dependency in the coefficients and the initial

conditions is possible although this adds no significant features to the theory.

This system can be transformed to a formulation in which the coefficients are

bounded but some are rapidly oscillating.

Example 1. A simple mass-spring system with small damping can be modeled by

the equation for a Rayleigh oscillator:

(2.6)

0

-I/e

l/e

0
+

0

z,(0,e)

z2(0, e)
0<t<T, 0 < e « 1.

After the change of variables

(2.7)

the equations become

1
-i

i

-t

("i + u2)/2

i(u] - u2)/2

Z| + iz2

z, - iz-.

(2.8)

u2)

-i/e

0

«,(0,e)

«2(0, e)

0

i/e
+

F(«,,w2)

-F(u],u2)

0<t<T,

where

'2.9)   F(ux,u2)={ux -±i

The system (2.8) has the form (2.1). Next we make the change of variables

j¿u\ + iu2ul lu.u2 + 24"! < tt, «I-

(2.10)

and obtain

(2.11)

«i = exp(-/i/e)X|,        u2 = exp(it/e)x2,

I   exp(it/e)F(exp(-it/e)xl,exp(it/e)x2)

\ -exp(-it/e)F(exp(-it/e)x¡,e:xp(it/e)x2) J '
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by which we have

(2.12) x\ = jx] — ¿¡x2x2 - 5 exp(2/r/e)x2 - ¿ exp(4/7/e)x|

+ £ exp(2it/e)x1lx] + ¿ &xp(-2it/e)x],

x(0,e) =1,       x2 = xu       0<t < T.

For the general case, let Se(t, s) be the solution operator of the reduced system

(2.1); in fact, we can write

(2.13) St(t,s) = diag \exp (f'Xk(r)dr)/t

Thus, with the change of variables

(2.14) X=5e(i,0)_lZ,

we reach a system in which the coefficients are bounded but some are rapidly

oscillating:

(2 15) X' = G(X' '' £) = 8l(X' U C) + 8n(X' 0 + fl(/' £) + fn(0'

X(0,e) = Xo;       0<e«l;0</<7\

Here the forms of the coefficients are given by

(i) X0 = Z() is independent of e.

(ii)g,(X, t, e)<" = l]aIJ(t)e:xp[BIJ(t)/e]plj(X).

(iii)gII(X,0(,) = 27<7(0?,7(X).

(iv)/,(i, £)<'» = lJci/(t)exp[Gu(t)/e].

(v)/n(0(,) = h,(t).

(vi) {ß,7(0,4,(0, cu(t), ht(t)) CCP(t).
Pi ¡0Í) and <7,7(X) are monomials of positive degree in the components of X; 5, (i)/e

and G, (r)/e can be represented by «-vector scalar products of the form

(2.16) NrP(/)/e,

where N is a constant «-vector with integral components and the elements of P(i)

are given by

(2.17) P(0(,)=/\(*)<fc.

By (2.2) and (2.17) the /-derivative of the expression (2.16) is

(2.18) (NrP(0/e)'= NrA(i)/e.

The entries of A(t)/e are called fundamental frequencies, while the relevant terms of

the form (2.18) are called secondary frequencies. We also impose the following

restriction on all relevant secondary frequencies:

(2.19) |N7A(/)|>a:>0,

where K is some positive constant. K/e is then a measure of the stiffness of the

system.

This last assumption arises out of the necessity for some concrete specification as

to the meaning of "fast oscillations"; moreover, this restriction must be maintained

in subsequent levels of analysis. Functions which have the form given by (iv) and
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which satisfy (2.19) are called strictly oscillatory (of class p); functions of the form

given by (v) are called strictly nonoscillatory ( of class p ). In this paper the subscript I

designates a strictly oscillatory function, and the subscript II designates a strictly

nonoscillatory function. The system (2.15) is said to be in nonstiff oscillatory form.

If for some relevant

(2.20) a(t) = NTP(t)

we have

(2.21) a'(t) = NTA(t) =0.

then the corresponding term can be reclassified as nonoscillatory; however, if a'(f)

vanishes at some isolated point, then the approximation must be made as a

turning-point calculation, and, as previously noted, this procedure will be outlined in

another paper. If, as in Example 1, the entries of A(/) are integral constants, this

difficulty cannot occur since all possible secondary frequencies must satisfy (2.19) or

(2.21) with

(2.22) K=\.

The strength of the restriction (2.19) also allows us to define the leading-order

antiderivative of any oscillatory function through the linear operator

(2.23) £{c(0exp[£(0A]} =[c(t)/B'(t)]exp[B(t)/e],

since

(2.24) e£{c(/)exp[ß(0A]}' = c(t)exp[B(t)/e] + 0(e),

where the 0(e) notation is to be interpretated in terms of the maximum norm.

Our aim is to characterize the solution of the system (2.15) in terms of these

concepts. Thus, the function i(t, e) is said to be decomposable if it is of the form

(2.25) i(t,e) = 2(Wk(t) + Yk(t,e)y,
k

where each \k(t, e) is strictly oscillatory and each WA(/) is strictly nonoscillatory.

And likewise f(t, e) is said to be decomposable to 0(em) if

(2.26) i(t, e) = 2(W*(r) + \k(t, e))e* + 0(e"'+'),
k

where each \k(t, e) is strictly oscillatory and each W¿(?) is strictly nonoscillatory.

The characterization of the solution of (2.15) in terms of such an asymptotic

expansion stands as the major goal of this paper; the breakdown of this decomposa-

bility principle corresponds to a violation of (2.19), whereupon turning-point tech-

niques are necessary.

3. Hierarchy for the Linear Problem. Since our treatment is based on a functional

Newton iteration, we first discuss the linear problem

X' = A,(t, e)\ + An(t)X + ft(f, e) + f„(f),

* " ' X(0, e) = X0;        0<t<T, 0<e«l,

where the subscript I denotes a strictly oscillatory function and the subscript II

denotes a strictly nonoscillatory function. We begin with a rather standard result on

the stability of ordinary differential equations.
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Lemma [3.1]. Consider the two systems

(3.2) Y' = B(t)Y + h(f, e),       Y(0, e) = Y0,       0 < f < 7\ 0.<e<l,

a«i/

(3.3) Z' = fi(r)Z + h(/,e) + eh(i,e),

Z(0, e) = Y0,       0</< T, 0<e« 1,

iv/tere each vector or matrix is a bounded continuous function of its arguments. Then we

have

(3.4) max |Y(/,e)-Z(/,e)|= 0(e),        max |Y'(f, e) - Z'(f, e)| = 0(e).
i r

Proof. The system for

R = Y- Z

has the form

R'= 5(f)R - eh(f, e),        R(0, e) = 0,

and therefore by the basic results of stability theory we have (3.4) (see, for example,

Coddington and Levinson [6]).

Thus, to achieve leading-order accuracy one simply ignores certain terms of the

system. This principle leads to the following useful result concerning the system

(3.1).

Theorem [3.1]. Let X(t, e) be the solution o/(3.1), and let \(t) be the solution of the

system

(3.5) V' = ¿n(/)V + fn(f),       V(0) = X0.

We then have

(3.6) max |X(i, e) -V(f)| = 0(e),    max|X'(f, e) - V'(f) - eF'(t, e)\ = 0(e),
t t

F(i,e) = £{f, + /1,V}.

Proof. Let

Z(f, e) = X(f, e) - V(f).

Then the equations for Z(t, e) are

Z' = [Ax(t, e) + Au(t))Z + (f,(/, e) + Ax(t, e)\(t)),        Z(0, e) = 0.

Since \(t) is strictly nonoscillatory, both forcing terms are strictly oscillatory. Then

by (2.24) the equations for

Z = Z-e(F(i,e)-F(0,e))

have the form

Z' = {Ax(t, e) + An(t))Z + eh(t, e),        Z(0, e) = 0,

and so by Lemma [3.1]:

max|Z(<,e)|= 0(e),        max|Z'(í,e) - eF'(i, e)|= 0(e).
t t
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4. Solution by Successive Linearizations. By using the results of the previous

section, we now generate an asymptotic expansion for the solution of the system

(2.15), which is in nonstiff oscillatory form. If a linearization technique is to be

successful, one must have a suitable value for the initial approximation.

Assumption [4a]. In correspondence to the system (2.15), the reduced system

(4.1) v' = glI(v,/) + f,i(f),     v(o) = x0,     o</<r,

is well-posed and has a bounded solution in Cp+ '(;)•

Given this assumption, we can define the (n X n) matrices

(4.2) Ax{t, e) = gt(X, f, e)x|x=v,       Au(t) = gn(X, f)x|x=v,

where A{(t, e) is strictly oscillatory of class p and An(t) is strictly nonoscillatory of

class p. Here the notation g(X)x indicates the Jacobian of the vector function. We

also define the operator

(4.3) 91t(X) = G(X, f, e) - X',

where G(X, t, e) is as given in (2.15). For a positive integer m,Xm is said to be an

em-approximate solution of (2.15) if

m

X"(f,e)=   2eHWk(t) + \k(t,e))+e"'+%l+](t,e),
(4.4) k = o

X"'(0, e) = X0 + 0(em+l),        9H(Xm) = 0(em+l),

where each Yk is strictly oscillatory and each WA is strictly nonoscillatory. By means

of Assumption [4a] we immediately can demonstrate the existence of such an

approximate solution.

Theorem [4.1] The function Xo, which is given by

X°(f, t) = W0(f) + eY,(f, e),        W0(r) = V(/),

Y,(í,e) = E{gI(V,í,e) + fI(í,e)},

is an e°-approximatate solution of the system (2.15). W0(f) is strictly nonoscillatory of

class (p + 1), and\t(t, e) is strictly oscillatory of class p.

Proof. To verify (4.4) we consider

91t(X°) = G(X°, f, e) - ÍX0)'.

By (4.1) and (2.24) we have

(Xo)' = V' + g,(V, t, e) + ft(f, e) + 0(e) = G(V, t, e) + 0(e),

and also a simple Taylor expansion gives

G(X°,f, e) = G(V, t,e) + 0(e).

Therefore Xo is an e°-approximate solution of the system (2.15).

We now demonstrate that an em-approximate solution actually approximates the

exact solution of the system.

Theorem [4.2]. IfXm is an em-approximate solution of the system (2.15), then

(4.6) max \Xm(t, e) - X(t, e)| = 0(em+ '),
t

where X(t, e) is the solution of(2.\5).
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Proof. Consider the (n + l)-dimensional space

<% = {(x,f) 3|x-Xm|<S, o</< r},

where 8 is some arbitrary positive constant. By our assumptions on X'" and the

system (2.15), we conclude that for some positive constants Kt and K2 we have:

(i) G(x, t, e) is continuous in °D;

(ii) | G(x, t, e)|< Kt inóD;

(iii)|G(x,, t, e) - G(x2, t, e)|< K^x, - x2| in fy.

Note that the Lipschitz condition (iii) is guaranteed even though the ¿-derivatives of

G(x, t, e) are unbounded as e -» 0. We now introduce a sequence of Picard iterates:

x0 = X-,        xN+]=X0+ f'G(xN,t,e)dt.
Ja0

m + I •.Since X'" satisfies the equation to within 0(e"     ) we have

X"' - X0 - f G(X"\ f, e)
o

</?e",+ 1,

where R is a positive constant. Provided the successive iterates are all in °D, we have

by induction

l*/v+. -xN\<em+xR(K2t)N/N\,

and thus for all positive N

max \xN - x()\<e",+ iRexp(K2T).
t

Therefore, for sufficiently small e all iterates remain in C'D. By the uniform conver-

gence of the iteration, we have the existence of a unique continuously differentiable

function X which satisfies

"3H(X)=0,       X(0, e) = X(),        max|Xm - X|= 0(em+1).
t

Corollary [4.2]. The system (2.15) with Assumption [4a] is well-posed with

(4.7) max|V(/) -X(f,e)| = 0(e),
t

where X(t, e) is the solution o/(2.15).

Proof. Since an e°-approximate solution is given by Theorem [4.1], the error

estimate follows from Theorem [4.2].

By using Theorem [4.2] we now extend the result of Corollary [4.2] to obtain

higher-order approximations.

Theorem [4.3]. Consider the system (2.15). Let Xm be an em-approximate solution

where, for k > 1, WA is strictly nonoscillatory of class (p + 2 — k) and \k is strictly

oscillatory of class (p + 1 - k). Let Lf)1L(Xm) be decomposable to 0(em+i) with the

form

(4.8) 9lt(Xm) = em+1f, + em+1fn + 0(em+2),

where f, is strictly oscillatory of class (p — m — 1) and in is strictly nonoscillatory of

class ( p — m). Then an e"'+ '-approximate solution of the system is given by

(4.9) Xm+1 = Xm + e"'+1Wm+, + em+2Ym + 2,
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where

(4 10) W™+i=^n(')Wm+1+fn(f),        Wm+1(0) = -Ym+1(0,e),

Ym+2(f,e) = e{fj + ^Wm+1}.

Here WTO+,   is strictly nonoscillatory of class (p — m — 1),  and Ym + 2  is strictly

oscillatory of class (p — m — 1). Thus, we have

m+\

(4.11)    |X-Xm+l|=0(e"! + 2),        Xm+I -   2 e*(W, + YA.) + e"! + 2Y„,+2.

A=0

Moreover, ¡JJíi(Xr"+l) has the form (4.8) with m replaced by (m + 1) //

(1) 91t(Xm) is decomposable to 0(em + 2);

(2)A¡(t, e)Y„, + 2 is decomposable; and

(3) [(G(X, f, e)x)(Wm+I)]x(W, + Y,)|x=v « decomposable.

Proof. By Theorem [4.2] we have

X = X™ + em+lZ,        Z(0, e) = -Ym+,(0, e),

where Z(t, e) is a continuously differentiable function of /, and X is the solution of

(2.15). The differential equation then can be written as

(Xm + em+lZ)' = G(Xm + e^+'Z) = G(Xm + e",+ 1Z) - G(Xm) + G(Xm).

We now carry out a linearization which is equivalent to a functional Newton

iteration:

Z'=[G(X"' + e'"+lZ) -G(Xm)]/em+l + 91l(Xm)/em+l

= [A{(t, e) + Au(t)]Z + f,(/, e) + f„(f) + 0(e),

where A\ and An are given by (4.2). By Lemma [3.1] and Theorem [3.1] we have

max |Z - (Wm+1 + eY„, + 2)|= 0(e),        max |Z' - (Wm+I + eY„, + 2)'| = 0(e),
t r

where

W;+1=^,(0Wm+,+fn(0-        W„,+ l(0) = -Y„,+ 1(0,e),

Ym+2(f,£) = ß{f, + ^,Wm+,}.

Since Sf(0,0) = /, by (2.13), the initial condition for Wm+, is actually independent of

e. By our construction Xm+I and (Xm + I)' approximate X and X', respectively, to

within 0(em '2). Thus, we have

91t(Xm " ) = *(r " ) - 91L(X)

= [G(Xm+l,i,e) -G(X,f, e)] + [(Xm+I)'- X'] = 0(em+2).

Since

X-+l(0,e) = X0 + e'"+2Ym+2(0,£),
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we conclude that Xm+I is an em+ '-approximate solution of the system (2.15); (4.11)

then follows from Theorem [4.2]. We have

t(r+l) = 9it(xm) + G)i(x'"+I) - ^itix"1)

= yt(Xm) - e-+lW;+l(0 - e"-+2Y;+2(i, e) + em+>[G(X-, t, e)x]Wm+I(f)

+ e"'+2[G(X'", t, e)x]\m+2(t, e) + 0(e2m+2)

= ffJl(Xm)

-^+'W;+,(f) - e"+JY;+2(/, e) + e^[Ax + An]Wm+l(t)

+ e"> + 2[Al + An]\m + 2(t, e) + em+2[[G(X, t, e)JWm+1]x[WI + Y,] |x=v

+ 0(em + 3).

By our specifications for Ym+2 and Wm+1, the second line of the last expression for

9H(Xm+1) combines with the strictly 0(em+[) terms of 9H(Xm) to give a term of the

form

em + 2f,(f,e),

where f {is strictly oscillatory of class (p — m — 2).

The three additional assumptions of the theorem guarantee that the other terms

are likewise decomposable. The smoothness conditions for these terms are satisfied

since the terms must be algebraic combinations of terms which meet those require-

ments. Thus, provided the conditions of the theorem are met, we have decomposabil-

ity to the next order.

5. Solution by Formal Expansion/Computational Examples. Under the assump-

tions of the preceding section, one can approximate the solution of the system (2.15)

by an expansion whose terms are solutions of equations which can be treated by

standard numerical techniques. In principle Theorem [4.3] can be applied repeatedly

until the decomposability argument breaks down. However, provided the asymptotic

form of the solution is guaranteed, one can generate the corresponding equations by

a formal procedure so that repeated linearizations are unnecessary. First we intro-

duce a fast time scale

(5.1) r = */e,       X = X, + (l/e)Xf,

and we accordingly reformulate the system (2.15):

(5 2) X' = gl(X' '' L e) + 8ll(X'l) + fl(í' ^ e) + fn(0'

X(0, e) = X0,       0<e«l, 0 < t < T,

with the appropriate modifications of the conditions on the coefficients:

(i) X0 is independent of e;

(ii)gl(X, t, ?, e)<" = 2yfl,7(f)exp[fi,v(eOA]/',7(X).

(iii)gn(X,0(,) = V'/'H/X).
(iv)/i(/, f, e)<-> = 2,.cl7(0exp[G,7(ef)/e].

(v)/„(f)(,) = *,(')•

(vi) K/f), d^t), cu(t), A,(i)} C C(t).
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PijÇX.) and q:j(X) are monomials of positive degree in the components of X;

BjJ(e^)/e and Gn(e^)/e can be represented by «-vector dot products of the form

(5.3) NrP(ei:)A,

where N is a constant «-vector with integral components and

(5.4) P(e$)a)=[\(s)ds,    P'(ef) = A(eO,    |NrA0í)|> *
•'o

for some positive K.

To extend the nomenclature of the previous section we call terms of the form (iv)

strictly oscillatory ( of class p ), and we call terms of the form (iii) strictly nonoscillatory

(of class p). As before, subscript I denotes a strictly oscillatory function and

subscript II denotes a strictly nonoscillatory function. The leading-order antideriva-

tive of an oscillatory function is given by the linear operator

(5.5) ß{c(f)exp[2?(eOA]} = (c{t)/B'(t))™v[B(eÇ)/e\.

To maintain our formalism we must insist that ¿"-dependence occur only as in (iv).

Thus, we must interpret the ¿"-derivative of an oscillatory function by the rule

(5.6) |;(c(f)exp[l?(eOA]) = c(t)B'(t)Qxp[B(et)/e],

whereby we have

^U{c(0exp[B(ef)A]} = c(f)exp[£(e?)/e],

(5J) Í 3 1
É|^c(f)exp[B(ef)A]j = c(f)exp[fi(ef )A]-

This procedure apparently does not correspond to a traditional multiscaling argu-

ment; however, we are only attempting to derive a set of formal rules which mimic

the balancing arguments of Section 4. The following assumptions give justification to

our methodology.

Assumption [5A]. The reduced system

(5.8) V = g„(V, t) + f„(f),        V(0) = Xo,

is well-posed and has a bounded solution in Cp+ '(/)•

Assumption [5B]. Theorem [4.3] can be successively applied to system (2.15) to give

an asymptotic expansion for X(t, e):

m

X=   2 XkSk + em+lYm+l(t,S,e) + 0(em+i)        (m<p),

(5.9) A=0

Xk = Yk(t,S,e) + V/k(t).

These assumptions assure that our formalism will not break down since our

procedure is really a reworking of the decomposability argument of Theorem [4.3].

In correspondence to (4.2) let Ax(t, f, e) and Au(t) be (« X «) matrices whose

(ml, w2) components are given by

[^(f,?,e)r-> = 2ÛM,(i)exp[5mu(enA][/'mi/(X0)x]('"2>,

(5.10) J

[^n(0](m""2) = 2^,(i)[?mi/(X0)x](m2).



HIGHLY OSCILLATORY ORDINARY DIFFERENTIAL EQUATIONS 501

The substitution of the expansion into the differential equation gives

(5.11) (X0| + X1{] + e(XL + X2f) + e2(X2, + X3f) + • • •

= g,(X0 + eX, + e2X2 + • • •, f, f, e) + f,(r, {, e)

+gn(X0 + eX1 + eX2 + ---,f) + fII(f).

We now adopt a formai procedure to solve the system (5.11). First we expand each

monomial as a power series in e; then we balance successive powers of e. Given that

on the /cth level we have previously determined X0,X,,... ,Xk_] and YA, we balance

the 0(e*) terms by the following rules:

I. Determine WA(r) to eliminate all terms which are strictly nonoscillatory. This is

essentially a secularity condition designed to eliminate powers of f in the expansion.

The appropriate initial conditions are:

(5.12) Wo(0) = X0,       WA(0) = -YA(0,0,e)        (* > 0).

II. Determine \k+](t, f, e) by (5.7) to balance the remaining terms.

We now illustrate this approach with two computational examples from the theory

of nonlinear oscillations. For illustrative purposes we include the resulting algebra

although, as we have previously noted, the analytical manipulations are conceptually

simple enough to be computationally feasible. First we return to the nonlinear

oscillator of Example (1) and calculate the leading order approximation:

(5.13)

J = v + e(W, + Y,) + e2Y2 + 0(e2) = V + e(W, + Y,) + 0(e2),

V = w,
Wx

In the notation of the section we have

\0)g,(X, f, f, e)    = -1 exp(2if )x2 - ¿ exp(4tf )x\

(5.14)

+ \ exp(2/f )x|x, + ¿ exp(-2íf )x\,

S¿\,t,S,z)w = glQL,t,S**y

gii(X.f)
(I)

2-"-! 8-"-2-"'l '
(I)^II(X,/),/) = gII(X,/),".

The appropriate version of (5.11) is

(5.15)    V, + Ylf + e(Y1( + Wlf + Y2f) + 0(e2)

= g,(V, Í, f, e) + gn(V, t) + eiAfa + ¿UW, + A,% + An\,) + 0(e2).

The first row of Ax is the (1 X 2) matrix fct?,(r, f, e) where

(5.16)    (î,(f,f,e)
\\zxp(2iï)V2 + \txp(-2tt)V2\

\-\ exp(2/f ) - \ exp(4i?)F2 + Ï exp(2i^)VV]

and likewise the first row of An(t) is the (1 X 2) matrix $,,(i) where

T

(5.17) &n(t)
¡V2
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By Rule I we determine V( t ) as the solution of

(5.18) V = {V-\VV2,        K(0) = 1,

and by Rule II 7, is given by

(5.19)

7,(i, f, e) = £{.-{- exp(2íf)F- ¿ exp(4/f)F3

+ UM2iÇ)V2V+4ïexp(-2iÇ)V3}

= i exp(2tf)K + 4 exp(4tf )F3 + ^ exp(2/f )F2K + x exp(-2/T)K3.

With the exception of y4,Y, all 0(e) terms of (5.15) are either strictly oscillatory or

strictly nonoscillatory. We have

<•&,(-    =.R(K)+ (strictly oscillatory terms),

R(V) = iV+^-6V2V3-^V2V,

and thus by Rule I the system for Wx is

(5.21) W[ = &uI Í J + R(V),    W¿0) = -7,(0,0, e) = -7Í/32.

By using (5.1), we can restore the full /-dependence of the coefficients; in terms of

the original variables we then have

(5.22) z, = Re{exp(-/f )*,} |f=,A,       z2 = Im{exp(-/f )x2) \t=l/e.

Using this analysis, we outline an approximation scheme based on standard

discretization techniques. First we ignore 0(e2) terms of the expansion. Using a step

size «, we approximate the solution of Eq. (5.18) by means of a fourth-order

Runge-Kutta scheme (see Lambert [15, p. 126]); then T, is given explicitly by (5.19),

and with the same step size « we approximate W] from (5.21) by means of a forward

Euler predictor followed by two trapezoidal rule correctors (see Lambert [15,p. 85]).

The total error for this approximation is then

(5.23) 0(«4) + 0(e2) + 0(e«2).

Computations were done with single-precision accuracy on a VAX 11/780 for the

case

(5.24) e= .01,       «= .1,

and, therefore, by (5.23) one might expect a grid error of approximately 10"3.

In phase space the solutions of (2.6) approach a stable limit cycle of approximate

radius two. Thus, in Figure 1 we plot the resulting approximation to the amplitude

(5.25) A(t) =[z2 + z2]l/2

as a function of the rescaled time variable t, and also we plot the approximate curve

of

(5.26) *M=y(t/e)

in Figure 2. In both cases we have linearly interpolated the amplitudes and the

phases between grid points to achieve full plotting accuracy. In the second two
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columns of Table 2 we compare the computed grid values with the accepted function

values, which were computed with double-precision accuracy by means of a fourth-

order Runge-Kutta scheme with a time step

(5.27) « = 104.

0.000        1.000 2.000 3.000 4.000        S.

Figure 1

1.000 2.000 3.000

Figure 2

5.000
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Table 2

Ai /A ERR(/Í) ERR(z,) ERR(£,) ERR(£2)

(absolute errors)

0 0.00 0.0E + 00 0.0E + 00 0.0E + 00 0.0E + 00

2 0.20 0.7E-06 0.1E - 05 0.7E - 04 0.2E - 04

4 0.40 0.1E-05 0.4E - 05 0.2E - 03 0.6E - 04

6 0.60 0.3E-05 0.4E - 05 0.1E-03 0.6E - 04

8 0.80 0.4E-05 0.1E - 04 0.4E - 04 0.3E - 04

10 1.00 0.4E-05 0.2E - 05 0.5E - 04 0.4E - 05

12 1.20 0.4E - 05 0.1E-04 0.2E - 03 0.1E-03

14 1.40 0.7E - 05 0.3E - 05 0.7E - 04 0.2E - 03

16 1.60 0.8E-05 0.2E-05 0.2E - 04 0.4E - 03

18 1.80 0.3E-05 0.3E-04 0.7E - 04 0.2E - 02

20 2.00 0.4E - 06 0.3E - 05 0.3E - 03 0.3E - 02

22 2.20 0.1E-04 0.1E-04 0.7E - 03 0.2E - 02

24 2.40 0.6E-05 0.3E - 04 0.2E - 02 0.1E-02

26 2.60 0.1E-04 0.2E - 05 0.3E - 02 0.2E - 02

28 2.80 0.1E-05 0.1E - 04 0.4E - 02 0.1E-02

30 3.00 0.1E-04 0.8E-05 0.5E - 02 0.1E-02

32 3.20 0.1E-04 0.2E - 04 0.6E - 02 0.1E-02

34 3.40 0.1E-04 0.5E - 04 0.6E - 02 0.1E-03

36 3.60 0.6E - 05 0.7E - 04 0.6E - 02 0.2E - 03

38 3.80 0.2E-04 0.1E-04 0.7E - 02 0.2E - 03

40 4.00 0.6E - 05 0.1E - 04 0.6E - 02 0.2E - 03

42 4.20 0.8E - 05 0.5E - 04 0.5E - 02 0.2E - 03

44 4.40 0.2E - 04 0.2E - 04 0.5E - 02 0.9E - 03

46 4.60 0.6E - 05 0.5E - 04 0.3E - 02 0.8E - 03

48 4.80 0.1E-04 0.3E - 04 0.2E - 02 0.1E-02

50 5.00 0.1E-04 0.5E-04 0.8E - 03 0.3E - 02

N is the number of the grid point.

tN is the value of t at the Nth grid point.

One likewise can apply these techniques to systems of coupled nonlinear oscilla-

tors. The following extensively analyzed system is taken from the theory of stellar

orbits in a galaxy (see, for example, Kevorkian and Cole [12]):

(5 28)    T" + fl2/"' = "*'    A-2" + /'2'-2 = 2erlr2,    r,(0. e) = 1,    r2(0.e)=l,

r¡(0, e) = 0,   r2'(0, e) = 0,        0 < e < 1, 0 < f"< T/e.

Here r] stands for the radial displacement of the orbit of a star from a reference

circular orbit, and r2 stands for the deviation of the orbit from the galactic plane.

With the change of variables

(5.29) Z= [z,,z2,z3, z4]r =[/-,, r[/a, r2,r[/b\T,       t = et,
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we have

(5.30)
Z' = (1/e)

0      a

-a     0

0
0
0

z +

0

OAki
0

(2/b):

Z(0,e) = [1,0, l,0]r. 0 < t < T,

I ¿3

0 < e « 1.

By a transformation similar to (2.7), we can reduce the system to diagonal form.

Thus after the change of variables

(5.31)    Z = SZ,    U=[ul,u2,u3,u4]T,    S =

the equations become

(1/2)

U = (t/e,

(5.32)

U

/,(U)

-im
/2(U)

-/2(U) !

0 < t < T, 0 < e « 1.

/,(U) = i(ii3 + t/4)2/4a = (i/4a)[u¡ + 2h3u4 + u2],

/2(U) = /(«, + m2)(m3 + u4)/2b - (i/2b)[uxuy + utu4 + u2u3 + w2«4].

U(0,e) = [1,1,LI]7",

As in (2.10), we now factor out the leading-order oscillatory behavior by means of

the transformation

(5.33)
U = 5(/,e)X,

[.Y|.A-2,.Y3..V4]r,

S(t, e) — diag[exp(-/a//e),exp(/'ai/e),exp(-/è/A)'exP('*/A)]'

and obtain the system

'   exp(/flí/e)/,(5(í, e)X)

-exp(-/aíA)/,(S(í,e)X)

exp(/Z»//e)/2(5(í, e)X)

-exp(-/èfA)/2(S(f,e)X)

(5.34) X'

X(0, e) = [1,1,1, \]T,        0</<7, 0<e«l.

From the structure of the transformations we have

(5.35) x2 = X|,       x4 = x?,

and therefore, similarly to the first example, we have replaced the original four-di-

mensional real system with a two-dimensional complex system. Once again, in the

spirit of Section 4, we introduce an asymptotic expansion in powers of e:

(5.36) X = V + e(W, +Y,) + 0(e2),

V=[VA,VA,VB,VB]T,   %=[WA,WA,WB,WB]T,   \,=[YA,YA,YB,YB]T.
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Here the fast scale is again given by (5.1). The most interesting resonances occur for

the case

(5.37) a = 26,

and so we consider the parameter values

(5.38) a= 1,       b = .5.

System (5.34) then has the form (5.2) with

g<" = (i/2)*3*4exp(iî) + (i/4)x42exp(2tf), ,(2)
g\

(1)

(5.39)

g[3) = /x,x3exp(-ii ) + ;'x2x3exp(/f ) + /x2x4exp(2z'f ),

g[4)=gi3) «il» (i/4)xj

p(2)511 gil"
,(3) - ,(4)

>II iffSil   — ,A|A4<

We proceed as in the first example by applying the balancing arguments of

Section 4. The first and third rows of Au are given by the (2 X 4) matrix 6En, where

(5.40) ü\

0 iVB

0 0

(i/2)VB      0

0 iVA

The first and third rows of Ax are given by the (2 X 4) matrix $,, where

(5.41)

0

0

(,/2)FBexp(/l)

(i/2)p-Bexp(tf) + (i/2)KB«p(2if)

V is then determined by the solution of

«,=

zKBexp(-tf)

zKBexp(/f ) + /KBexp(2/f )

íK,exp(-i¿-) + i^exp(iÍ)

í'F/)exp(2/f)

(5.42)
(i/4)Kfl2

(i/2)VBVA

VA(0, e)

VB(0, e) (!)•
o < z < r,

and, as in (5.19), Y, is given explicitly by

(5.43)
(\/2)VBVBwp(i$) +   (l/8)KB2exp(2tf)

■VBVAexp(-iS) + VBVAexp(iÇ) + (l/2JKB^exp(2i£)

With the exception of ^,Y, all 0(e) terms of (5.15) are either strictly oscillatory or

strictly nonoscillatory. We have

(5.44)   #!
(i_/4)VAVBVB

(i/2)VAVAVB + (9i/Z)VB2VB

+ (oscillatory terms),

\YB
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and thus the system which determines W, is

WA

(5.45)

WR

{i/l)VBWl

iVBWA + iVAWB¡
-   +

-5/8

-1/2
0 < t < T.

(i_/4)VAVBVB

(i/2)VAVAVB + (9i/S)V2VB

WA{0)\ = l-YA(Q,0,e)

WB(0)J     \-yB(o,o,e)

Once again the full /-dependence of the system can be restored by (5.1). In the

original system variables we have:

z\ = Re{exp(-z£>,} \t=l/e,        z2 = Im{exp(-tf )*i} |f=i/e,

z3 = Re(exp(-z'f/2)x3} |f=,/e,    z4 = Im{exp(-zf/2)x3} \t=l/e.

Now we can apply the same approximation techniques to this system, which is

characterized by the energy integral

(5.47) £(0 = (a2/2)(z2 + z\) + (b2/2){z2 + z2) - ez,z\ = E0.

The sharing of this energy between the two oscillators is illustrated in Figure 3,

where we have plotted our numerical approximations to the leading-order energy

functions

(5.48) £,(/) = (a2/2)[z2 + z|],       É2(t) = (b2/2)[z2 + z2].

Once again we have linearly interpolated the amplitudes and phases between the

grid points. In the last two columns of Table 2 we compare the computed grid values

with the accepted function values, which were computed with double-precision

accuracy by means of a fourth-order Runge-Kutta scheme with a time step

(5.49) « = 10"4.

E, (t).

2.000 3.000

Figure 3

U.B00 S.
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The grid error, somewhat larger than in the first example, is mainly due to the

truncation of the asymptotic expansion. Indeed, decreasing e by a factor of . 1 caused

the grid error to fall by a factor of .01.
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