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Does Increased Regularity Lower Complexity?

By Arthur G. Werschulz*

Abstract. Intuitively, the more regular a problem, the easier it should be to solve. Examples

drawn from ordinary and partial differential equations, as well as from approximation,

support the intuition. Traub and Wozniakowski conjectured that this is always the case. In

this paper, we study linear problems. We prove a weak form of the conjecture, and show that

this weak form cannot be strengthened. To do this, we consider what happens to the optimal

error when regularity is increased. If regularity is measured by a Sobolev norm, increasing the

regularity improves the optimal error, which allows us to establish the conjecture in the

normed case. On the other hand, if regularity is measured by a Sobolev seminorm, it is no

longer true that increasing the regularity improves the optimal error. However, a "shifted"

version of this statement holds, which enables us to establish the conjecture in the semi-

normed case.

1. Introduction. We investigate the relation between regularity and complexity. In

this Introduction, we use words such as algorithm, information, cardinality, and

regularity without definition. They are rigorously defined later.

Based on a variety of examples, Traub and Wozniakowski [6] conjectured that, in

general, as the regularity of a class of problem elements increases, the complexity

decreases. In this paper, we consider linear problems. We measure regularity by a

Sobolev norm or seminorm. We prove a weak form of this conjecture and show that

no stronger statement is possible.

To fix ideas, we consider several examples.

Example 1.1. Consider the solution of the two-point boundary-value problem

(1.1) -""=/   in (0,1),       »(0) = u(l) = 0,

where the H'iO, l)-norm of /is bounded by unity:

(1.2) Lf\fW(x)\2dx^l.

Consider an algorithm <p using information of cardinality at most n, and define the

error e(<p) to be the worst-case error (in the //'-sense) taken over all / satisfying

(1.2). Let

(1.3) e(n,r)- infe(<p)
<p
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70 ARTHUR WERSCHULZ

be the rainitnal error of all such «-evaluation algorithms ijp whose input functions /

satisfy (1.2). In [7], we showed that

(1.4) e(n,r) = 0(w"+l))    asw^oo,

where we use Knuth's ©-notation

(1.5) /, = ©(/2)    iff/, = 0(/2)and/2 = 0(/,).

If comp(e,r) denotes the complexity of finding an e-approximation, then (1.4)

implies

(1.6) comp(e.r) = 0  (-j as e -> 0.    □

The next four examples are taken from [6]. In these examples, the data consisted

of all/e H'il) (where / was a bounded real interval).whose //r(/)-seminorm was

bounded by unity:

:i.7) /i/,ou)i2 dx < 1.

For an algorithm qp using information of cardinality at most n, e(<p) was defined to

be the L2-error taken over all / satisfying ( 1.7), and

(1.8) ein.r):= infe(<p)
f

was the minimal error of all such «-evaluation algorithms <ç whose input functions/

satisfy (1.7). Once again, comp(e,r) denotes the complexity of finding an e-ap-

proximation.

Example 1.2. For the approximation problem,

(1.9) e(n.r) = 0(n_r)    asn->oo,

so that

(1.10) comp(e,/-) = ©((-)     )    ase-0.    D

Example 1.3. For the heat equation in a thin rod of length m with initial data/

solved out to time t = t0,

(1.11) e(77,r) = e-<"+,):'"(«+ 1)"',

so that

(1.12) comp(e,r) = 0| ^/ —In-       ase-»0.    D

Example 1.4. For the Laplace equation on the square (0,w) x (0,w) with boundary

data

(113) (uiO,y) = uitr,y) = uix,0) = 0    (oTx,y e [0,*r],

\u(x,ir) = fix) forxe [0,ir],

and considering the solution to be ui-,yQ) for a fixedy() e (0,w),

(1.14)    ein,r) - —!— ***" ++ '>*> - e — ^{n + 1)'   as^oo,
in + 1)    sinh(« + 1)tt
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so that

(1.15) comp(e,r) = 0  -ki-      as e -» 0.   D
\ "■ - y o      £ I

Example 1.5. For the hyperbolic differential equation

(1.16) —     -       (*eiu>0)

solved out to time t = /0,

(1.17) e(n,r) = (n+ l)'r,

so that

(1.18) comp(e,r) = @(e~'a)    ase->0.    D

(See Chapter 6 of [6] for a fuller discussion.)

Note that, in all the examples above, s > r implies that

(1.19) lim   4^4 = 0
n->oo ein,r)

and that there is a constant K which is close to unity such that

comp(c,j)
hmsup ———.- < K.

_0    comp(e,r)

Hence, as the regularity increases, the complexity decreases, in the sense that it gets

no worse. Traub and Wozniakowski [6, p. 147] asked whether more regular problems

always have lower complexity. We add the question as to whether (1.19) holds in

general.

In order to establish the conjecture of [6], it is necessary to first determine what

happens to the nth minimal error e («,/•) as r is increased. Let s > r. We show that

for any problem, there exist nonnegative integers n* and n*, with n* < n*, such that

e(n + n*,s)
(1.20) um        ; ; = 0,

n-oo e(n + n*,r)

in both the normed and seminormed cases. In this sense, additional regularity always

helps. However, (1.20) tells us nothing about the more fundamental question of

whether (1.19) holds. We now distinguish between the normed and seminormed

cases. In the normed case, n* = n* — 0, so that (1.19) holds; we also have the

nonasymptotic result that

(1.21) e(n,s) < e(n,r)    for n > 0.

In the seminormed case, (1.20) implies the desired result (1.19) when the problem is

"hard", and so the "shift" is irrelevant. In general, however, we cannot say that

(1.20) implies (1.19); in fact, we are able to construct a special counterexample in the

seminormed case for which

(1.22) lim  4^4= oo
n-oo e(n,r)
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(and the limit can blow up arbitrarily fast). Note that this counterexample is an

"easy" problem, especially constructed for this purpose; we know of no naturally-

occurring problem for which (1.22) holds.

We are now able to use (1.20) and (1.21) to establish a weak form of the original

conjecture: in both the normed and seminormed cases, there is a constant K, close

to unity such that

comp(e,i)
(1.23) hmsup--,-(■<*,.

r_0    comp(e,r)

On the other hand, this is essentially the sharpest statement possible: in both the

normed and seminormed cases, one can always construct a problem for which

comp(e,i)
1.24) hm sup--.-f > K2,

f-0    comp(e.r)

where K2 is close to unity. In other words, increasing regularity improves complex-

ity, but not as dramatically as the optimal error is improved in the normed case; it is

not true in general that

ix ->o r     comp(e,i)      n
(1.25) hm -;- = 0.

f-o comp(e,r)

We now outline the contents of this paper. In Section 2, we develop our

terminology and introduce some known results on optimal algorithms. In Section 3,

we prove a useful theorem on ratios of eigenvalues. In Section 4, this theorem is

applied to the normed case to give results on optimal error. We discuss optimal error

in the seminormed case in Section 5. The results in Sections 4 and 5 are translated

into results on complexity in Section 6, where we establish the weak form of the

conjecture and show that no stronger version is possible. Finally, we pose some open

questions in Section 7.

2. Preliminary Concepts. In this section, we introduce some terminology from [6],

which will more precisely define some of the terms mentioned in the Introduction.

We also mention some results from [6] concerning optimal algorithms.

Let ÍT,, ?F2 be (real or complex) Hubert spaces. A problem is defined by a bounded

linear solution operator S: % -* "J2, where % c ïï", is a set of problem elements. For

our purposes, we may assume that there is a surjective restriction operator T:

9X -» % i% a Hubert space) such that

(2.1) % = {/eV 117/11 < 1).

For instance, if ?F3 = 9t and T = I (the identity map), \ becomes the unit ball SVF,

of ÍF,. (In the sequel, BH will denote the unit ball of any Hubert space H.)

In what follows, we let ß c If be a smooth bounded domain. We use the

standard notation and terminology for multi-indices, as well as Sobolev norms,

seminorms, inner products, and spaces; see, e.g., [2].

Remark 2.1. Let % = f, = /T(ß) and T = /, so that

(2.2) % = BH'(Q) = {fe ff'(Q): ||/||r < 1).

This is the setting for the normed case as discussed in the Introduction. On the other

hand, choose S7, = //r(ß), m to be the number of /»-dimensional multi-indices of
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order r, and %, to be the (closed) subspace of L2(ß)m which is the range of the

transformation T which maps a function in //r(ß) to the vector of its partial

derivatives of order r. We then find that

(2.3) % = ®/T(fl):= {fe /T(ß): |/|, < 1).

This is the setting for the seminormed case. (See Section 6.)   D

In order to clarify our terminology, we now introduce

Example 2.1. Choose f, = /T(ß) where r > -1,% = //0'(ß), and % to be the

unit ball of //r(ß). The solution operator S: % -* % is defined by letting Sf be the

solution to

(2.4) f v(Sf) ■ Vü = ( fv   VveH^Q),
Ja Jn

i.e., u = Sf is the weak solution to

(2.5) -At/=/   inß

m = 0   on 3ß,

see e.g. [2].   D

In order to approximate the solution Sf for /ef0 using a finite amount of

resources, we must use only a finite amount of information. Here, an information

operator is a linear operator 91: De^ -» % (where % c D^ c ^ and ^ is a Hubert

space) whose cardinality #91 is given by

(2.6) #91 := codimker9l.

From Chapter 2 of [6], #91 = n if and only if there exist n linearly independent

linear functionals L,,..., L„on'§x such that

(2-7) 91/=[/.,/■•■ L„/]r   Vfe%.

Example 2.1 ( continued ). One important information operator for this problem is

given by

(2-8) 9\/:=    />,•••/>: r,
/a ■'a

where j,",..., i" form a basis for a space S„ c //¿(ß) of piecewise polynomials of

degree r, and the sequence {§>„)n>, arises from a quasi-uniform triangulation of ß.

(Of course, if p > 2, we must make some adjustments to guarantee that Sn ç //¿(ß).

For more details, see [2] and [7].)   D

An algorithm using 91 is then a (not-necessarily-linear) mapping <p: %i%) -* %.

(Hence the only information such an algorithm may use about the problem element

/ e % is 91/.) The (worst-case) error e(tp) of such an algorithm <p using 91 is then

defined by

(2.9) e(<p):=  sup \\Sf - <p(9l/)||.
f*%

Example 2.1 icontinued). Define <f„ to be the finite element algorithm, i.e.,

$*(%,/) G S« satisfies

(2.10) /v<p„(9\/)- Ví,"=/A,"       (1 </<«).
■7o ^O
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Í hen rfn uses :1n and

(2.11) <?(<pj = «i n -"-"/>)   asn-»oo.

(See [2], [7].)   D

We seek optimal error algorithms <p* using 91 whose error is small as possible, i.e.,

such that

(2 12) e(qp*) = infe(qp),
<p

the infimum being over all tjc using 91. The search is made easier by the fact that

(2.13) infe(tp) = r(9l,S,%),
t

where the radius of information is given by

(2.14) r(9l,S,So):=       sup     ||fe||;
:ekcr'in'.'t(l

see Chapters 1 and 2 of [6],

Example 2.1 icontinued). The finite element algorithm <p„ is (to within a constant

factor independent of n) of optimal error among all algorithms using ^Xn; see [7].   D

Now that we are able to determine the optimal error for any algorithm using

information 91 of cardinality at most n, the next matter to determine is which such

information is "most relevant" in that it yields optimal algorithms with the smallest

error. That is, we wish to find an nth optimal information operator 9l„, i.e., an

information operator 91 „ of cardinality at most n whose radius equals the nth

minimal radius of information:

(2.15) r(9l,,,S/:70) = r(«,S,%):=     inf   r(9l,S,%).
tt-Xnn

We will mainly be concerned with the case where

(2.16) lim r(n,S,%) = 0,
«-•DC

so that there exists a convergent sequence of algorithms, each of which uses

information of finite cardinality. By Corollary 2.5.1 of [6], (2.16) holds if and only if

K := ST^ is compact, 7"+ being a pseudo-inverse of T (see p. 34 of [6]). Let

a, >A2> ■•• >0 be the nonzero eigenvalues of K*K, the asterisk denoting

Hubert space adjoint. (If only a finite number r of nonzero eigenvalues, formally set

a, = Ofori > r.)Let

(2.17) 7j* = n*{T,S):= dim[ker7y(keiT n kerS)]

denote the problem index. Then Theorems 2.3.2 and 2.5.3 of [6] yield

( oo if n < n*.

Remark 2.2. In the normed setting % = BH'iti), we have T = /, so that 7"f = /,

and hence n* = 0. In the seminormed setting % = <S//''(ß), we will show that

tí* = dim(S(/'r_ ,(ß))), where F,(ß) is the space of polynomials of degree t over the

region ß.    O

Example 2.1 icontinued). In [6], we showed that

(2.19) r(%,S,%) = e(r(n,S,%)) = 6(n-<r+X)/<')    asn^oo.



DOES INCREASED REGULARITY LOWER COMPLEXITY-» 75

Hence, 9\ is (to within a constant factor, independent of n) an «th optimal

information for the problem (2.4).   D

3. An Eigenvalue Comparison Theorem. In the previous section, we saw how the

minimal radii of information were related to the eigenvalues of a compact linear

operator on a Hubert space. In this section, we will establish a result concerning

eigenvalues of products of compact linear transformations. This result will be used

to establish results on optimal error for the normed and seminormed cases in

Sections 4 and 5, respectively.

Let X and Y be Hubert spaces, and let E: X -» Y and A: Y -> Y be compact

linear transformations, with A selfadjoint and nonnegative, i.e.

(3.1) A = A*   and    (Ay,y)>0   for y g Y.

Let Xn{K) denote the nth largest eigenvalue of the nonnegative selfadjoint, compact

linear operator K on a Hubert space. In this section, we will prove

Theorem 3.1. Either

(i) A is of finite rank, in which case there is an integer n0 > 1 for which

X„(E*AE) = X„(A) = 0   forn>n0,

or

(ii) A is not of finite rank, in which case

lim Xn(E*AE) =  lim Xn(A) = 0
n —» oo n —» oc

and

X(E*AE)
lim       x  (a\ °-    D

F1-.00 X„iA)

Proof of (i): Let rank(/l) - n0 - 1. Then A has at most n0 - 1 nonzero eigenval-

ues, so that A„(/l) = 0 for t? ̂  7?0. But

rank(E*AE) < rank(AE) < rank(.4) = 770 - 1,

so that E*AE has at most ti0 - 1  nonzero eigenvalues, i.e., XniE*AE) = 0 for

n ^ n0.   O

Before proceeding to prove (ii) of Theorem 3.1, we must set up some machinery

and prove two lemmas. Lety,,y2,... be an orthonormal family of eigenvectors for A,

i.e., Ay} = XJiA)yJ, whereX^/l) ^ a2(/1) 3s ••• >0 because/I is not of finite rank.

Let

(3.2) Mn = sp{yx,...,yn)x= sp{yj)j>n+] © ker/1.

Lemma 3.1. codim£~ xMn < n.

Proof. Let Ln = X/sp{E*yJ)"l=, = sp{E*yx„ .., E*yn)1 in X. Then Ln

since

xG L„~ jc± {£*>>,,..., £*y„}~ Ex ± (y„...,yn)

<=> Ex G M„ «=» x e E~XM„.n n

So codim£"'M„ = codimLn < n.   D

E'xMn,
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Lemma 3.2. Let

ft, =      SUP     ll^'ll-
r.'.ve/W,,

\±l-:   'ker.4
ll-vIK i

77íe77

X„+,(E*AE)

A„+,(/l)
<p;,-

Proof. Since ker/1 is a closed subspace of Mn, E' kerA is a closed subspace of

£   'A/„. Hence we have a direct sum decomposition

(3.3) £-'M„ = f-'ker/i © [E  XMJE  'ker/l].

Given x g £~ 'M„, ||x|| < 1, write

(3.4) x = x,+x2       (xxe E'xkaA,x2eE~xMa/E-xkaA),

and note that ||jc2|| < ||x|| < 1. Then A Ex, =0 implies

(3.5) (E*AEx,x) = (E*AEx,,x,) + 2(E*AEx,.x2) + (E*AEx2,x2)

= iE*AEx2,x2) = (AEx2,Ex2).

If Ex2 = 0, then

(3.6) (AEx2,Ex2) = 0 ^ Xn+,(A) ■ 0 = X„+ ,(A)\\Ex2\\2,

while if Ex2 * 0, set y = £x2/||£x2|| to find

(3.7) {AEx2,Ex2) = {Ay,y)\\Ex2\\2 ^Xn+i(A)\\Ex2\\2.

since y g Mn and ||y|| < 1 implies {Ay,y) < X„+ ,(/l). In either case, (3.6) or (3.7)

yields

(3.8) {AEx2,Ex2)<Xn+t{A)\\Ex2\\2.

Now Ex2 g Mn, x2 ± E~ ' ker/1, and ||jc2|| < 1 yield

(3-9) ||£jc2|| < p„.

So (3.5), (3.8) and (3.9) yield

(3.10) {E*AEx,x)<Xn+t{A)p2.

Since the choice of x g £" 'A/„ n BX is arbitrary, we have

(3.11) sup    (E*AEx,x)^\n+i(A)p2„.
\<=t: '«,

11*11«!

Since codim£" 'Afn < /j, we use the Courant minimax theorem to find

(3.12) sup    {E*AEx,x)>      inf       sup {E*AEx,x) = a„ + X(E*AE).

w<1 " codim/.<n ||.t||< I

The lemma follows from (3.11) and (3.12).    D

We are now ready to complete the

Proof of Theorem 3.1(h): Since A and E*AE are compact, the first statement is

immediate. Now A/, d M2 d M3 d • ■ ■ and the definition of p„ imply that

(3.13) p,> p2> p3 ^ •■•  > 0.
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Hence there is a p 3s 0 such that

(3.14) p =  lim p„.

So Lemma 3.2 yields

(3.15) o < m K[E*AE) < P2.
»-00        A„M)

We need only show that p = 0.

To this end, we choose a sequence (e„ 3* 0}n>, such that e„ -» 0 as n -» oo, and a

sequence (x* G [ E~ XMJE~ ' ker/1] n £*}„-,, such that

(3.16) ||£x*|| < p„ < ||£x*|| + En   for all « > 1.

Then ||x*|| < 1 implies that x* is weakly convergent (through some subsequence, say

{"*)*> i» °^ indices) to some x* G BX (Theorem VIH.4.2 of Schechter [5]):

(3.17) x* — x*    asA:-*oo.

Moreover, the compactness of £ implies that Ex*  converges strongly to £x* as

k -» oo (see Theorem 5.1.1 of Friedman [3]). This implies that

(3.18) lim ||£x„*J| = ||£x*||,
k — oc "

and so (3.16) and (3.18) yield

(3.19) p = [\Ex*[\.

We first claim that x* ± £  'ker/1. Indeed, let x G E~xkerA. Then x* ^x* as

k -» oo and** ± £~'ker/1 imply

(3.20) (x*,x) = lim(x*ni,x) = 0.
k

Since x g £  'ker/1 is arbitrary, x* ± £_1 ker/1, as claimed.

We next claim that x* g £"'ker/1, i.e., £x* g ker/1. Indeed, since {kerA)x has

the orthonormal basis {y¡)j>i, it suffices to show that

(3.21) (Ex*,y/) = 0   for all/>1.

Given such an index/ choose /c0 such that nk >/. Then for any k > k0, we have

nk >/, so that x* g E~xMn implies

(3.22) (x,*|,£*.v,) = (£xn*^) = 0.

By (3.17), we thus find

(3.23) (Ex*,yj) = (x*,£*y,) =  lim (x*„k,E*yj) = 0.
n-»oo

Since the index y 3s 1 was arbitrary, it follows that x* e E~ ' ker/1, as claimed.

Sox* g £  'ker/1 n {E~xkerA)± = 0, implying

(3.24) p = ||£x*|| = 0,

completing the proof of the theorem.   D

In order to consider the seminormed case, we will need to know whether it is true

that

(3.25) >™¥£7^-»
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for some positive integer m? In general, the answer is in the negative whenever £ is

not of finite rank.

Indeed, let x^X;,,... g X denote orthonormal eigenvectors of £*£ corresponding

to the eigenvalues e2 3* e2 > • ■ ■  > 0, so that

(3.26) £*£x„ = £„xn       (n>\)    and    (xm,xn) = 8mn       (m,n>\).

Let

(3.27) y„:= Ex„/tn       (n>\),

so that

(3.28) (ym,y„) = -~{E*Exm,x„) = EfSm„ = 8mn       (m,n > 1),

i.e., vPy2«- • - form an orthonormal basis for

(3.29) A/:= ÄvUr

Now define A: Y -» y as follows. Let a, 3* a2 3= • • ■ > 0, with lim„ J00a„ = 0 be

given. For any y g y, there exists a unique choice of scalars t),,tj2, ... and y0 G A/x

such that

X

(3.30) v= E V„.V„ +Vo-
ii = i

Then let
00

(3.31) Ay:=   £ rjna„yn.
»=i

We then see that y,,y2,... are orthonormal eigenvectors of A corresponding to the

eigenvalues a,,a2,..., so that

(3.32) \„(A) = a„.

Moreover, let x G X, so that there exists a unique choice of scalars £,,£2_and

x0 g ker£*£such that

(3-33) x = £ inxn + x0;
n= i

we claim that

(3-34) E*AEx = £ £„«„£>*,,;

which implies that x,,x2,... are orthonormal eigenvectors of E*AE corresponding

to the eigenvalues a,ef > a2e2 3* • • ■  > 0, so that

(3.35) X„iE*AE) = a„E2„.

Indeed, let x G X have the representation (3.33). Then £x0 G Mx , since for any

index n 3* 1,

(3.36) (Ex0,yn) = 7- (ExQ,Ex„) = ^-(£*£x0,xj = 0.
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Thus (3.33) implies that £x0 g M1 in the representation

00 00

(3-37) £x = £ i„Ex„ + £x0 =  £ £„e„y„ + £x0,
n=\ ;, = I

and thus (3.30) and (3.31) imply

(3-38) AEx= tt,enany„= £ tnanEx„.
n - i /, = i

So

OC 00

(3.39) E*AEx =  £ èn«nE*Ex„ =  £ !„an^x„,
», = i », = i

as claimed.

We now show that not only is (3.25) false in general, but the limit can be any

positive number, or can go to infinity arbitrarily fast.

Theorem 3.2. Given a compact linear E: X -» Y, a positive integer m, and a

sequence u, < u2 < ■ • • of positive real numbers, there exists a compact, linear,

nonnegative, selfadjoint A : Y -* Y such that

A„(£*/i£)
K+M)     il"

for all sufficiently large n. Hence, for any ¡x G [0, oo], there exists an A for which

..      K(E*AE)
n-oo    r\n + m(A)

and if n = oo, the limit can go to infinity arbitrarily fast.

Proof. Let £, {p„)tt> „ and m be as in the statement of the theorem. Let £*£ be as

in (3.26), and let A be defined by (3.30), (3.26), where now

(3.40) «.:- ÏÏt^        (*:-    ~r ,J = n - km).
1 = 0  Pim+j \ l      m      i )

Then there is a positive integer n0 such that (3.32) and (3.35) hold for all n 3* n0.

Hence for n > tí0, let A: =   [(tj - l)/wj and y = n - km to find

Xn(E*AE) anE2n akm+j£km+j

^n + m(A) an + m a(k+\)m+j

,-    .   , "nt^   si^ / "-„"-n km+j~km+j

(3.41)-7-77-= —        ^r " = M*m+, = M»,

proving the first statement. The second statement follows by taking u g (0, oo ] to

be the limit of the u„ as n -» oo. To make the second statement hold for p. = 0, take

y g (0,1) and let

(3.42) <V=Y".

Then (3.32) and (3.35) hold for all « > 1. So

X„{E*AE)     ot„E2 .,
(3.43) -^—-i = -li = T-»s^o   as#i-»oo.    D
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4. Regularity and Optimal Error in the Normed Case. We now consider the case

where we have Hubert spaces L5,, V?,, and l.'F2 where there is a compact transformation

£: Vt, -» Vf,, so that when £ is injective, £(l.'F,) may be identified as a subspace of (.'F,

which has more "regularity" than the space '.'?,. Let l.'F() and vF() denote the unit balls of

vF, and \'F,, respectively. Suppose that S: VF, -* vF2 is a bounded linear solution

operator; then we define the solution operator 5: C.'F, -» vF2 by .v = 5£. We now

consider the problems given by 5 with l.'F() and S with VF().

Our first result shows that for the normed case, replacing the problem (S,Vtn) by

the problem (S,Vt0) does not increase the nth minimal radius beyond a factor of ||£||.

Theorem 4.1. For all n > 0,

r(n.S.vr0)<||£||r(n.S,ïF0).

Proof. If £ = 0, then S = SE = 0 and ||£|| = 0. so that the inequality reduces to

0^0. We now suppose that E * 0. Let 91 be an information operator on vF, of

cardinality at most n. Define an information operator 9( on '.'F, by 9L := 91 £. Then

#91 < #91 < n, so that

(4.1) r(n,S,%)^r(Jl,S,\) =      sup      \\Sz\\.

:ekcr-Xn%

Let z g ker9t n %. Set y = Ez/\\E\\. Then

(4.2) 9cy = ¿9l£; = ¿9L = 0,

so that y G ker9l n %. So

(4.3) ll&ll = \\SEz\\ = \\E\\\\Sy\\ < ||£||      sup     \\Sy\\ = \\E\\r{X ,S.%).
lekcr'Tin'.-i,,

Taking the sup over all such z and using (4.1), we have

(4.4) r(n,5,VF())<||£||r(9l,S,vF0).

Since 91 is an arbitrary information operator on fT, of cardinality at most 9c, we

may take the inf over all such 91 to complete the proof of the theorem.    D

Note that this result is nonasymptotic, holding for all n > 0. We now give an

asymptotic result which says that in the limit, replacing (5/.'F(1) with (5/.'F()) helps

beyond any positive factor, no matter how small.

Theorem 4.2. Either

(i) 5' 75 bounded but not compact, in which case there exists p > 0 such that

lim r(n,S,%) = p   and     lim r(77,5,vF()) = 0,
n—yz n-* oc

or

(ii) 5 is of finite rank, in which case there is an integer n{) such that

r(n,S,%) = r(n,S,%) = 0   for n 3= nQ,

or

(iii) S is compact, but not of finite rank, in which case

_ r(n S u7 )
lim r(n,S,%) =   lim r(n,S,\) = 0    and     lim     )   '   "_"; = 0.

«^oc n —oc «-oo  r(n,S,\)
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Proof. For part (i), let S be bounded and noncompact. Then Corollary 2.5.1 of [6]

implies that there is a p0 > 0 such that r{n,S,%) > p0. Since r( 77, S,"iF0) is monoton-

ically nonincreasing, the first statement in (i) follows. On the other hand, S bounded

and £ compact imply S = SE is compact. Thus Corollary 2.5.1 of [6] yields that

rin,S,%) converges to zero.

For parts (ii) and (iii), let X = % Y = %,A = S*S. Then A = A* > 0 and £ are

compact. Since the restriction map is the identity, it has trivial kernel, and so the

indices of the problems {S,%) and {S,%) are zero. Thus (2.18) yields

r(n,S,%) = Xx¿2+,(A)   and   r(n,S,%) « \X£X{E*AE).

The result now follows immediately from Theorem 3.1.   D

We now show how increased regularity improves optimal error behavior in the

normed case. Consider a well-posed (i.e. bounded) linear problem 5 defined on

//r(ß), where ß is a smooth bounded region in R^. Thus there is a Hilbert space Z

such that 5: //r(ß) -» Z is a bounded linear operator. We pick s > r and let £:

//v(ß) — //r(ß) denote the inclusion injection, i.e., £/:= /Tor / g H'{Q). Setting

S := SE (i.e., S is 5 restricted to /T(ß)), we let

(4.5) e{n,r):= r(n,S,BHr(Q,))

and

(4.6) e(n,s):= r(n,S,BH5(Q))

denote the minimal errors of algorithms using information of cardinality at most 77

when the admissible inputs are the unit balls of //r(ß) and //J(ß), respectively.

Theorem 4.3. For all n > 0,

e{n,s) < e(n,r).

Moreover, precisely one of the following statements holds:

(i) S is bounded, but not compact, in which case, there exists e > 0 such that

lim  e{n,r) = e
H—* 00

while

lim e{n,s) = 0,
n — oc

or

(ii) 5 is of finite rank, in which case there is an integer n0 such that

e{n,r) = e{n,s) = 0   forn > n0,

or

(iii) S is compact, but not of finite rank, in which case

ein s)
lim e{n,r) =  lim e(n,s) = 0   and     lim = 0.

n -» 00 «-»oo n->ao e{n ,r)

Proof. Let ÍF, = //r(ß) and % = //s(ß), so that % = BHriQ) and % = BHS{Ü).

Since II • ||r < y • ||J? we have ||£|| < 1. Hence the first statement follows from

Theorem 4.1. By the Kondrasov lemma (see, e.g., p. 114 of [2]), £ is compact. Thus

the second statement follows from Theorem 4.2.   D
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Thus either the problem can be solved exactly using a finite amount of informa-

tion (case (ii)) or increasing the smoothness of the problem by assuming the

existence of additional derivatives improves the optimal error by more than any

fixed constant factor as n -» oo (cases (i) and (iii)).

Remark 4.1. If we replace //r(ß) and //!(ß) in (4.1) and (4.2) by //¿(ß) and

//¿(ß). Theorem 4.2 still holds, since the inclusion injection £0: //¿(ß) -* //¿iß) is

compact for r < s.    D

5. Regularity and Optimal Error in the Seminormed Case. We now consider the

case when regularity is measured by a Sobolev seminorm (as was the situation in the

examples studied in [6]). In this section, we show that Theorem 4.3 does not hold

when the unit balls ß/T(ß) and Ä/7v(ß) are replaced by the unit semiballs Vt\//f(ß)

and $>HS{Q) (see (2.3)). In fact, we show that there is a penalty associated with

increasing the regularity in this manner, and that this penalty can be arbitrarily big.

On the other hand, we are able to show that a slight modification of Theorem 4.3

does hold in the seminormed case, and we give sufficient conditions for the original

version of this theorem to hold in this case.

We now let Z be a Hubert space and let 5: //r(ß) -» Z be a bounded linear

solution operator, where ß c R^ is a smooth, bounded, simply connected region. We

consider the problem defined by 5 and % :— l:i\//r(ß).

It will be useful to write l.F() in terms of a restriction operator T. Let p.., uni

denote the multi-indices u in p variables such that |u| = r, so that

(5.1) «-.(' + ;-1).

Consider the Hubert space L2(ß)m, and define a subspace Kof L2(ß)m by

(5-2) [g, ••• g„,]rG V   iff3/G//r(ß):Z>"/=£,(l </<m).

Lemma 5.1. V is closed in L,(ß)m.

Proof. Since ß is simply connected, g g V if and only if g satisfies a set of q

equations in // " '(ß) of the form

(5.3) a/J?, - a<g, = o.

where i,j, k. I are related by the relation

(5.4) a,D"' = aAZ)"',

which expresses the equality of the mixed partial derivatives of the function / for

which (5.2) holds. Hence there is a bounded linear operator L: L2(ß)"' -* H~ '(ß)*

such that V = kerL, and so V is closed.    D

Hence V is a Hubert subspace of ¿2(ß)"'. We now define T: //r(ß) -» Kby

(5.5) 7/:= [D"/-- •/>"-/]T.

By (5.2), T is a surjection.

In what follows, it will be useful to have another characterization of the index of

the problem.

Lemma 5.2. The index n*iT,S) of the problem iS,%) is given by

(5.6) 77* = 77*(7\S) = dimS (kerT).
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Proof. First note that

(5.7) ker(S|kerr) = kerrn kerS.

Since dimker T is finite, we let M = ker T in the equation

(5.8) dimS(M) + dim(kerS|w) = dimM.

Using (5.7) and (2.17), we find

(5.9) dimS(kerr) = dim(kerT) - dim(kerS|ker7.)

= dim(kerr) - dim(kerT Pi kerS) = n*(T,S).   D

In order to proceed, we let P,{ti) denote the space of polynomials of degree t on

ß. (Note that Pr_ ,(ß) is the kernel of Tgiven by (5.5).) Let

(5.10) /T(ß):= //r(ß)/?f_,(ß)

denote the orthogonal complement of Pr_ ,(ß) in Hr{ü), so that

(5.11) /GÂT(fl)    iff/G//'(ß)and(/,p)r = OVpG/>r_,(ß),

where (•, )r is the inner product which yields the || ■ ||r-norm. By Theorem 3.1.1 of

[2], the //r(ß)-seminorm | • \r is a norm on ÎP{Q), equivalent to the usual quotient

norm || ■ || r on /^(ß) given by

(5.12) ll/lf,:-       inf     \\f + p\\r.
P^pr-,(ä)

The problem (5,®//r(ß)) now induces a new problem {S,%) by letting S:

Hr{Q)-> Z be defined by

(5.13) Sf:= Sf   for/GAT(ß)

and letting

(5.14) % := BIT{Q) = %n IT(Q).

Lemma 5.3. r{n + n*,S,%) = r{n,S,%).

Proof. We first let 91: ^(ß) -» R" be a linear information operator of cardinality

at most n. Define 91: //r(ß) - R" by

(5.15) 91/:=
Sp

9V.

where/ g /T(ß) andp g Pr_ ,(ß) are uniquely chosen so that

(5.16) f = f + p.

Then Lemma 5.2 yields

(5.17) #91 < #9l + dimS(/>r_1(ß))<7i + 77*.

We claim that/ g ker91 n % implies/ g ker9l n % and Sf - Sf. Indeed, given

such an/, write/ = / + p as in (5.16). Then/ g Sj, implies

(5.18) U/H? < Wffr  + \\P\\2r  = ll/llr  <   L

so that/ g ÍF0. Moreover/ g ker91 impües

(5.19) 91/ =0   and   5p = 0,
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Sf=Sf+Sß = Sf=Sf,

i.e.,/g ker91 and

(5.20)

proving the claim.

From (2.14) and (5.17), we find

(5.21) r(n + n*,S,%) < r(%,S,%) sup     US/11
/eker,:Xnvt0

<      sup     115/11 = r(%,S.%).

/eker^OVt,,

Taking the infimum over all 91 of cardinality at most n, we find

(5.22) r(n + n*,S,%) < r(n,S,%).

In order to prove that the inequality (5.22) is an equality, we consider an

in + n*)th optimal information for (5,%). By (2.4.12) of [6], this information has

the form

(5-23) %, + n.f-=
91*/

where

(5.24) ker9l* = (kerT n kerS) ©(kerT)1

and there is a linear transformation L on V, of rank at most 72, such that

(5-25) 91. = LT.

Let n: //r(ß) -» />,._,(ß) denote the orthogonal projector, so that p = II/ in

(5.16). Claim there exists an invertible n* X n* matrix M such that

(5.26) 91* = MSIl.

To do this, we first show that

(5.27) ker9l* c ker5n.

To see this, let/ G ker9l*. By (5.24), we may write

(5.28) / = /,+/2       (/, g kerTnker5,/2 g (kerr)x).

Then/, g kerTimplies/, g Pr_ ,(ß). Since n is a projection onto Pr_ ,(ß), we have

n/, = /,. Since/, c kerS, we have

(5.29) sn/, = Sf, = 0.

On the other hand,/2 g (kerT)-1 = ^(ß) implies that n/2 = 0. So

(5.30) sn/2 = 0.

Hence/ g kerSIl, proving (5.27). Since ker9l* c kerSn and

(5.31) codimker9l* = n* = dimrangeSn = codimkerSn,

Lemma 2.2.1 of [6] yields (5.26), as claimed.

So

(5-32) 9ln+n./ =
MSUf MSp
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where / and p are given by (5.16) and 9\/ = 9\/ because p g kerT implies

LTf = LTf.
We now consider the information operator 9t„ for the problem {S,%). Clearly

#9l„ «s n. We claim that ker9\ n % c ker9tn+„. n %. Indeed, let / g ker9\ n

%. Then /ej0 = rf(ß)nf0 implies / G %. Moreover / g /f(ß) implies that

p = 0 and/ = /in (5.16), so that/ G ker9l„ implies

MSO'
(5.33) 9ln + n./ =

%,/
= 0,

establishing the claim.

Since #9L„ < n, we use the claim above and the fact that S = S|/^(S2) to find

(5.34) r(n,S,%)<r(%,S,%)=       sup      ||S/||

/e%nker%,

< sup        \\Sf\\ = r(%n+n.,S,%) = r(n + n*,S,%),
/e%nker9l„ + „.

the last by the optimality of 9l„+„..   D

We wish to examine the effects of increasing regularity when % is the unit

semiball of a Sobolev space. Recall that Z is a Hilbert space, and that S: //r(ß) -* Z

is a bounded linear transformation. Choose s > r, and let £: HS{Q) -> //r(ß)

denote the (compact) inclusion injection, as in Section 4.

Lemma 5.4. //J(ß) is a subspace of //r(ß), and the inclusion injection £: /t"(ß) -»

//r(ß) is compact.

Proof. To show that fP{Q) is a subspace of AT(ß), let/ G fP{Sl). Then/ g HS{Q)

c.//r(ß), and if,p)s = 0 for p g /^.(ß). Now for any p g Pr_,(ß), we have

Z>V = 0 for |p| > r. So

(5.35) (f,p)r = (f,p),-    E    (D»f,D»p)o = (f,p)s = 0,
r<\n\*s

sincep g />r_,(ß)c /^(ßjand/G /^(ß) = /»^(ß)-". Hence/e /T(ß).

We now show that £ is compact. Let {fj)JL, c £P(ß) be bounded, say

(5.36) \fj\t<M       (j>l).

Since fj g //!(S2) = Ps_ ̂ ß)-1, we find

(5-37) 11/11,=      inf     ||/. + p||, = II//, < C\fj\, < CM,

where the first inequality follows from the equivalence of | • \s and || • \[s over /"P(ß).

Since r < s, the Kondrasov lemma yields g G //r(ß) and a subsequence {/J such

that 4 - g in /T(ß). Since //r(ß) - AT(ß) © /^(ß), there exists/g //'(ß) and

p g /»r_,(ß) such that

(5.38) g=/ + P-

We claim that 4 -» /in /r(ß). Indeed, p G Pr_ ,(ß) implies

(5.39) |4 - /|, = |4 - g - p|r < 14 - g|r + |p|r

= 14 - g|, < 114 - «il..

so that 4 -» g in //r(fi) establishes the claim and the lemma.   D
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Let 5 = SE as in Section 4. Then the commutative diagram

s

(5.40)

induces a diagram

(5.41)

//r(ß)-

A
HS(Q)

Hr(Ü)

-*Z

#?>

//J(ß)

where S and 5 are the restrictions of S and 5 to /T(ß) and /T(ß), respectively (see

(5.13)). We claim that the diagram (5.41) commutes. Indeed, let/G fP{ti). Then

S = SE yields

(5.42) Sf=Sf=SEf=Sf.

On the other hand/ g //*(ß) c /T(ß), so that (5.42) implies

(5.43) SÊf=Sf=Sf=Sf.

Thus SE = S, i.e., the diagram (5.41) commutes, as claimed.

We now are ready to discuss how the behavior of the optimal error changes when

regularity is increased. Let s > r, let tj* and n*, respectively, denote the indices for

the problems (S,<S/T(ß)) and {S3HS{Q)), let

(5.44) e{n,r):= r{n ,SA<èHr{il)),

and let

(5.45) e{n,s):= r(n,S,9,Hs(il)).

We then have the following modification of Theorem 4.3:

Theorem 5.1. Precisely one of the following statements holds:

(i) S is bounded, but not compact, in which case, there exists e > 0 such that

lim e(n,r) = e

while

lim e{n,s) = 0,

or

(ii) S is of finite rank, in which case, there is an integer n0 such that

e{n + n*,s) = e(7i + n*,r) = 0   for n 3s tj0,

or

(iii) S is compact, but not of finite rank, in which case,

lim e(77,r) =  lim e(n,s) = 0   and
e(n + n*s)

hm  —,-~- = 0.
n->oo   e(n + 77*,7-)
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Proof. Using (5.44) and Lemma 5.3, we have

(5.46) e(7i + 7i*, r) = r(n + n*,S,<&Hr(Q)) = r(n,S,BÎr(Q)),

while (5.45), Lemma 5.3, and (5.41) yield

(5.47) e(77 + 77*, s) = r(n + n*,S,%Hs(Q)) = r(n,S,BHs(Q))

= r(n,SË,BHs(&)).

The result now follows from (5.46), (5.47), Lemma 5.4, and Theorem 4.2.   D

As a corollary, we can give sufficient conditions for Theorem 4.3 to hold:

Corollary 5.1. Suppose that either

(5.48) 77*  = 77*

or there is ay > 0 such that

(5.49) e(n + l,r) 3* ye(n,r)

for all n sufficiently large. Then for any compact S, not of finite rank, we have

(5.50) lim  4^4 = 0.   □
n-oo e{n,r)

Note that (5.48) or (5.49) holds in all of the examples mentioned in Section 1. The

condition (5.49) tells us that the problem (S^/Z^ß)) cannot be "too easy", i.e., the

error should decay no faster than geometrically.

On the other hand, we now show that a result like (5.50) cannot hold for all

problems.

Theorem 5.2. For any p. g [0, oo], there exists an S for which

e{n,s)
hm —- = u,

«-oo e(«,r)

and if p = oo, the limit can go to infinity arbitrarily fast.

Proof. Setting m = n* — n*, we may use (5.46) and (5.47) to find

,„„ hfej...      r(„.SÈ,BH-m)
n-oo e{n,r)      n-x r(n + m,5,5^(0)) '

Now let X = ÎF{Çl), Y = AT(ß), and £ = £ in the notation preceding Theorem 3.2.

Let S: Y -» Y be an injection. Let Z = Pr_ ,(ß) X //Tß) with norm

P

Finally, S: Hr{Sl) -» Z is given by
' P

2

\\P\\r+\f\2r      V(jj)(5.52)

(5-53) S/:-w

where/ = / + p as in (5.16).

By construction, S is injective, so that (2.16) yields

(5.54) n* = dimPf_,(ß)
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and

(5.55) Ti* = dim/V,(ß).

Hence m > 0. Now finally choose 5 = Ax/1, where A is defined as in Theorem 3.2,

with p. replaced by p.2. Then

r(n,SË,BHs{ti))
(5.56) lim

»-» r(n + m,S,BHr{Q))

,.     a„(£*^£)
hm  —-——

"^°°      *„ + m\A)

1/2

The theorem now follows from (5.51) and (5.56).   D

Hence, the penalty for increasing regularity may be arbitrarily great in the

seminormed case.

6. Complexity Results. In this section, we translate our results on optimal error

behavior into results on computational complexity. We show (roughly speaking) that

both in the normed and seminormed cases, increasing regularity improves complex-

ity; however, there are problems for which improvement means only that the

complexity gets no worse.

The model of computation will be that specified by Chapter 5 of [6]. That is, if H

is a Hubert space, evaluation of af and f + g (a a scalar,/,g G H) and evaluation of

a linear functional on // have finite complexity. We let c denote the complexity of

evaluating a linear functional; we assume that evaluation of a/and/+ g have unit

complexity, in order to normalize the measure of complexity. We generally would

expect c» 1.

We first consider the normed case. Let

(6.1) comp(e.r):= inf comp(<p),

where comp(qp) denotes the complexity of the algorithm qp for the problem

(S,BH'iSl)) and the infimum is taken over all such algorithms <p for which e(<p) < e.

Similarly,

(6.2) comp(e,i):= inf comp(qp),
<p

where the infimum is now taken over all algorithms <p for the problem (S,/?//*( ß))

for which e(<p) ^ e. Define the E-cardinality numbers by

(6.3) m(e,t):= inf/V(e,/),

where

(6.4) N{eJ):= {neZf: r(n.BH'(Q)) < e)

for t = r and t = s. (That is, m(e,/) is the smallest integer 77 such that the « th

minimal radius of information is at most e for data in the unit ball of //'(ß).) Then

Theorem 3.4.2 and Lemma 5.2.2 of [6] yield

(6.5) comp(e,?) = (c + a,)m{E,t) - 1,

where a, g [1,2].

We first discuss the behavior of the e-cardinality numbers.
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Theorem 6.1. Let s > r.

(i) For any e > 0, and any solution operator, m{e,s) < m{E,r).

(ii) TTiere exists a solution operator for which

Bm 4*4-1-
f-o m[e,r)

Proof, (i) follows from the first statement in Theorem 4.2. To see (ii), lety,,y2,...

be the orthonormal eigenfunctions of £*£ corresponding to eigenvalues e2 > e\ 3t

• • ■  3= 0. Recall that e„ - en ^ for u = {s - r)/N. Now define S: Hr{ü) -* //r(ß)

by

(6.6) SEyn = ex"Eyn.

(Recall that {Ey„Ey2,... ) is complete in /7'(ß).) Then Xn{S*S) = e2('"> and

X„iiSE)*iSE))~ [ct?-^"""»]2, i.e.,

(6.7) r(n,BHr(il)) = e-"   and    r(n,BHs(Q)) ~ cn"^  \

We then have

(6.8) w(e,r) = ln—    and    m(e,s) ~ln —,

completing the proof of the theorem.   D

We then have

Theorem 6.2. Let s > r in the normed case.

(i) For any solution operator,

. I c + a A ,      .      a-a.
comp(e,i)^- comp(e,r) + —-    Ve > 0,

\c + ar I       r c + ar

so that, if S is not of finite rank,

comp(e,s)      c + a,
hmsup -—.-'- < .

f^0     comp(e,r)      c + ar

(ii) There exists a solution operator for which

comp(e,j)      c + as
hm -—- =-.
f-.o comp(e,r)      c + ar

Proof. Immediate from (6.5) and Theorem 6.1.   D

Since we generally expect c » 1, the first part of Theorem 6.2 tells us that

i, ^ ,• comp(e,j)      c + 2
(6.9 hmsup-T ^^7XTä1'

f_0    comp(e,r)      c + 1

while the second part of the theorem tells us that there is a problem for which

,, ,~x ,•     comp(e,j)      c + 1
(6.10) hm-tTJ-r>—TT*1-

E-.0 comp(e,r)      c + 2

We may roughly paraphrase (6.9) by saying that increasing regularity improves

complexity; (6.10) tells us that there are problems for which "improvement" means

only that the behavior of the complexity does not get worse.
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We now consider the seminormed case. Let

(6.11) comp(e,r):= infcomp(tp),
<p

where comp(<p) is the complexity of the algorithm rp for the problem (S,in//r(ß))

and the infimum is taken over all such algorithms <p for the problem (S,íñ//r(ñ)) for

which e(<p) < e. Similarly,

(6.12) comp(e,j):= inf comp(<p),
<p

with the infimum now being taken over all algorithms <p for the problem

(S, <$//*( ß)) for which e(<p) < e. We now define the e-cardinality numbers by

(6.13) w(e,/):= infA^e,/),

where now

(6.14) N{e,t):= (n g Z+: r( n, <&//'( ß)) < e)

for í = r and t = s. Then (as in the normed case) there is an a, g [1,2] for which

(6.15) comp(e,/) = (c + a,)m(E,t) - 1

for t = r and t — s.

We first discuss the behavior of the e-cardinality numbers.

Theorem 6.3. (i) For any solution operator, there exists e0 > 0 such that

(6.16) m(e,s) < m(e,r) + n* - n*    VeG(0,e0],

and so if S is not of finite rank,

mie.s)
(6.17) hmsup —)-(•< 1.

(ii) There exists a solution operator for which

l.m44=l-
f-o w(e,r)

Proof, (i) By Theorem 4.2, limrJ Jr(n,5//s(ß))/r(/7,.0//r(ß))] = 0. Hence there

is an n0 G Z+ such that

r(n,BÍf(Q)) < r(n,BHr(Q,))    Vn 3* n0,

so that Lemma 5.3 yields

(6.18) r(n +n*3Hs(Q))*ir(n + n*r3Hr(Sl))    Vn>n0.

Let

e0:= r(n0 + n*3Hr(Q)).

To prove (6.16), let e G (0,e0 ]. If Nie,r) is empty, the right-hand side of (6.16) is

infinite, so that (6.16) is trivial. So, let n g NÍ£,r). Since

r(n,%Hr(Q)) < e < e0 = t-(tj0 + n*,9,Hr(ü))

and r(-,®//r(ß)) is nonincreasing, we have 72 3= 7t0 + n*, i.e.,

(6.19) K- 77*3*77,,.



DOES INCREASED REGULARITY LOWER COMPLEXITY? 91

Using (6.19), and replacing "«" by "n - n*" in (6.18), we have

r(n + 71* - n*,<$>Hs(Q)) < r(n,%Hr(ü)) < e,

so that n + n* - n* e N{e,s); so,

m(s,s) = infA^e^) ^ n + n* - n*.

Since n g N{s,r) is arbitrary, (6.16) follows.

To prove (6.17), let S not be of finite rank. Then limE_07n(e,r) = oo, so that

(6.16) yields (6.17).

To prove (ii), let y,,y2,-.- be the orthonormal eigenfunctions of £*£ correspond-

ing to eigenvalues e2 > e\ > • • • > 0. Again e„ - en'* for p = {s - r)/N. Let S:

//r(ß)^//r(ß) be such that

(6.20) SÈy„ = ex-"Êy„,

and let S restricted to Pr_ ,(ß) be the zero operator. Then as in the proof of Theorem

6.1 we have

(6.21) r{n,%Hr{Sl)) = e"    and   r(n,<$>H'{Q)) - ctT^-",

so that

(6.22) w(e,r) = ln-    and   m(e,s)~ln —,

completing the proof of the theorem.   D

Remark 6.1. Note that Theorem 6.3 gives an asymptotic result, i.e., one for all

sufficiently small e. One can also prove the nonasymptotic result

(6.23) m(e||£l|,s) <m(e,r)+ 77*-tí*    Ve > 0.

When ||£|| < 1, (6.23) implies that (6.16) holds for all e > 0. However, it is possible

to choose ß so that ||£|| > 1. (For example, let r = 0, s = 1, N = 1; then set

ß = {-a,a) with a > \ß.) In this case, (6.23) does not imply that (6.16) holds for

all e > 0. In fact, when ||£|| > 1, one can construct a solution operator for which

(6.16) does 770/ hold for all e > 0.

To see this, let S: Hri2) - //'(ß) be given by

SÊy„ = a„Êyn,

with a, > o2 > • • • 3ï 0 and yn as in the proof above, and define S to be zero on

Pr_,(ß). Then

r(n,Bir(Sl)) = on+]    and    r(n,BH°(Q)) = an+,en+l,

so that (j£]| > 1 yields

r(0,BHs(Sl)) = a,e, = a,||£|| = \\E\\r{0,BHr{Q)) > r(0,5^(ß)),

i.e., Lemma 5.3 yields

(6.24) r(n*,<$>Hs(Q)) > r(n*,%Hr(Q)).

Now let

e:= r(n*r,<$>Hr(Q)).

Then

(6.25) 7T7(e,7-) = 77*,
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while (6.24) yields r(/j*,Vr>/P(ß)) > e, so that

(6.26) m(e,s)>n*.

From (6.25) and (6.26), we find

m{e,s) > w(e,r) + n* - n*.

So, (6.16) cannot hold for all e > 0.    D

We may then use (6.15) and Theorem 6.3 to prove

Theorem 6.4. Le7 s > r in the seminormed case.

(i) For any solution operator, there exists e0 > 0 such that

comp(e,s) 5g-i comp(e./-) + (c + a Jin* - n*)

so that for S not of finite rank,

comp(e,.v)      c + as
hmsup- ^ ——— .

,_„    comp(e,/-)      c + a,

(ii) There exists a solution operator for which

comp(e,.v)      c + as
hm- = —-—     D
F-o comp(e,7-)      c + ar

Since we generally expect c » 1, we would expect (c + aA/ic + «r) = 1. Hence

this theorem tells us that increasing regularity improves complexity, although there

are problems for which the improvement means that only the complexity gets no

worse.

7. Open Questions. In this paper, we have examined the role of regularity in

determining complexity. Here, we consider some open problems in this area.

We first consider the normed case. We saw that

lim e{n,s)/e{n.r) = 0    when r < s.
II— oc

Is there any way of measuring how fast the ratio tends to zero, given (say) r, s, and

some knowledge of the solution operator 5? There appears to be no way of

extending the proof in this paper (which uses a compactness argument) to find such

a rate.

It would also be reasonable to consider problems defined over the Sobolev space

^'•''(ß). In this case, it is easy to see that din.s) < din.r) for all 77 when s > r,

where din,t) is the 77th minimal diameter of information for data in BW ''(ß) (see

[6, p. 11]). Is it still true that lim„_oce(77,i)/e(;7,r) = 0? The proof of such a

statement would follow from a theorem on ratios of 77-widths, similar in flavor to

Theorem 3.1. Such a theorem ("increasing compactness speeds up the decay of

77-widths") is plausible, but its proof could not use the eigenspace techniques of

Section 3.

We now consider the seminormed case. Although we know that there exist

problems for which increasing regularity is harmful (in the sense of Theorem 5.2), we
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know of no naturally-occurring problem for which this is the case. Is there a

noncontrived problem for which increasing regularity worsens the asymptotic behav-

ior of the optimal error?

It is also of interest to find classes of problems for which increasing regularity

(again, in the seminormed sense) improves the asymptotic behavior of the optimal

error. For example, if we look at problems defined over <$//0r(ß), the Friedrichs

inequality allows us to use the results in Section 4, so that

lim e(77,s)/e(72,7-) = 0.
«—•00

Corollary 5.1 gives other conditions which are sufficient to yield this result. What are

necessary and sufficient conditions for increasing seminorm regularity to improve

the asymptotic behavior of the optimal error in the seminormed case?

We next note that the strongest statement that one can make is (roughly) that

increasing regularity does not make the complexity worse; this is because there exist

problems for which increasing regularity leaves the complexity unchanged. On the

other hand, for many naturally-occurring problems, we have

comp(e,i)
hm —-;- = 0   whenever r < s.
f—o comp(e,r)

It would be useful to characterize the problems for which this holds, while an even

more ambitious task would be characterizing the problems for which the complexity

ratio goes to zero as a given function of e.

Finally, we point out that this paper only deals with linear solution operators.

Does increased regularity lower complexity when the solution operator is nonlinear?
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