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Implicit Runge-Kutta Methods of Optimal Order for

Volterra Integro-Differential Equations

By Hermann Brunner

Abstract. Implicit Runge-Kutta methods with m stages and optimal order p = 1m for the

approximate solution of Volterra integro-differential equations can be viewed as fully dis-

cretized collocation methods in certain polynomial spline spaces. The choice of the quadrature

formulas needed for the full discretization of the collocations is investigated, and it is shown

that, in contrast to ordinary differential equations, there exist (for fixed m) several optimal

methods.

1. Introduction. In this paper we shall be concerned with the approximate solution

of the initial-value problem for a nonlinear (first-order) Volterra integro-differential

equation,

(1.1) y'(t)=f(t,y(t))+f'k(t,s,y(s))ds,       t e I := [t0,T],y(t0) = y0,

with f = fit, y) and k = k{t, s, y) being continuous on their respective domains

/ x R and S x R (S:= ((/, s): t0 g, s z t g> T)) and such that (1.1) possesses a

unique solution y e CX{I). Even though the problem is frequently stated in a

somewhat more general form,

(1.2) y'{t) = F[t,y{t),j'k{t,s,y{s))ds),       t e I,y{t0) = y0,

we prefer dealing with the form (1.1) since it will make, above all, the connection

with the corresponding initial-value problem for the ordinary differential equation,

y'{t) = /(/, y{t)),y{t0) = y0 (i.e. k{t, s, y) m 0), more transparent. Furthermore, the

analysis of the convergence properties of any numerical method for (1.1) (or (1.2))

will necessarily involve the linearization of the given equation and lead to a problem

of the form

(1.3) y'(t)=p(t)y(t) + q(t)+f'K(t,s)y(s)ds,       t e I,y{t0) = y0,

where p and K represent, respectively, the partial derivatives 3/(r, y)/dy and

dk{t, s, y)/dy (or dF{t, y, z)/dy and F{t, y, z)/dz), evaluated at suitable argu-

ments (determined by the Mean-Value Theorem).
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The given initial-value problem (1.1) will be solved numerically by implicit

Runge-Kutta methods which, for a given fixed number of stages (denoted by

m ;> 1), have optimal order of convergence, p = 2m, at the mesh-points(/„ = 70 + nh

(n = 1.N: tN = T)). For the special case A: (7. s, y) = 0 these optimal methods

are, of course, well known: for a given m there exists a unique implicit Runge-Kutta

method of order p = 2m which can be viewed as a collocation method (based on the

Gauss points) in a certain polynomial spline space (compare, e.g., Guillou et Soulé

[8], Norsett and Wanner [15], Norsett [14] for studies of this aspect). However, if the

integral operator is present in (1.1) (i.e. A.(7, s, y) £ 0). there is as yet no analogous

analysis or list of such optimal Runge-Kutta methods. Nonoptimal methods have

been discussed by various authors: Lubich [10], [11] presents the general theory

concerning the structure of the order conditions of Runge-Kutta methods for (1.2)

and lists a number of specific explicit methods; the question on the attainable order

of implicit Runge-Kutta methods is not touched. Related methods, namely so-called

block-by-block methods, have recently been investigated by Makroglou [12]; in

addition, compare also the papers of Mocarsky [13], Brunner [2], Brunner and

Lambert [4, pp. 84-87], and Feldstein and Sopka [6] for other step-by-step and

Runge-Kutta methods. The survey article of Cryer [5, pp. 62-72] reviews the state of

the art up to 1972 (the comprehensive bibliography includes the important contribu-

tions of Pouzet (1960, 1962) and of Tavernini (1971)). Finally, we should also like to

mention the more recent survey paper of Baker [1].

It will be shown below that collocation in certain polynomial spline spaces (which

will be subspaces of C(/)) is the natural setting for the analysis and the construction

of implicit Runge-Kutta methods of optimal order for (1.1): while the resulting

collocation equations are, in contrast to those for the case kit, s, y) = 0, not yet

fully discretized (due to the presence of the integral operator), they furnish already

the necessary information on the attainable order at the nodes of the approximating

polynomial spline. Full discretization is then arrived at by selecting suitable quadra-

ture formulas to approximate the integral operator; this discretization step may be

interpreted as a perturbation of the collocation equations, with the perturbation

terms being given by the quadrature errors. The corresponding perturbation analysis

will then tell us how to choose the quadrature formulas in order to match the

(already known) attainable optimal order of convergence at the nodes.

The polynomial spline space used for the approximation of the exact solution of

(1.1) is defined as follows: let jV ;> 1, m ^ 1 (with N, m e N), /„ < /, < • ■ •  < 7^. =

T, Zs:= itn: n= 1.N - 1), Z,.:= Zv U T. andseta„:= [/„, tn¥i] in = 0.

N - 1). Then

(1.4) S:0,(Z.V):= [u e C{I): u\a=:un e trjn = 0.N - 1)),

with dim S^X)iZN) = Nm + 1, is our approximating polynomial spline space. Let

XiN):=  U N„:XX„, with

(1.5) Xn:= {tn + c,h:0sc, < ■■■  < cm g 1}        (n = 0,..., N - 1),

denote the set of collocation points at which the desired approximation u e S^\ZN)

is to satisfy the given integro-differential equation (1.1). This approximation is thus
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determined recursively by

(1.6)    u'n{t„ + c,h)=f(tn + cth, u„(t„ + e,h)) + f'"+C'hk(tn + c,h, s, u„(s)) ds

n-\

+ L   ¡'k"k(tn + c,h,s,uk(s))ds,

/= l,...,m(n = 0,...,N- 1).

Since u e C{I), we have

0-7) u„(t„) = «„_,(*„).       t„e ZN(withu0(t0)=y0).

In Section 2 we shall analyze the order of convergence, p, which is attainable

globally (i.e. on /) and locally (on ZN) by the solution of (1.6). If the integrals in

(1.6) over the subintervals {[/„, /„ + c,h]: i - 1,..., m) and {[tk, tk+l]: 0 ^ k ¿

n - 1} are approximated by numerical quadrature (leading to the fully discretized

collocation equations), we get a class of implicit Runge-Kutta methods for (1.1). The

structure of these methods, together with their global and local convergence proper-

ties, will be studied in Section 3; this perturbation analysis will reveal how implicit

Runge-Kutta methods of optimal order p = 2m can be found (it will also show that

there are several such optimal methods, in contrast to the case of an ordinary

differential equation where there is precisely one implicit Runge-Kutta method with

p = 2m). Finally, in Section 4 we give a number of specific optimal Runge-Kutta

methods.

2, The Attainable Order of Collocation Approximations.

Theorem 2.1. Suppose that the Volterra integro-differential equation (1.1) possesses

a unique solution y e Cm+x{I); in particular, ¡et |9/(i, y)/dy\ ^ P, \dk{t, s, y)/dy\

¿ M, uniformly on I X R and on S X R, respectively. Let h > 0 in t„ = t0 + nh

{n = 0,..., N - 1; tN = T) be sufficiently small so that (1.6) defines a unique ap-

proximation u e S¡£\ZN) for any choice of the collocation parameters (c,) with

0 ^ c, < • • • < cm g 1. The error e{t) := y{t) — u{t) then satisfies

\\e\\x:= max{\e{t)\: t e I) = 6{hm),

||e'||„:-.sup{|e;(0|: t e{tn, tn+l] {n = 0,..., N - 1)) = e(hm),

ash -+0+,Nh = T- t0.

Without loss of generality we have restricted our discussion to uniform partitions

of /: the generalization to so-called quasi-uniform partitions (sometimes also called

y-quasi-uniform partitions), where the quantities

//;:= min{/n+1 - t„: 0 g n g N - l),   H'¿:= max(ín+1 - tn: 0 g n ¿ N - 1),

satisfy H'¿/H'N < y < oo for ail N, is straightforward. We also note that the special

choice e, = 0 and cm = 1 {m > 2) implies that u e CX{I).
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Proof. It follows from (1.1) (with t = tn + cth) and from (1.6) that

(2.1)     e'„{tn + c,h)=fy(t„ + c,h, •) • e„{t„ + c,A)

+ hf'kY(tn + c,h, tn + rh, •) • en{t„ + rh) dr
'0

n-I

* E  / M'« + C7A- 'a + T>>, •) • «*('* + rh) dr
k-o Jo

{i = \,...,m),

where e„:= e|„ , and where the unspecified arguments infY and kY are appropriate

intermediate values given by the Mean-Value Theorem. Let us define

Pn.,-=   fA'n + C.h,-), K„,(tk + rh): =   k „(/ „ + C,h , tk + rh , •) .

Since y e Cm+ '(/), we may write

(2.2) e„{tn + rh) = hA £ ßHj ■ r' + h ■ R„{r)\,       t„ + rh e a„,

and

(2.3) e'„(t„ + rh) -*—'(£>• /?„., • t>"' + A ■ ä;(t)J,

', + tA S(/„,,„+,]      (0á«^-l);

here, hm ■ ßnj:= cttJ - <*„,, (y - 0,..., m), with cn.,:= hy»{tH)/j\, u„{t„ + rh)

:-27.0 «B.yT>, and

(2.4) ä.(t):- y<"' + ,)(¿J-Tm+,/('"+ O!,       *'„('):= /"+,,(0 -t"/«!

Hence, substitution of the above abbreviations and expressions in (2.1) yields the

linear recurrence relation for ßnQ and the components of the vector ß„:=

(A,.. •• ßn.m)T*Km(0SniN- 1),

(2.5) £    y • e/"1 - h-pnJ -cf-h2-/ X,,('n + rh) ■ rJdr) ■ ßnj
j-1 v •'o /

= [h-pn., + h2-^Knj{t„ + rh)dTyßnSi

+ ä2E  fKnj{tk + rh)dr-ßkS)
k~\ Jo

n—l     m

+ A2E    E f KnJ(tk + rh)r'dr   ßkJ + qnJ       (/= 1.m),
A = 0 y-I   ''O

with

(2.6) ?(1>i := -h ■ R'„(c,) + h2pnj ■ Rn{Cj) + h1 • f'Kni(tn + rh) ■ R„(r) dr
Jo

+ h't  fKn,,(tk + rh)Rk(r)dr.
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We have also used the fact that ß00 = 0, since ß00 = c00 - a00 = y{t0) - uQ{t0) =

0. Furthermore, it follows from e e C{I) that

k-\I   m \

(2.7)   ßkß - ß0ß + £     I /i,,, + A • R,(l) \,       ß00 = 0       (lzkzN- 1).
/-oW-i /

If we now use this relation to express ßn0 and j8ti0 (fc < n) on the right-hand side of

(2.5) in terms of the components of the vectors ßk, we arrive at

(2-8) £ (j ■ e/"' - hpnJc{ - h2-jy„,(t„ + rh) ■ t'Jt) • /?„,,

n— I     m

= h2Z   Lßk.j-f KnAtk + rh)-rJdr
k-o j-\ yo

(c .      I    n—\     m \

Pn, + h-fo'Kn,(tn + rh)drj ■    A £   E Aj

n-i fk-l    m \

+ h2L\L   Lß,,j\-f Kn,,(tk + rh)dr + qnii,

where we have set

(2.9) qn_, := qni + (pni + h ■ f'Kni(tn + rh) dr) ■ h2 ■ "¿ Ä,(l)

+ Ä3E    LR,(i)-fKn,(tk + rh)dr,
k-\ i-o Jo

with qni given in (2.6).

We shall now show that ßnQ and the vectors ßn satisfy

m

(2.10) «AH,:-   E|/3„J<A-fi,
y-i

(2.11) \ß„,o\£B',   uniformly as h -► 0+, Nh = T- i0.

According to (2.2) and (2.3) this will then directly imply the two convergence

statements of Theorem 2.1.

We first note that the matrix defined by the coefficients of {ß„ .) on the left-hand

side of (2.8) is invertible whenever h > 0 is sufficiently small: this follows from the

fact that |p„ ,| ^ P, [Kni{t„ + tA)| ^ M, and the observation that, for h = 0, the

determinant of this matrix is essentially a Vandermonde determinant with value

m!!!*>/(e, - Cj). Thus, let h > 0 be such that the /,-norm of the inverse of this

matrix is uniformly bounded by G, h e (0, A) {n = 0,..., N — I). Consider next the

matrices formed by the coefficients of the vectors ßk {k < n) in the first term on the

right-hand side of (2.8): by our hypothesis on k the /¡-norm of each of these

matrices is bounded by mM. Analogous arguments yield uniform bounds for the

/1-norms of the vectors occurring in the second and third term. Finally, according to

(2.4) and the assumptions on the boundedness and the smoothness off , k , and y,

there is a finite constant Q' such that the vectors qn:— {qnX •■■ qn m)T e Rm
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(0 á ti ^ JV - 1) satisfy H^JI, ̂  hQ'. In summary, (2.8) leads to the inequality

(2.12) H/y, S hC¿ £ \\ßk\\, + h2C¡ £ 11)8,11, + AC2'f A • E    E HAH,] + Aß
*=o *=o \       *:=!   /=o /

(n = 0,...,N- 1;Ag (0,A)),

where Q:= mGM, C\:= G{P + AM), C2':= GM, Q:= GQ'. The right-hand side
of (2.12) can be simplified as follows: since

h2 £   E HAH, = a2 I (« - A - 1) • u/y, ^ A2iV £ hah,
*-i   /=o A-=0 k=0

n- 1

^A(r-70)EllAH,,
A = 0

we have

n- 1

ll&ll.á AC E ll^ll, + A<2       (77 = 0,...,^- 1),
k-0

where C:= C¿ + AC[ + C'2{T - /0).  This is  the well-known discrete Gronwall

inequality which yields the uniform bound

(2.13) HAH, £ hQ ■ (1 + AC) • exp(C(T - /0)) = :hB

(n = 0,...,N - 1; he (0, A)).

Furthermore, (2.7) leads to

IAjoI ̂  E (\\ßk\U + hMm+x)       (Mm+X:= max{|^<"+"(f)|/( in + 1)!: t e /}).
k = 0

By (2.13) this becomes

l/U zN-hB + N- hMm+, = (T - tQ) ■ (B + Mm+ ,):= B'

(tj= 1,...,N- 1).

We have thus verified the uniform bounds mentioned in (2.10), (2.11). To complete

the proof we return to (2.2) and (2.3): from (2.2) we find

\e„(tn + tA)|s A-flAj + lABi + **0 S hm(B' + hB + hMm+x)

(tn + rhean,n = 0,...,N - 1; A-» 0 + , ATA = T-i0),

while (2.3) furnishes, in an analogous fashion,

|e;(i„ + TA)UA"-,(Wi-||Ä||,-r A-mM^,)

£ Am-'(A   mB + h- mMm+x) = hm ■ m(B + Mm+X).

The above reasoning also makes it clear that the exponent m of A in the upper

bounds for HeH^ and [¡e'W^ is best possible, i.e. it cannot be replaced by {m + 1). D

While every choice of the collocation parameters (c,) leads to the same global

convergence rate p = m, there exist special sets of these parameters for which one

obtains a higher order of convergence at the nodes of the approximating polynomial

spline. This is made precise in
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Theorem 2.2. Suppose that the solution of (1.1) satisfies y e C2m~"{I), where

v e {0,1,2), and let fyandkybe subject to the hypotheses stated in Theorem 2.1.

(a) If v = 0, and if u e S^{ZN) denotes the collocation approximation determined

by (1.6), where the collocation parameters are the zeros of Pm{2s — 1) {Gauss points on

(0,1)), then

(2.14) e(tn) = 6(h2m)   fortneZN(h^0+,Nh = T-t0).

(b) If v = 1, and if u e S®X{ZN) denotes the collocation approximation determined

by (1.6), where the collocation parameters (c,) are the zeros of s ■ P^\{2s - 1), or of

{s - 1) • P¿,-\{2s - 1) {Radau points for [0,1) and (0, l], respectively), then

(2.15) e(í^) = 0(A2'"-,)   fortneZN{h-*0+,Nh-T-i0).

(c) // v = 2, and if u e S£){ZN) denotes the collocation approximation determined

by (1.6), where the collocation parameters {c¡) are the zeros of s{s — 1) • P^-\{2s — 1)

{Lobatto points for [0,1]), then

(2.16) e(tn) = 6(h2">-2)   fortneZN(h^0+,Nh = T-to).

{Note that c, = 0 and cm = 1 imply that u is not only in C{I) but also in C'(/).)

For a comprehensive analysis of the quadrature formulas of Gauss, Radau, and

Lobatto (including a study of the Jacobi polynomials P^"'^{t)) we refer the reader

to Ghizzetti and Ossicini [7, pp. 58-68 and pp. 92-110].

Proof. According to (1.6) the collocation approximation u e SJ„0){ZN) satisfies

(2.17) u'(t)=f(t,u(t))+f'k(t,s,u(s))ds-8(t),       tel,

with 8{t0) = 0; here, the defect 8{t) vanishes on the set X{N) of collocation points

(recall (1.5)). If we now subtract (1.7) from (1.1) we are led to

(2.18) e'(t)=p(t)-e(t) + Ô(t) +f'K(t,s)-e(s)ds,       tel,e(t0) = 0.
Jt0

In analogy to the proof of Theorem 2.1 we have set p{t)'-= fy{t, •) and

K{t, s):= ky{t, s, •), with suitable last arguments given by the Mean-Value Theo-

rem. The solution of this linear Volterra integro-differential equation is given in

terms of the resolvent kernel R = R{t, s): since such an integro-differential equation

can be written as a Volterra integral equation of the second kind, R{t, s) is the

resolvent kernel of the kernel of this second-kind equation, Q{t, s):= p{s) +

¡l K{v, s) dv, {t,s) e S. We thus obtain (see also, e.g. [3, pp. 264-265])

(2.19) e(t) = R(t,t0)-e(t0) +f'R(t,s)-8(s)ds,       tel,e(t0) = 0.

The assumed smoothness of p and K is inherited by Q and hence by R, while the

defect 8 is piecewise smooth on / (recall (2.17)). Now let t = t„ e ZN in (2.19), and

let {d¡) be m given points in [0,1], 0 <; dx < ■ ■ ■ < dm ̂  1. We may then write

n-\       x

e(tn) = A • £ / R(tn, tk + rh) ■ 8(tk + rh) dr

n-\  I   m \

= *E     \Z"jR(tnAk + dJh)-8(tk + djh) + EnX
k=Q\j=\ j
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where En k denotes the error term associated with the quadrature formula based on

the abscissas {tk + djh) and the weights {w¿) {j = 1.m). If we choose dj = cy

(the collocation parameters), then 5(7, + c,A) = 0 {j' = 1,..., m; 0 ^ k <; N - 1),

and the above relation becomes

n- I

(2.20) e{t,,) = h ■ Z EHj        (t„eZN).
k = 0

Assuming that En k = 0(Ar) (0 <; k < n <; N - 1), and observing that the number

of terms in the above sum is at most equal to N, where Nh = T — t0 < oo, we have

the result that the order of the error at the nodes is equal to the order of the

quadrature formula defined by the parameters {c,} and the weights {w,}. This result

generalizes the analogous result for ordinary differential equations (i.e. (1.1) with

k{t, s, y) = 0) derived in [8], [15]. The three particular results of Theorem 2.2 now

follow immediately by observing that the error terms for the w-point quadrature

formulas of Gauss, Radau, and Lobatto, contain, respectively, the derivatives of

order 2m, 2m - 1, and 2m - 2, of the integrand (see [7, pp. 92-110] for details).

This also shows that the local order p = 2m (for the collocation parameters being

equal to the m Gauss points in (0,1 )) is optimal.   D

3. The Discretized Collocation Equations: Runge-Kutta Methods. In most cases the

integrals occurring in the collocation equation ( 1.6) cannot be found analytically but

have to be approximated by suitable quadrature formulas. This means that, instead

of u e S^iZpj), we compute an approximation û = S£\ZN) from a perturbed

collocation equation,

(3.1)    û'„(tn + c,h)=f(tn + cA,ûn(tn + c,h))

Ho

+ h £ wu ■ k(t„ + c,h, tn + duh, ûn(tn + d0h))

/'-I

n- I     »i|

+ A £   £ »j ■ k(tn + c,h, tk + djh, ûk(tk + djh)),
k~0 f-\

7 = l,...,m(n = 0,...,JV- 1),

where 0 ^ d¡¡ <        < ¿1>o £ c, (i = 1.m), 0 ^ d, < ■ • •  < </Ml ̂ 1, with u0

and u, denoting given positive integers. Since the given kernel in (1.1) is only defined

for s ^ t, we shall only study the natural discretizations using the quadrature

abscissas tn + d^h ^ /„ + c,A {j = 1,..., n0); see also the remark in Section 5.

Let e\t) := y{t) - û{t), and set e(i) := u{t) - û{t). Since e\t) = {y{t) - u{t)) +

{u{t) - u{t)) = e{t) + e{t), we have

(3-2) \\ê\\x = \\e\\x + HelL,

and

(3-3) \ê(t„)\ g |e(í„)| + |e(/J|,       t„ e ZN,

where the (optimal) orders of the first terms on the right-hand sides of (3.2X .nd (3.3)

are given by Theorem 2.1 and Theorem 2.2.
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If we subtract the discretized collocation equation (3.1) from the exact collocation

equation (1.6), we obtain

(3.4)        E'n(tn + Cih)=pnyEn(t„ + Cih)

Mo \

- E »u -k(tn + c,A, t„ + duh, û„(tn + d,jh))\

n-\   I     x

+ h ■ £^ j jf k(tn + c,h, tk + rh, uk(tk + rh)) dr

£ Wj ■ k(t„ + C,h, tk + djh, ûk(tk + djh))

7-1 I

k = 0

(i = 1,..., m),

which we write in the form

(3.5) e'„(t„ + c,h) = pnj ■ t„(t„ + c,h) + h- {/„<«> - Jtf) + A £ {/# - Jft).
k-0

Suppose that the quadrature error terms are

(3.6) Efl:-Jtf-J!rj    {i-\,...,m),
(3.7) Eft := J¿y -ft)    (i=l,...,m;k<n).

Theorem 3.1. Let the assumptions of Theorem 2.2 hold; suppose further that for all

sufficiently smooth integrands we have

(3.8) |£<",>| ± C0A'°,       |£<",>| <; C,A"       (k < n),i = I,..., m,

with r:= min(r0 + 1, rx). Then

(3-9) NI. - 6(A').       Hell« - ©(Ar)-

Proof. It follows from the definition of e„(r) := «„(/) - ûn{t), t e an, that en e rrm.

We thus have

m

£n(<n + rh):=   £ 8nlr',       tn + rh e o„, withfi00 = 0.
i-o

According to (3.6), (3.7) the error equation (3.4) may be written as

(3.10) t'n(tn + Cih)=pnyE„(ln + C,h)

Ho

+ h E »,j ■ K«,i(tn + dtJh) •£„(/„ + d,jh)
7-1

n-\     H,

+h £   £ wj ■ Kn,(tk + djh) ■ ek(tk + djh)
k = 0 7=1

1

+ [hE^ + hniZEty),
\ k-o       I



104 HERMANN BRUNNER

where p„, and K„, denote, as in Section 2, appropriate values of the partial

derivatives fv and kv. If we now substitute the expressions for en and for e'„ in Eq.

(3.10), we find, in complete analogy to (2.8).

ml Ho \

(3.11) £   / • c'-x - hPn, ■ c\ - A2 £ WlJKnJ(t„ + dl}h)d\j   ■ 8nJ

n-\     m I   H, \

= A2£   E**./   T.WjK^ + djV-d}]
k-0 l-\ \j=l j

I Ho \      /    «-1     m \
Pn, + h T,w,jKmJ(tñ + duh)\ ■ I A £   £ ¿U

n-lm Ik-\     m \

+ A2£   £w^n.,(^ + ^A).     £   £5,,   +A-7V
*=>i y-i \ * = 0 /=i      /

(' = 1.rn),

where

(3.12) Tn,:= A£i-> +A ££<"'.
*=o

In (3.11) we have made use of the relation

n— 1     m

(3.13) ¿U = «0.0 + E   E «,.7-       «0.0 = 0,
k-0 l-\

which is a consequence of the continuity requirement for e(i) at / = t„ e ZN (recall

also the analogous relation (2.7)).

Since the recurrence relation (3.11) has exactly the same structure as the recur-

rence relation (2.8), the proof is completed along the Unes of the proof for Theorem

2.1. Let r„ := {T„ , ■ ■ ■ Tnmf e W. It follows from (3.12), (3.8) that

llalli ú C0Ar°+l +Nh-C,hr> = hr(C0hro+i~r+ (T-t0)C,hr'-r)

= :hrQ'       (n = 0,...,N - 1).

Hence, setting 8n := {8n , • • • 8n m)T e Rm, we find an inequality of the form

n-\

(3.14) ||«J|, < hD0 £ \\8k\[, + A • h'Q       (77 = 0.N-l);
k-0

here, we have assumed that the quadrature weights {wtJ) and {Wj) satisfy \w¡,\ ¿ W,

\wj\ú W (which holds, of course, for interpolatory quadrature formulas since the

number of abscissas in the formulas used here is fixed). Applying the discrete

Gronwall Lemma we arrive at

(3.15) M g A • Qhr ■ (1 + hD0) ■ exp(D0(T -t0))=:h-Dhr

{n = 0,...,N- l;A-»0+,/VA = T- t0).

Now (3.13) implies the estimate

n-l

l«n.ol S £ ||£*||, è Nh ■ Dhr = (T-t0) ■ Dh' = :D'h',
k-0
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which in turns allows us to obtain

\en(t„ + rh)\ï\8,J + IM, ^ D'A' + A ■ Dh' = (D' + hD)h',

and

K(t„ + rh)\ ¿h~xm- IIÍJI, ̂  A-'wA • DAr = mDhr

(n = 0,...,N- l;h-*0+,Nh<* T - t0).

This completes the proof of Theorem 3.1.   □

Corollary 3.1. Let the assumptions of Theorem 3.1 hold. Then

(3.16) ML Z Q0hm + Q,hr       {h-*0+,Nh = T-t0).

Furthermore, ife{tn) = Q{hp')fortneZN, then

(3.17) ê{tn) = e(h"),       t„e ZN, with q:= min{p*,r).

In particular, if Pm{2c¡ - 1) = 0 {i = 1,..., m) {Gauss points), and if, in the per-

turbed collocation equation (3.1), we have dj = Cj, dtJ = cjci {with u0 = u, = m), with

the quadrature formulas being interpolatory, then

(3.18) é(0 = S(A2m),       tneZN.

Proof. The bound in (3.16) follows from (3.2), Theorem 2.1, and (3.9), while (3.17)

is a consequence of (3.3), Theorem 2.2, and (3.9). Finally, if the quadrature formulas

used in (3.1) and characterized by (3.6), (3.7) are m-point Gauss formulas, then we

have 7q = r, = 2m, and hence r = 2m. The result (3.18) is therefore implied by

(2.14) and (3.9).   D

We note that approximations û e S^\ZN) determined by (3.1) and satisfying

(3.18) do also result if r0 = 2m - 1 in (3.8), since r = min(r0 + 1, rx) = 2m, pro-

vided the quadrature approximations Pk"J {k < n)in (3.4), (3.7) are still the m-point

Gauss formulas (i.e. u, = m). It is well known that the two Radau quadrature

formulas described in (2.15) have this property, thus demonstrating the fact that

there is no unique optimal method (i.e. a method for which (3.18) holds) for the

solution of (1.1) {k{t, s, y) 0 0). This will be elaborated in the following section, by

means of specific examples of such methods.

We conclude this section by rewriting the discretized collocation equations (3.1) in

a form which exhibits more clearly the fact that (3.1) defines a class of implicit

Runge-Kutta methods for the solution of (1.1). Define Yy(n):= u'„{t„ + c,A) (where

K e wm_,), and.set

m    r - r

'>(t):= n T^7     U=h...,m).
r-\   Cj        cr
r*7

Since u'„{t„ + rh) = EJ1, (,(t) • Y/"\ we have
m

(3.19) un(t„ + rh) =y„ + A £ «,(t) • Y/"\
7-1

where we have set y„:= «„(/„)(= un_x{t„)), and

(3.20) a,(r):=  flj(u)du,      j=l,...,m.
Jo
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If we let a¡j := aj{c,), then u„{t„ + c,A) = y„ + A£J_, aiJYJ(n). Thus, the collocation

equations ( 1.6) may be written in the form

(3.21)    Y<mi-f\tm + clh,y. + hlla,jYJ™
7-1

+ h ■ f'k\tn + c,h, tn + tA, y„ + A £ ctj(r) • T/">   dr
Jo

i- i

7-1

+ * •  E / *k + c,h, tk + rh,yk + hZ «j(r) ■ Yf"   dr
k-oJ°    \ /-I /

(i=l,...,m).

The approximate value at / = t„ +, is then given by

m

(3.22)   yn+1 = un(t„ + A) = y„ + A £ btYf\       b,:= a,(l) (« - 0.AT- 1).

The integrals/¿I* introduced in (3.5) now become

(3.23)   /#:-

j" A  /„ + c,A, f* + tA, y* + A £ a,.(T)ty*> L/t,    0 ^ A < h,

f'k it. + c,h, tn + rh,yn + ht *j(t)Y™\ dr,    k = n
7-1

(/= l,...,m).

The fully discretized collocation equations (i.e. (3.1)) can now be written down in

terms of expressions Yjk):= û'k{tk + Cjh) (A ^ n); we have

(3-24) yí")=/(7„ + c,A,yn + A£a,7y)">

7-1

n- I

+ fcí"' + *L^       (/= l,...,m),
*=o

m

(3.25)       yn + 1 = ún(ín + A)=yn + A£A,y<'"       (n = 0,..., N - 1),
í-i

where

(3.26)
/   H

Jí"):/:=
/-I

Mo

£ w, ■ k \tn + c,h, tk + d,h, yk + h £ aj(d,) • if>  ,       0 $ k < n,
7-1

E »,./ ■ A k + c,A, t„ + dith, y„ + h £ aj(du) ■ Y)n)  ,    A = «
7-1 \ 7-1

(i = l,...,m).
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In the following we shall restrict our analysis to the case where

(3.27) u0 = u, = m;   d, = c,;   dH = c,- c¡       (I = 1,..., m; i = 1,..., m).

The following notation will be used:

(3.28) *<;> := «,(C/ • c,);       ä„ := f'\<¡>(r) dr,
Jo

where

m

r-i
r*l

denotes the /th Lagrange fundamental polynomial for the points (c,c,,..., c¡cm).

Therefore, if we use w-point interpolatory quadrature in (3.1), based on the above

abscissas, we find that (3.1) yields the following class of Runge-Kutta methods for

the Volterra integro-differential equation (1.1):

(3.29) #•>-/ \tm + clh,fm + h£aIJf}">)
\ 7-1 /

ml m

+ A £ 5„ ■ k\t„ + c,h, tn + c/Cih, yn + A £ aft ■ Y}»*
l-\ \ 7-1

n—\    m I m \

+ h E  E b, ■ k \tn + c,h, tk + c,h, yk + A £ atj ■ if >
k-0 1-\ \ j-\ )

(i = 1,..., m),

withyn+1 given by (3.25).

4. Examples. We have seen that an implicit Runge-Kutta method (3.29) for (1.1) is

characterized by the following arrays:

{c,,...,cm);   {aij:i,j=l,...,m);   {bx,...,bm)\

(5U: /,/= 1,..., m);    {aj°: /, j = 1,..., m; i = l,...,m).

In the following we shall illustrate the analysis of Section 3 by presenting the three

optimal methods of order p = 2 m = 4.

Example 4.1. m = 2; c, = (3 - /3 )/6, c2 = (3 + f3 )/6 (zeros of P2{2s - 1)).

Here we find the following parameters:

/ 1/4 (3-2/3)/12^
A := i a. A = _

lJ (3 + 2/3)/12 1/4
;    A, = b2 = 1/2;

D :-(*„)-
:,       c,c2

c-,c2«M

(2 - v/3 )/6 1/6

1/6 (2 + /3)/6)

^ := {Stl) =
(3-/3)/12    (B-^/U1

(3 + v/3)/12    (3 + v^")/12/'

a\\x = (6 - /3 )/72, a<2> = (18 - Ux/3 )/72,

a<V = (6 + 5/3 )/72,       a22> = (6 - 5^3 )/72;
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< = (6 + 5/3 )/72,       a<2> = (6 - 5/3 )/72,

a« = (18 + 11/3 )/72,   ag = (6 + /3 )/72.

Here, r0 = rx ** 2m = 4, and hence r = 4.

Example 4.2. m « 2; c, = (3 - /3 )/6, c2 = (3 + /3 )/6; c, = 0, c2 = 2/3 (Radau

points for [ 0,1) ); </,., = c,c,.

The Runge-Kutta parameters are:

A, A, and A2 as in Example 4.1 ;

D = (d„) =
c,c,     c,c2

c2cx    c2c2

0    (3-/3)/9\

^0    (3 + /3")/9/'

|(3-/3)/24    (3-/3)/8\

A-[a,l)     l(3 + /3)/24    (3 + /3)/8|'

aíí> = 0,       a\x2x = 0,       a<V = (3 + /3)/27, a22> = (6 - 4/3 )/27;

a<2) = 0,       a<2) = 0,       a22,' = (6 + 4/3)/27,       fl22) = (3 -/3 )/27.

As mentioned in Section 3, this discretization of (3.1) is characterized by r0 = 2m -

1 = 3, r, = 2m = 4, and hence hy r = min(r0 + 1, r,) = 4 - 2m. Since the colloca-

tion parameters are the Gauss points we have, in (3.17), p* = 2m = 4, and thus

q = min(p*, r) = 4. The above method is thus optimal.

Example 4.3. m = 2; c, = (3 - /3 )/6, c2 = (3 + /3 )/6; c, = 1/3, c2 = 1 (Radau

points for (0,1 ]); da = c¡c¡.

The Runge-Kutta parameters are:

A, b, and b2 as in Example 4.1;

n     7^ »      i(3-/3")/18     (3-/3)/6\
/' = ( d,, ) = ^_ ,_ ;

(3 + /3)/18     (3 + /3)/6

/
A := (J,.,) =

(3-/3)/8     (3-/3)/24\

\(3 + /3)/8     (3 + /3)/24/'

ají» = (3 + 4/3 )/108,   a<2' = 5(3 - 2/3 )/108,

«iV - 1/4,   fl22)=(3-2/3)/12;

a\2) = 5(3 + 2/3 )/108,   a\f = (3 - 4/3 )/108,

a22) = (3 + 2/3 )/12,    flg = 1/4.

Since again we have r0 = 2m - 1 = 3, and thus by the argument used in Example

4.2 we find, in (3.17), q = 2m = 4. This method is also optimal.

5. Concluding Remarks, (i) If the domain of definition of the kernel k{t, s, y) in

(1.1) can be extended to include values s > t, then we may choose, instead of (3.27),

Pq = u, = m, d, = c„ d,, = c,{l = 1,..., m; i = 1,..., m). If the parameters (c,) are

the zeros of Pm{2s — 1) (Gauss points) then we have, in analogy to the three

examples of Section 4, three more optimal methods.
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(ii) The block-by-block methods of [12] correspond to special discretizations of

(3.1): if the collocation parameters are equally spaced, i.e. if c, = (i - l)/{m — 1)

(7 = 1,..., m), and if d¡¡ = ctct, then we have

=     = / w' üm is even,
r°     rx     \m+ 1,    if mis odd. '

Thus, it follows that r = m{m even), and r = m + 1 {m odd), which in turn implies,

in (3.17), q = m {m even), and q = m + 1 {m odd). These quadrature formulas are,

of course, the formulas of Newton-Cotes.
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