
mathematics of computation
volume 42, number 165
january 1984, pages 115-142

The Lanczos Algorithm With Partial

Reorthogonalization

By Horst D. Simon*

Abstract. The Lanczos algorithm is becoming accepted as a powerful tool for finding the

eigenvalues and for solving linear systems of equations. Any practical implementation of the

algorithm suffers however from roundoff errors, which usually cause the Lanczos vectors to

lose their mutual orthogonality. In order to maintain some level of orthogonality, full

reorthogonalization (FRO) and selective orthogonalization (SO) have been used in the past as

a remedy. Here partial reorthogonalization (PRO) is proposed as a new method for maintain-

ing semiorthogonality among the Lanczos vectors. PRO is based on a simple recurrence,

which allows us to monitor the loss of orthogonality among the Lanczos vectors directly

without computing the inner products. Based on the information from the recurrence,

reorthogonalizations occur only when necessary. Thus substantial savings are made as

compared to FRO. In some numerical examples we apply the Lanczos algorithm with PRO to

the solution of large symmetric systems of linear equations and show that it is a robust and

efficient algorithm for maintaining semiorthogonality among the Lanczos vectors. The results

obtained compare favorably with the conjugate gradient method.

1. Introduction. In recent years there has been considerable interest in the Lanczos

algorithm and its applications [l]-[4], [8]-[20], stimulated by the unusual behavior of

the algorithm in finite precision arithmetic and by its great potential for sparse

matrix problems. After Paige [10], [11] gave a thorough analysis of the algorithm,

research among numerical analysts was stimulated along two directions. In one

direction of research the simple ("Paige-style") Lanczos algorithm was considered

without further modifications [1], [2], [14], [17]. A tridiagonal matrix is obtained

which may be up to six times larger than the original matrix [17], yet contains

approximations to all of the original matrix's eigenvalues. As of today there is no

proof that all the eigenvalues will be found by this procedure.

On the other hand because of its so-called "instability" it was traditionally

recommended to use the Lanczos algorithm only with full reorthogonalization [3],

[22]. This was considered too expensive for large matrices. A second line of research

attempts to cut down the number of orthogonalizations, yet obtain results from the

practical Lanczos algorithm that are close to the ideal, roundoff-free algorithm (e.g.

no appearance of duplicate copies of eigenvalues and termination after at most n

steps). In order to achieve this goal Parlett and Scott [18] introduced selective

orthogonalization (SO), which utilizes Paige's [10] theoretical explanation of the

behavior of the algorithm, and performs reorthogonalizations only when necessary.

Recently Grcar [4] presented a forward error analysis of the Lanczos algorithm and

Received September 8, 1982.

1980 Mathematics Subject Classification. Primary 65F10.

*The author gratefully acknowledges support from ONR Grant N00014-69-0200-1017.

©1984 American Mathematical Society

0025-5718/84 $1.00 + $.25 per page

115

116 HORST D. SIMON

in the light of his results proposed periodic reorthogonalization. Here we will follow

this second line of research and propose a new orthogonalization method called

partial reorthogonalization (PRO).

In order to present this new method we first introduce the Lanczos algorithm in

Section 2, and then in Section 3 we discuss its behavior in the presence of roundoff.

The loss of orthogonality among the Lanczos vectors is governed by a simple

recurrence. This recurrence is the basis for PRO, which will be introduced in Section

4. Sections 5 to 8 deal with the computational details of PRO. In Section 9 we briefly

compare PRO to the other reorthogonalization methods mentioned above. In

Section 10 we present some numerical results.

In this paper we will follow the Householder convention and denote column

vectors by small Roman letters, matrices by capital Roman letters, and scalars by

small Greek letters. Symmetric matrices are indicated by symmetric letters {A,T),

and || || denotes the Euclidean norm for vectors, or the associated matrix norm. The

conjugate transpose of v is denoted by v*.

2. The Lanczos Algorithm in Exact Arithmetic. The simple Lanczos algorithm for a

symmetric 77 X 77 matrix A computes a sequence of Lanczos vectors q/ and scalars a;,

ßj as follows:

1 : choose a starting vector r,, r] =*= 0, set q0 = 0, ß] = \\rx\\,

2: forj = 1,2,... do

1, = rj/ßj

ctj = u*qt

ßJ+, =iky+1ii.

One pass through step 2 is a Lanczos step. One Lanczos step is commonly derived

from

(2-1) 0y+r?,+ i = Mj - «A ~ ßfij-i-

These equations can be condensed in matrix form as

(2-2) AQj-QjTj-ßj^qj^e*,

where 0, = (q., q}), e* = (0,0.1) and

ßj «j

The Lanczos vectors qy are orthonormal, i.e.

(2-3) QJQj = Ij,

Tj*

«1 ß2 0

ßl « ßs

■ ■ ßj-i

0

where /, is they xj identity matrix.

THE LANCZOS ALGORITHM WITH PARTIAL REORTHOGONALIZATION 117

Paige [11] has shown that the above implementation is the best among several

other possible ones.

The algorithm terminates if ßj+, = 0, and this will happen for some) < n in exact

arithmetic. The eigenvalues of the tridiagonal matrix T] are called the Ritz values. If

s¡, i = 1,... ,j, are the eigenvectors of T., the vectors yi = QjS¡ are called the Ritz

vectors. Ritz values and vectors are the Rayleigh-Ritz approximations to the

eigenvalues and vectors of A from span(ö7), the subspace spanned by the vectors

q,,..., <7y. More details on the Lanczos algorithm for computing eigenvalues can be

found in [15].

The algorithm can also be used for solving linear systems of equations Ax = b.

Then b is chosen as starting vector, and at the/th step an approximate solution is

given by Xj = QjT~ xß,e,. This is explained in detail in [16] and [20].

3. The Loss of Orthogonality. If the Lanczos algorithm is carried out in finite

precision arithmetic, it behaves quite differently. The inevitable rounding errors in

the computation affect the algorithm in a special way. Equation (2.1) becomes now

(3-1) ßJ+ ,qJ+1 = Aq, - <xfi, - ßjlj-. - fj,

where the «-vector/ accounts for the rounding errors at the/th step, and a-, /?., and

ql denote from now on the corresponding computed quantities. Usually ||/|| is small,

so (2.1) still holds in an approximate sense. In contrast relation (2.3) fails completely

after a while, i.e. the computed Lanczos vectors are no longer orthogonal, not even

up to roundoff. This infamous loss of orthogonality is illustrated in Figure 3.1,

where we have plotted \ogxo[q*qk/e\ rounded to the next integer for a sample run.

Here e denotes the roundoff unit. The integers in Figure 3.1 indicate by what power

of 10 the inner products q*qk have risen over the roundoff level.

Figure 3.1 shows that the orthogonality relation (2.3) starts failing already at an

early stage during the algorithm. However a careful look at the numbers in Figure

3.1 also reveals that the growth of [q*qk\ is by no means irregular or jumpy, but

appears to follow a certain rule. Indeed we have the following

Theorem 1. Let uik = q*qk. Then the u¡k satisfy the following recurrence:

ukk=l fork-I,..„j,

«**-i = 9*?a-i fork = 2,...J,

ßJ+\"J+ik = ßk+i<*jk+\ + («t - aj)ujk + ßk<*jk-\ - ßjUj-ik + q*fk - ikij,

for 1 « k < f, and ujk+ , = ak+ tj. Here uk0 = 0.

Proof. Write (3.1) for/ and for k:

(3-3) ßj+ ,qJ+,= Aqj - afl} - ßjq}_, - /},

(3-4) ßk+\ak+\ = Aak * <*kak - ßkak-\ - fk-

Form <7*(3.3) - ijr*(3.4) and simplify to obtain the result. D

Theorem 1 was already known by Paige [10] and by Takahasi and Natori [21]. But

here it is used for the first time as a computational tool. It is also of central

importance for the understanding of the loss of orthogonality. Its statement can be

visualized by considering Figure 3.2.

118 HORST D SIMON

-M--

•NO- -

g —— O- ■ © — — — —M

"5

-I
w "S

tort ^*

.§

— M —

-fSJ© —

— M-

—M———M

-O

- — —a-c—O

— MO

CI—CI

o ri m

NOM

• Cl-

M© M

— M —

MOM

-M©©MM

__¡2 — — C-C-CM

— _ — —©C— — CO-M —

.—O — __. — — — OO — — — O — M —

.-C-Î--CO-"Û-M

•OO- -M- -ri
-O—MM

-O—MM

-©--©-

-©--

M -

rin

M ri

MMM

MMM

M M M

MMM

MMM

MMM

— MM

— Mr

MMM

MM —

— MM

— M Ci

-M-

© —— M —

— ©M —M

— M —M

MMM —M

— M M M O

M —M —M

M —M —

M — M M M

O M — M M

M — M — M

— M—M

MMMOM

— MM MM

M M M M M

MMMMM

M M M M M

MMMMM

rj r t (M M M

MMMMM

MMMMM

MMMMM

MCI MMM

M M M M M

MMMMM

MMMMM

MMMMM

MMMMM

MMMMM

MMMMM

M M M M M

MMMMM

— MMMM

— —MMM

-MMM

M —M—M

M — M — M

-M- -M

-MC

M— f

— MC

M©r

— Mf

MMf

MMf

CICIf

MMT

MMf

MMf

MMf

M(-iP

m ne
r-iDC

MMf

rmf

rmf

MMf

MMf

rjrif

Mf:T

MMr

MMf

MMr

MMf

MM<*

Mfjr

MMf

MMf

MMf

M —

— M

Mf i

MM

MM

cm
MM

M<n

on

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

Mn,

nn

Mr

MM

MM

M r¡

-M

— M©

— Ci-■

— M®-'

— M-M

—M———M—

—N———MMM

N — — — M — MM

I —— — MMMMM

——M—MMMM

O——MMMMM

■ — ©MMMMMM

'—M —MMMMM

'MMMMMMMM

' —MMMMMMÍO

■M —MMMMMM

■ — M —MMMMM

MMMMMMHM

'MMMMMMM

M —MMMMf/in

i—MMMMnnn

MMMMrtnnn

—MMMMnnn

MMMMnnnn

MMMnnnnn

MMnnnnnn

MMMOnnnT

nMnnnnnn

MnMnnnoT

nMnnnnTT

oinnnnpiTt

rlOOWflO^T

nnnnn*TTT

nnnnnvTv

nnnnnT^T

rinn-TTT^-

nnnn-r ^tt-t

nnn^-T-r-TT

n n n t t t t t

nnnttttt

nnn^TTTT

nnn vtttt

n n n t t t t *t
nnn vt-ttt

nnnn-TT^T

nnnn-TTTT

n n n t t t-t t
n n n n t *t tt

nnnnTTTT

nnnn-TTTT

nnnnn-TTT

nnnnn-r-TT

nnnnn-TT t

nnnnnnvv

— M - -

~CJrS-■

—M——©M

—M©——M©

— N — ->®M — M

M-' M-M-

——©M—M—M

——M—M—M—

—M—M—MMM

MÔMMM—MM

—MMMMMMn

MMMMMMnM

MMMMM«Mn

MMMMClMnn

MMMnnnnn

r^icmnnnnn

NNnnnnnn

MnnnnMCl'T

cinnnnn^^

nnnnnncft

nnn.Finn'V^

nnnntttt
nnn^nTT^-

nnntTttt

n n t t t t ^-t

t77TÎ7«i7l

^ ^ T T T T T xfi

7t^7VÎ7)ifl

TTTTTIWiTl

^ T T T T i/lVl i/l

T VT T i/l t/1 </) i/l

■^"T "T i/ï l/l t/) t/1 i/i

WTWl/IWi/li/l

7Tirti/)i/)i/|ifli/l

Wl7)l/)l/llfllfllrt

Tti/lifll/)7)i/|i/)

TWUlifllflifli/IUl

T i/i 1/1 t/1l/> i/)t/l (ß

Ti/11/H/lt/H/H/Hß

Tl/lt/H/H/li/ïi/ltO

•vmt/)i/)i/ii/)i/iiû

t « m in t/1 i/ï vi te

Ti/l</li/l l/lt/H/ïU5

T l/ï l/H/X/1 t/1 i/ll/l

t i/i </i m t/i i/n/i «

■*T»/li/li/ïl/îl/H/HÛ

■Wîi/H/H/lt/H/ïtfi

Tini/ït/ïi/)i/îi/ïto

^r i/i </) i/i i/)i/) «n to

ttwini/iifliflin

ttlfiifliflifllrtifl

f ^ "/lui "/> </l t/1 i/l

^TTUT/li/H/H/ll/)

TTTifllflifllflW

7W7Wlfllfl«

-MrïTt/ittfC'Oeoto—Mn^t/ußf^oeo*! O— MnTi/itpr^ocç»©— MnT"/i©f,-ooOTO'~ Mnti/itor^oco'io — Mn*Ti/i(ßr*oo3>© — Mn*ri/iior>

/ fibiî SOZJUDJ

THE LANCZOS ALGORITHM WITH PARTIAL REORTHOGONALIZATION 119

Figure 3.2

The statement of Theorem 1.

Theorem 1 says that the inner product q*+ ,qk is a weighted combination of inner

products from the previous two Lanczos steps, where the weights are the coefficients

from the Lanczos recurrence. In addition the roundoff term q*fk - q^f} enters the

picture. The loss of orthogonality follows a second order inhomogeneous difference

equation (3.2) with variable coefficients. In the ideal algorithm the roundoff terms/

and the q*qk _, are all zero. We then obtain a homogeneous difference equation with

zero initial conditions. Hence all the ujk will be zero, i.e. the Lanczos vectors are

orthogonal. So the loss of orthogonality can also be explained by the instability of

the difference equation. An attempt to analyze (3.2) further [20] yields Paige's

well-known theorem [10], [15, p. 264].

4. Partial Reorthogonalization. The goal of all reorthogonalization methods men-

tioned in Section 1 is to prevent the loss of orthogonality, i.e. to maintain a certain

level of orthogonality among the Lanczos vectors. We define the level of orthogonal-

ity Kj among the Lanczos vectors at theyth step as:

(4.1) Kj = max \q*qk\.
\<knj-\

Clearly full reorthogonalization, i.e. the explicit reorthogonalization of qJ +, against

all previous Lanczos vectors, aims at keeping the level of orthogonality at roundoff

level. However all that effort is not necessary. Numerical results (Scott [19]) and

theoretical considerations in connection with the various reorthogonalization meth-

ods (Parlett and Scott [18], Parlett [15], Grcar [4]) have shown that semiorthogonal-

ity, i.e. k■ = \/e~ , among the Lanczos vectors is sufficient to permit the computation

of eigenvalues without the appearance of spurious duplicate copies. The analysis of

all these methods can be unified and we have the following theorem [20]:

Theorem 2. Let Tj be the tridiagonal matrix computed by the Lanczos algorithm,

where by some means the Lanczos vectors are kept semiorthogonal. Then T is, up to

roundoff, the orthogonal projection of A onto span{Qj).

120 HORST D SIMON

Proof. See [20, Theorem 2.5].

Theorem 2 implies that the eigenvalues of T] are (up to roundoff) Rayleigh-Ritz

approximations to the eigenvalues of A, although from a slightly different subspace

than the ideal one. Similarly it can be shown that if an approximate solution x¡ to

Ax = b is computed by xj = QjTj~ xQ*b, then \\Xj - Xj[\ < \j2jz , where x¡ is the best

approximate solution from span(<2 ■) [20].

Semiorthogonality therefore appears to be all that is needed for the finite

precision Lanczos algorithm in order to preserve most of the properties of the ideal

algorithm. The method of partial reorthogonalization can now be described at an

abstract level as follows: Using the recurrence (3.2), we compute estimates w + IA. for

the inner products of the Lanczos vectors, and then judiciously perform reortho-

gonalizations based on the information from the recurrence in order to maintain

semiorthogonality. In a more formal way the algorithm for PRO can be written as

follows:

(1) Perform a regular Lanczos step:

(4.2a) rj+, = Aq}- «fl, - ßfi,-, ~ //■

(2) Update the estimates uj+lk for q'*+,qk, for k = l,...,j using the recurrence

(3.2).
(3) Based on the information from the Uj+Ik, determine a set of indices L(y') =

{k\ 1 < k ^/} and compute

(4.2b) rJ+, - r/+ , - £ qk(r'*+ tqk) - /.
kel.ij)

PRO has some obvious advantages. The computation of the estimates ujk involves

only a simple updating procedure for two vectors of length/. No inner products of

Lanczos vectors have to be formed, and yet the loss of orthogonality can be

monitored except for the roundoff term. For many Lanczos steps no orthogonaliza-

tion at all may be necessary, and this information can be gained quite cheaply.

But even when some |wyA| > \/e indicate that semiorthogonality has been lost, then

orthogonalizations against some, but not all previous Lanczos vectors are necessary.

Against which Lanczos vectors one should orthogonalize, and how the recurrence

(3.2) is evaluated computationally, is discussed in the following sections.

5. Computing the Level of Orthogonality. An accurate evaluation of (3.2) would be

advantageous in two respects: the loss of orthogonality (given by u.k = q*qk) could

be monitored directly and these inner products would be on hand in the event of a

reorthogonalization. However (3.2) involves the local error vectors /, which are

unknown unless one wants to compute them using double precision. But even this

may be impossible if the matrix vector product is inaccessible and truly in black box

form. The lack of/ appears to make (3.2) useless, but there is a way to utilize (3.2)

without computing/.

Once the co^'s have risen to a level close to \fl the q*fk - qlfj-terms, which are at

roundoff level, do not contribute significantly to the value of uJ+ Xk. These terms are

only important as long as the u,k are small like e\\A\\. We propose that the

computation of the inner products q*+,qk can be simulated by replacing the

THE LANCZOS ALGORITHM WITH PARTIAL REORTHOGONALIZATION 121

unknown quantities by random values from appropriate ranges as follows:

(5.1)
COkk

«1

= 1 fork = I,...,/,

for A: = 2,...,/,

to
7+1 *

"**-l ~ tk

Ö—[ßk + i<*jk+i + («* - <*>)«,* + flt«./*-i - ßjUj-ik] + *>*.
P/+1

for 1 < /c < /, and w//t +, = uk+ Xj. Here to^ = 0, and &Jk and xpk are certain random

numbers, which have to be chosen appropriately. From now on we will refer to the

Ujk's computed with (5.1) as the computed or estimated orthogonality components, in

contrast to the true components which are given by the inner products q*qk.

io-s.

10-"r-

10-»

10-»

40 60

Lanczos Steps

100

Figure 5.1

True and estimated level of orthogonality for various choices of$jk.

0—True level of orthogonality

1 —Estimated level of orthogonality, k = 1.0

2—Estimated level of orthogonality, tc = 10.0

3—Extimated level of orthogonality, tc = 100.0

4—Estimated level of orthogonality, k = 1000.0

122 HORST D. SIMON

Formula (5.1) can be regarded as a simulation of how the loss of orthogonality

would occur on a different machine which generated numbers &/k and xpk as actual

roundoff errors. From Theorem 1 we can conclude that the loss of orthogonality

mainly depends on the a, and ßj, and from Theorem 2 we know that the computed

a- and ßj are exact up to roundoff. Therefore the computed loss of orthogonality

from formula (5.1) will behave like the true loss of orthogonality as soon as the w A.'s

exceed tje.

This is illustrated by the following example, where we examined the dependence

of formula (5.1) on the choice of &/k and xpk. For a matrix of order 77 = 128, which

is part of the matrix in Example 1.2, Section 10, and with starting vector q* =

(1.1)/ /128, we determined first the true loss of orthogonality. It turns out that

for this matrix the Lanczos vectors remain semiorthogonal for 71 steps. Then we

computed in two series of experiments the values for co/A with (5.1). First we chose

xpk e N{0,e) (i.e., we chose for the xpk's a sequence of normally distributed random

numbers with mean 0 and standard deviation e), and &/k e N{0,ke), with »c = 1.0,

10.0, 100.0, 1000.0. Then we kept djk fixed and varied xpk. The true and the estimated

loss of orthogonality are plotted in Figures 5.1 and 5.2.

10-»

lO-'r-

10-»r-

io-»L

10-

10-»

40 60

Lanczos Steps

80 100

Figure 5.2

True and estimated level of orthogonality for various choices ofxpk.

(Graphs labeled as in Figure 5.1)

THE LANCZOS ALGORITHM WITH PARTIAL REORTHOGONALIZATION 123

Figures 5.1 and 5.2 show that the estimated level of orthogonality with formula

(5.1) reflects quite well the qualitative behavior of the true level of orthogonality. It

is important to see that although, due to an overestimate of the error terms the

computed level of orthogonality lies initially above the true level of orthogonality,

the curves move very close together when they reach the critical xfi region. Even the

curve with the largest overestimate reaches the \/e threshold only three steps too

early, at step 68. In spite of the dependence on the random terms, (5.1) appears to

produce an accurate estimate for the step at which orthogonality is lost.

These tests were repeated with different examples in [20] and similar results were

obtained. In all the cases (5.1) signals at about the right Lanczos step that the

\/e -level has been reached. These tests also show that the recurrence is relatively

insensitive to moderate overestimates in the error terms. For example, as Figure 5.1

shows, an increase in the estimate for the q*fk - g*/-term by a factor 1000, resulted

in ujks which reached the threshold only 3 steps too early. For a practical

computation of the level of orthogonality with (5.1) in connection with PRO it is

therefore advisable to overestimate these terms somewhat.

At this point we could content ourselves with the analysis of these error terms,

since their direct influence on the loss of orthogonality is not too strong. However,

there is one incentive, which may make a further study of these terms rewarding. It

may be possible to compute (5.1) so accurately that the direct computation of q*+ ,qk

can be saved and the values wy +, k can be used instead in the usual reorthogonaliza-

tion process.

In order to obtain more information about the behavior of the q*fk - qkf-terms

and q*+,qk. a detailed statistical study of the roundoff quantities has been per-

formed**. The results of this study are reported in [20]. Based on this study we

decided to choose

(5-2) &ik = E(ßk + i+ßJ+])®,

where 0 e #(0,0.3), and

(5.3) xpk = en-£-*,

where * e Af(0,0.6).

There is one more error term to be considered. After a reorthogonalization has

been performed, the terms q*+,qk have to be reset. Ideally, of course, these inner

products should be zero, but here we expect them to be at roundoff level. Again we

performed a statistical study and decided to choose uj+, k e N{0,1.5)e after a

reorthogonalization has been performed.

6. The Behavior of the Computed Level of Orthogonality. After the roundoff

quantities were chosen as described in the previous section, we tested (5.1) with

several examples where a full reorthogonalization was performed whenever one ujk

became larger than the threshold of xfe~. In Figures 6.1 and 6.2 the true level of

orthogonality and the computed estimate are plotted for two of the sample runs.

"All computations were carried out on the VAX 11/780 of the EECS Department, Computer Science

Division at the University of California, Berkeley. For single-precision computations the roundoff unit
e = 2 24, for double precision f = 2 56.

124 HORST D. SIMON

IQ""

10.-«

io-»K

estimated

true

■Tt

f(0

*

O

I

50 100
¿aneaos Steps

Figure 6.1

True and computed level of orthogonality for A = diag(12,22,_

andq* = (1,1.1)//1ÖÖÖ.
(For the effect of having A diagonal see next section)

150

10002)

10-"

10-"

10"

100 ISOLanczos Steps

Figure 6.2

True and computed level of orthogonality for the matrix

used in Figures 5.1 and 5.2.

These figures show that the computed level of orthogonality behaves as expected.

The overestimates for the error terms cause an overestimate for the computed level

of orthogonality as long as it is about e3/4. If the level of orthogonality increases

further the error terms are relatively unimportant and the computed level of

orthogonality approximates the true level of orthogonality quite closely.

In Figure 6.1 we used a diagonal matrix for test purposes. This seems to be

artificial and a trivial example. The Lanczos algorithm is however invariant (in exact

arithmetic) under similarity transformations and a diagonal matrix as good as any

other for a theoretical study of the Lanczos algorithm. Since it is not obvious that

THE LANCZOS ALGORITHM WITH PARTIAL REORTHOGONALIZATION 125

this is also true in a finite precision environment, we repeated the sample run from

Figure 6.1 with a similarity transformation of the diagonal matrix A. The starting

vector was changed accordingly. We obtained:

J_l_I
50 100 150

Lanczos Steps

Figure 6.3

True and computed level of orthogonality for a matrix

similar to A from Figure 6.1.

The level of orthogonality is different from Figure 6.1. Here the threshold is

reached about 10 steps earlier. This different behavior is due to the fact that the

tridiagonal matrix is changed slightly, and the change in ay and ßj in turn produces

different orthogonality components. This is not surprising, and consistent with the

results from Section 3. However what is more important for our analysis here is the

fact that in both cases computed and true level of orthogonality agree well with each

other in the sense that the reaching of the threshold is signalized at about the right

time. Their mutual relation is not affected by whether a diagonal matrix is used or

not. So although diagonal matrices are of course trivial examples for solving linear

systems, it is quite legitimate (and cheaper) to use them for the purpose of studying

the loss of orthogonality and related questions. In the following sections we will

therefore repeatedly use diagonal matrices as test examples.

The properties of (5.1) discussed above turn the formula into a useful tool for

predicting the level of orthogonality. It would be even more convenient if the aJk

would be so accurate that the inner products q*qk would not have to be recomputed.

Let us recall that by Paige's Theorem ([10], cf. [15, p. 264]) the vector Uj = Q*qj+ x =

(?*?/+!>?2?/+i»---> <¡*qj+\)* tilts towards an eigenvector of TJy when the corre-

sponding Ritz value is about to converge to an eigenvalue of A. Let us consider now

the vector Wj = (wy+, ,,u>j+i 2,..., w7+i>)* computed by (5.1). Earlier we expressed

the view that the computation of (5.1) can be considered as a simulation of the level

of orthogonality that would occur on a different machine, where the random

numbers chosen for &Jk and xpk would be equal to the corresponding actual roundoff

error terms. Therefore Paige's Theorem will also hold for w,, i.e., w will have large

components in direction of those eigenvectors of Tj for which the corresponding Ritz

values are about to converge.

126 HORST D SIMON

In numerical tests [20] we observed a behavior of u/ and wy consistent with Paige's

Theorem. However we only know that Uj and wf will form a small angle with the

subspace spanned by the eigenvectors corresponding to converging Ritz values, but

we do not know how ul and wy will behave in relation to the individual eigenvectors

of Tj. Since in general at a given Lanczos step we do not even know how many Ritz

values are about to converge (unless we want to do a spectral analysis of T

comparable to selective orthogonalization), there seems to be no easy way to relate uj

and Wj either in terms of eigenvectors of 7J or directly.

Nevertheless we tried to use the computed u/k instead of the exact inner products

q*qk. when performing a reorthogonalization. It turned out that the level of

orthogonality is indeed reduced to a value below the threshold level, however not to

roundoff level. This had the negative effect that the next reorthogonalization

occurred much earlier. So although we saved the computation of the inner products,

reorthogonalizations were needed more frequently, and no overall savings in compu-

tations were made. Therefore the w.+, k are used in PRO only for estimating the level

of orthogonality, but not for the computation of the q*+]qk.

7. Choosing Reorthogonalizations. In Sections 5 and 6 we saw how to compute the

level of orthogonality from (5.1). and what information from the computed level of

orthogonality can be inferred. In this section we will discuss how this information is

used in order to decide when and against which past Lanczos vectors the current

Lanczos vector has to be orthogonalized.

From the remarks in Section 4 it follows that it is always necessary to orthogonal-

ize qJ+x against some previous Lanczos vectors, if \q*+,qk\ > \fl for some k. xfe is

the optimal threshold here, since it is the largest loss of orthogonality among the

Lanczos vectors which we can tolerate and still obtain accurate a/s and ß/s. A

smaller threshold would result only in more orthogonalizations without any gain in

accuracy. This is confirmed by numerical tests (Scott [19, p. 82]) in relation with the

analysis of selective orthogonalization.

There is another important idea concerning reorthogonalization, which we can

borrow from the method of selective orthogonalization [18]. Suppose at step / we

decided to reorthogonahze qt +, against all previous qk, then we will also reortho-

gonalize at step/ + 1 the new Lanczos vector qJ + 2 against all previous qk, no matter

what the q*+ xqk are. There is a direct justification of this additional reorthogonaliza-

tion through formula (3.2). By reorthogonalizing at step/ we make q*+,qk = 0(e)

for all k «s /. Then

(7-0 /%+2i7+2fc- -ßl+,q;qk + 0{e).

But if for some k, \q*+ ,qk\> \fe~ before the reorthogonalization, then also q*qk must

have been comparatively large, i.e. almost as big as xfl. One reorthogonalization by

itself therefore does not help very much to reduce the size of q*+2qk. If,however,two

reorthogonalizations are performed in a row, then formula (3.2) yields

(7.2) ßJ+2q*,2qk = o{e).

THE LANCZOS ALGORITHM WITH PARTIAL REORTHOGONALIZATION 127

and we can be sure that at least for the next couple of steps the level of orthogonality

will remain small.

So far we have assumed that during one reorthogonalization the current Lanczos

vector was orthogonalized against all previous Lanczos vectors. But this is not

necessary if our aim is to maintain only semiorthogonality. An important observa-

tion concerning the loss of orthogonality can be drawn from Figure 7.1. Here we

plotted on a logarithmic scale q*^qk, k= 1,— 42 for a run of the Lanczos

algorithm with A = diag(l,4,9,..., 1002)and<?* = (1,1,..., 1)/10.

IQ"8

io-lz

10-io

0 20 40

Ik

Figure 7.1

\q*+ i<7a:I for fixed j and k ^ j.

Figure 7.1 shows the typical pattern in the loss of orthogonality. Usually only

some neighboring q*+ ,qk have grown to about the {e~ level, whereas most other inner

products remain quite small. In order to maintain semiorthogonality it is therefore

only necessary to orthogonalize against selected Lanczos vectors. In the example

given in the table it could be the first ten. Since (5.1) gives a reliable prediction of

the loss of orthogonality it can indicate the old Lanczos vectors against which qJ+,

has to be orthogonalized. It is clear that an orthogonalization against only those qk

with \q*+,qk\ > Je alone is not sensible. The same argument which was used to

introduce two successive orthogonalizations at consecutive Lanczos steps can be

applied again. Formula (7.1) says that q*+,qk depends on q*qk+„q*qk,q*qk-,, and

q*_,qk. Therefore it does not help to make only q*qk and q*+,qk small. The

neighboring q*qk + , and q*qk-, have to be reduced in order to make the ortho-

gonalization useful, i.e., not to allow q*+2qk to become large again. However, in

order to keep these small for some more Lanczos steps their neighbors in turn have

to be small.

-A l?43?*l

128 HORST D. SIMON

This situation can be expressed best in the following figure (similar to the domain

of dependence/domain of influence argument in numerical PDE):

Á: - 3 D D D D D
k -2 m O D D D m-smallukj

k - 1 ■ ■ Ü D D a-large akJ

k ■ ■ ■ ü D

k + 1 ■ ■ D □ D
k + 2 m a a n n
A: + 3 D D D D □

j / + 1 / + 2 j + 3 / + 4

Figure 7.2

Propagation of the loss of orthogonality.

Figure 7.2 shows that reorthogonalizations against single Lanczos vectors are

useless, since their effect is immediately wiped out by the neighboring large terms.

The best strategy for choosing Lanczos vectors to reorthogonalize against therefore

seems to be to group them into "batches". One batch contains all the offending

Lanczos vectors, i.e., all the qk with \q*+ ,qk\ > xfê, and in addition to that a certain

number of neighboring vectors. The next obvious question is then: how many

neighboring vectors should be included in those batches?

A first approach to this problem could be as follows: Suppose q*qk has grown in /

steps from the roundoff level to Je . Then we should not only orthogonalize against

qk, but also against all vectors from qk _ , to qk +,, in order to assure that q*+ mqk stays

small for another / steps (w < /). But some thought indicates that this is too much

work. The terms q*qk+p for p < /, p "far" away from k, may be already quite small

(cf. Figure 7.1) by themselves and their influence is only felt in q*+pqk, i.e., after p

more steps. But then q*+pqk may have grown already by the dynamics of formula

(3.2) to a magnitude where the q*qk+p because of its small size plays no role any

more.

The question of how many neighboring Lanczos vectors should be used for

orthogonalizing apparently cannot be answered a priori. Therefore the following

numerical experiment was carried out. At each Lanczos step the recurrence (5.1) was

updated. If any of the |«,+n| was larger than \f¿, then the neighboring « +1 k_x,

uJ+, k-2,... and uJ+l k + ,, uJ+, k+2,... were checked until uJ+x k_s and uJ+] k + r

were found with \uJ + , k_s\ < tj and \aJ+i k + r\ < r/. Then qJ+, was orthogonalized

against all q's from qk_s to qk + r inclusive. At the following Lanczos step qJ + 2 was

orthogonalized against qk-s+,,- ■ -, qk + r-,. Orthogonalizations against qk_s and qk + r

are not necessary any more at the/ + 1st step (except for k — s — 1), because the

inner products q*+2qk~s and q*+2qk+r will deteriorate anyway due to the influence

of unorthogonalized neighbors (cf. Figure 7.2). These runs were repeated for

different values of tj. Table 7.1 summarizes the results for two examples. For each

example we list in the first column the number of orthogonalizations (one ortho-

gonalization = two inner products) and in the second column the number of recalls,

i.e., the number of steps at which reorthogonalizations occurred.

THE LANCZOS ALGORITHM WITH PARTIAL REORTHOGONALIZATION 129

Table 7.1

Influence of the lower bound t] on the reorthogonalizations.

^i

lO-'Vë

10~ZVE

10-">/ë

10-*>/ë

10-VË

10-« Vë

10" Vi"

10-"v7

Example 1

Orthogonalizations

624

520

526

507

478

504

576

620

756

Recalls

26

21

17

Example 11

Orthogonalizations

1518

15

12

10

10

10

10

1178

781

675

617

672

705

843

925

Recalls

40

29

22

15

11

Here Example I is the matrix A = 10" • diag(l, 1/2, 1/3,..., 1/1000) and

Example II is the matrix A = diag(100, 49.5, 48.5,...,- 49.5) both with q* =
(1,1,..., 1)/10 as starting vector. Although the figures in the table look rather

similar, the two examples are quite different. Example II has a uniform and equally

spaced eigenvalue distribution, whereas the eigenvalues in Example I have a large

relative separation at one end of the spectrum and are clustered at the other. The

minimum number of orthogonalizations occurs in both cases for tj = 10_4e.

There is however a second cost factor which we have ignored so far. For large

examples it will not be possible to keep the Lanczos vectors in fast storage. They

have to be written into secondary storage, and every time some of them are needed

one has to scan through all the Lanczos vectors. The cost of the recall operation will

depend strongly on the system which is used and it is therefore difficult to compare

it to savings in the orthogonalizations. The numbers in Table 7.1 suggest that the

number of recall operations or rewinds of the tape with the Lanczos vectors is

constant as long as tj < 10'5x/e and then increases only slowly. Therefore the

optimal choice for tj regarding both cost factors lies somewhere between 10" V« and

10~Ve, regardless of the precise relation between both cost factors. In order to

determine an tj independent from the machine used, we suggest tj = e3/4. On the

VAX 11/780 this choice yields tj « 0.2274*10"l2, which is slightly smaller than

10~*x/e * 0.3725*10"12. This also seems to be a satisfactory choice in the sense that

130 HORST D. SIMON

tj = e,/4 is "halfway" between fe (semiorthogonality) and e (orthogonality to

working precision) on a logarithmic scale. The examples from Table 7.1 were run

again with this 17, and the following results were obtained.

Table 7.2

Results with tj = e.1/4

Example I

Example II

No. of Orthogonalizations

501

607

No. of Recalls

11

10

The figures in Table 7.2 indicate that 17 = e3/A yields almost the minimum number of

both orthogonalizations and recalls. However these data have been gathered only for

one fixed value of e. Thus 17 = c1/4 and tj = lOOOe have about the same numerical

value but a totally different dependence of e. The numerical test described above was

therefore repeated on the UNIVAC 1100 of the Computing Center of SUNY. Stony

Brook using single and double precision. Here the values for the roundoff unit are

e, = 0.2980*10 7 and td = 0.3469*10 17. For these different values of e and the

matrix of Example 1 the following table was obtained.

Table 7.3

Influence of the lower bound tj on the reorthogonalizations.

i Different Roundoff Units)

lo-' /c

10-*/c

10-* n

lo--/!

icr5/r

ío-'/rT

io-'/c"

io-e/F

10-'/T

Example I

tested with c = 0.2980x10"'

F.T= 0.2263 " Id"5

Orthogonalizations

T83

668

622

755

862

668

Recalls

26

21*

20

17

16

Example I

tested with c = 0.j^bo* 10"'7

e'5"» 0.8039*10-"

Ort hogonali zat ions

6oà

b62

l»21

l:o

383

l»12

hcS

I430

516

551*

••29

Recalls

25

21

16

12

10

9

6

THE LANCZOS ALGORITHM WITH PARTIAL REORTHOGONALIZATION 131

The results reported in this table confirm that also in a different computing

environment tj = e3/4 is optimal in the sense discussed above. This choice of tj finally

determines against which previous Lanczos vectors the current Lanczos vector has to

be orthogonalized, and thus completes the definition of partial reorthogonalization.

A good insight into the mechanism of PRO can be gained from Figures 7.3 and

7.4. Horizontal bars indicate the "batches" of Lanczos vectors against which the

current Lanczos vector is orthogonalized. The double appearance of the bars

corresponds to the fact that orthogonalizations are always carried out for two

consecutive steps.

1001
20 40 80 80 100

Figure 7.3

Range of reorthogonalizations for Example I, tj = e3/4.

too

Figure 7.4
Range of reorthogonalizations for Example II, tj = e3/4.

132 HORST D. SIMON

Let us finally summarize the results of the discussion of PRO in the form of the

following algorithm:

Table 7.4

Algorithm for partial reorthogonalization.

Parameters:

r<= index, which indicates the first vector in batch i

s4= index, which indicates the last vector in batch i

Initialize :

first step *- true

rt *• 0
s4 *■ 0

Subroutine PRO at the j-th Lanczos step:

l.)for* = l. •; do
update the recurrence for ujti k

2.) If ifiTst step) then
begin for* = 1. • • • ; do

if(|üitljÄV?)thcn
determine r\ and sit such that | u¿M ■ | > rj,
where Í=rt,r< + 1, ■ • • fc-l,Jfc,Jfc + 1, • • • s^-l.s«

if {all r(and s, are 0) then return

end

3.) fori=r,,r1+l1 • • • sl-l,s,.r?.r2+l. • • • ,s2-l,S2.rs.do

orthogonalize 0'¿.n9'/ + i against q¡

4.)ü(firststep) then
first step *- false; rx «- ri+1; s4 «- s4_i

else first step «-true; rt ♦- 0; s4 •- 0

8. Some More Details on PRO. There are two more topics to be discussed in

relation with PRO. One concerns the question of the effect of PRO on the «nner

products of qJ+, with those previous Lanczos vectors against which the current

Lanczos vector is not orthogonalized. Let q'j+, be the current Lanczos vector before

reorthogonalization and (compare 4.2)

keHj)

Then for^, / £ Lij):

(8-2) q*+\qi = q'jl,qi- L (q'/i\ik)(q*qi)-
k^Hj)

Since semiorthogonality is maintained, we know that \q*q,\ < \/e , and also that

\q'A\qk\ = Ve. Hence

(8-3) q*+, q, = q'*+,q, + 0(\L(j)\e\\A\\),

and we do not have to worry that the level of orthogonality between the Lanczos

vectors unaffected by PRO may deteriorate. A similar argument was used for SO

and the corresponding Ritz vectors (Parlett [15, p. 281]).

THE LANCZOS ALGORITHM WITH PARTIAL REORTHOGONALIZATION I33

Finally we want to mention that there is an easy way of avoiding the second of the

two consecutive recalls of the Lanczos vectors by utilizing (7.1). Suppose at the7th

step we orthogonalized qJ+, against qk. Then at the {j + l)st step by (7.1)

(8.4) ßj+iqf+iRk = -ßj^qjqk + 0(e\\A\\).

Since we orthogonalize in batches the inner products q*qk+, and q*qk_, are also at

roundoff level, and we obtain (8.4) for all vectors in the interior of the batches. We

do not have to be concerned about the two vectors, which border the batch, because

we do not orthogonalize against them at the {j + l)st step anyway. Therefore it is

possible to compute at thefth step the vector

(8.5) yj= -ß]+,Z(q*qk)qk,
k

where we sum over all A; e L{j) which are not on the edge of the batch. Then at the

(j' + 1)st step the second orthogonalization simply becomes

(8.6) ßJ+2qj+2 = ßU2<ij+2-yj-

Thus at the cost of one extra «-vector the second recall of the Lanczos vectors is

saved. There are however no savings in terms of arithmetic operations. This device is

therefore only useful if the recall of the Lanczos vectors is expensive.

9. Comparison with Other Orthogonalization Methods.

9.1. Periodic Reorthogonalization. Grcar's [4] periodic reorthogonalization and

PRO are quite closely related, however there are two main differences: in periodic

reorthogonalization a full N-vector has to be updated versus only ay-vector for PRO,

and whenever the threshold Je is reached the current Lanczos vector is made

orthogonal to all previous ^'s versus only some previous ones in PRO. PRO is

therefore more economical than partial reorthogonalization. On average PRO needs

about ? of the number of orthogonalizations of periodic reorthogonalization (see

Figures 7.3 and 7.4). For a comparison of PRO with FRO see Section 10.

9.2. Selective Orthogonalization. Selective orthogonalization (SO) was briefly dis-

cussed in the introduction as an alternative method for maintaining semiorthogonal-

ity. We assume here that the reader is familiar with the method of selective

orthogonalization ([18], for an exposition see [15]). Practical numerical experience

with SO for eigenvalue problems (Nour-Omid, Parle«, and Taylor [9]) and for the

solution of linear systems (Nour-Omid [8]) shows that SO works very efficiently.

Since SO maintains orthogonality with respect to the Ritz vectors rather than with

respect to the Lanczos vectors a direct theoretical comparison of how both methods

go about maintaining semiorthogonality is difficult. Numerical tests reported in [20]

show that PRO cannot be easily explained in terms of the Ritz vectors. Reortho-

gonalizations in PRO mainly occurred in the direction of the dominant Ritz vector,

but there was also a not insignificant component in direction of the other Ritz

vectors. PRO reduces these relatively small components together with the needed

orthogonalization in direction of the dominant Ritz vector. It therefore prevents the

growth of the level of orthogonality in the direction of those Ritz vectors already at

an early stage, and orthogonalizations against the second or third Ritz vector (as one

would expect in SO) occur only in a hidden way in PRO.

The cost of PRO and SO are in general comparable, and it appears that neither

method has a clear edge over the other one. There are however examples [20] where

134 HORST D. SIMON

PRO is much more efficient than SO and vice versa. These examples seem to

indicate that PRO is more advantageous for solving linear systems of equations,

whereas SO is more appropriate for the eigenvalue problem. This conclusion is

preliminary and has to be fortified by more numerical evidence.

10. Numerical Examples. The Lanczos algorithm with partial reorthogonalization

(LANPRO) as described in the previous sections was used for solving several large

sparse symmetric systems of linear equations. The solution algorithm is mentioned in

Section 2 and discussed in detail in [16] and [20]. The first three examples arise from

finite element approximations to problems in structural engineering. The corre-

sponding stiffness matrices were computed using the finite element approximation

program FEAP [24, Chapter 23]. The other two examples are derived from finite

difference approximations to elliptic partial differential equations. The examples and

the characteristics of the resulting matrix problems are described in more detail in

the following tables.

Table 10.1. Examples.

Example No.

1.1

1.2

Problem/Right Hand Side

Biharmonic operator on a beam with one end free

and one end fixed. Finite element approximation

using BO elements with 3 degrees of freedom per node.

Unit toad at about the middle of the beam.

Same as 1.1, but using 240 elements.

Biharmonic operator on a rectangular plate with one side

fixed and the others free.

Unit load at one of the free corners.

Building modelled by the structure in Figure

10.1; each beam is approximated as in Example 1.

Unit load vector.

Poisson's equation in an L-shaped region with

mixed boundary conditions.The same problem as Example 4

in [5],only using less grid points.

—V(aVii) = / in the unit cube in >?3

with Dirichlet boundary conditions, o is varying from

10"z to 10°. Finite difference

discretization using 7-point difference star and

9x9x9 grid points. Random right hand side.

THE LANCZOS ALGORITHM WITH PARTIAL REORTHOGONALIZATION

Table 10.2. Properties of the Test Matrices.

135

Example Order Nonzeros Half Bandwidth FUI-In Cond.Number

1.1 237 627 1175 2.0*10'

1.2 957 2547 4775 1.3*10»

960 8402 43 66612 3.5*103

468 2820 178 38232 1.1M04

675 1965 30 9929 7.1*10«

729 2673 81 40961 1.8*10»

}ll 111 II 11111IIIII II 11llll11 III

Figure 10.1. Building.

In the second column of Table 10.2 we list the number of nonzeros in the upper

triangular part of the matrices, and in the third column the half bandwidth, where

no attempt was made to reduce the bandwidth by reordering the matrix. In the

fourth column we list the number of nonzeros in the Choleski factor obtained after a

minimum degree ordering of the original matrix. All matrices are positive definite.

In a first series of tests we applied our algorithm to the six systems of linear

equations as specified above, and compared its cost to the Lanczos algorithm with

full reorthogonalization (FRO). The results are listed in the following Table 10.3,

where we indicate the number of inner products used for the different parts of the

algorithm. In each case the algorithm was stopped when the initial residual was

reduced by a factor of 10"8.

136 HORST D. SIMON

Table 10.3. Cost of PRO versus FRO.

Example Number of inner products for
PRO
FRO

Lanczos Step Matrix Mult. PRO FRO tot. PRO tot. FRO

1.1 959 420 7354 25172 8735 26502 0.33

1.2 3839 2762 205113 407682 211715 414283 0.51

1467 2170 4943 61256 8607 64913 0.13

2082 2084 13746 119370 17914 123537 0.15

1253 1007 17004 43472 19266 445733 0.24

2608 2748 124246 1B7922 129603 193279 0.67

The figures in Table 10.3 show that there are considerable savings in applying

PRO as compared to FRO. There is apparently a direct correlation between the

condition number of the matrix and the number of orthogonalizations which are

necessary in order to maintain semiorthogonality, as a comparison of the corre-

sponding columns in Tables 10.2 and 10.3 shows. Since several of our examples are

very ill-conditioned the numbers in Table 10.3 can be considered as a worst case. In

general for moderately well-conditioned matrices as in Examples 2, 3, and 4 we can

expect that total cost of LANPRO is only about 20% of the cost of the Lanczos

algorithm with full reorthogonalization.

In order to appreciate LANPRO it is also important to note that in spite of the

ill-conditioned matrices, LANPRO showed a very robust behavior in all test cases.

This is best illustrated in Figure 10.2, where we compared the residual norms for

runs of LANPRO and conjugate gradients for Example 1.2. According to [23] this is

one of the most difficult problems for an iterative solver. LANPRO terminates here

after 638 steps, whereas the conjugate gradient algorithm needs 14,169 steps.

The maintenance of semiorthogonality among the Lanczos vectors yields, as

expected, a large reduction in the number of necessary steps. It also guarantees

termination of the Lanczos algorithm after at most 77 steps. In contrast to that the

finite precision CG algorithm may not terminate at all.

Another advantage of the Lanczos algorithm is that it can be applied equally well

to indefinite problems. We ran LANPRO with the matrix from Example 1.1, and

introduced a shift of - 2000 in order to make the system indefinite. Because CG in

general is not applicable to indefinite problems, we compared our algorithm here

with the algorithm SYMMLQ (cf. [14]). The indefiniteness caused no problem for

LANPRO, and it compared very favorably in cost with SYMMLQ which is more

expensive per step than conjugate gradients and in this ease needed 2003 steps for

convergence. The reduction in residual norm for this test run is shown in Figure

10.3.

THE LANCZOS ALGORITHM WITH PARTIAL REORTHOGONALIZATION 137

5000 10000
Stops

Figure 10.2

Residual Norms for Example 1.2.

LANPRO
SYMMLQ

1000 2000

Figure 10.3

Residual Norms for Example 1.1 shifted by — 2000.

»000

138 HORST D SIMON

These comparisons of LANPRO and other iterative methods stress the robustness

and range of applications of LANPRO. In order to discuss the cost effectiveness of

LANPRO we have to compare it to one of the most effective methods now in use:

the preconditioned conjugate gradient algorithm. Since on an ideal level both

conjugate gradients and Lanczos algorithm are identical, we can apply the same type

of preconditioning to both and then compare their behavior. Here we choose as

preconditioning the incomplete Choleski factorization routine MA31 from the

Harwell Library by Munksgaard [7]. For our set of test matrices we obtained the

following results:

Table 10.4

Comparison of Preconditioned LANPRO with Preconditioned CG.

CG LANPRO

Example NZL Steps Cost Steps Cost Cost of Orth. Ratio of Cost

1.1 1175 13 195 13 269 46 0.87

1.2 4775 32 468 32 670 114 0.70

23976 24 1204 22 1546 148 0.7B

7610 42 1410 29 1517 260 0.93

3817 119 177 22 0.67

7407 14 339 13 420 40 0.81

The first column in Table 10.4 lists the number of nonzeros in the incomplete

Choleski factor. We set the parameter C in MA31 to 10~2, i.e. during the factoriza-

tion all fill-in which was less than a hundredth of the corresponding diagonal

elements was dropped. Since the cost of the incomplete factorization is the same for

both algorithms it is not included in Table 10.4. For both LANPRO and CG we

listed the number of steps which were necessary to reduce the residual norm by a

factor of 10~8, and the total cost given by the number of inner products. Note that

the number of nonzeros in the incomplete Choleski factor strongly affects the total

cost of both algorithms, as Example 2 shows. For LANPRO we also listed the part

of the total number of operations that was spent for orthogonalizations. LANPRO

performed orthogonalizations in all examples, however these orthogonalizations did

not lead to a significantly faster convergence of the method. Hence LANPRO turned

out to be slightly more expensive in all examples considered. The ratio of costs is

best for LANPRO in the two- and three-dimensional examples. One can expect that

for larger and more structured examples, the incomplete Choleski factor will have a

larger number of nonzeros. For these cases LANPRO will be more advantageous

than CG.

In order to illustrate the behavior of both algorithms we show below plots of the

residual norm versus the number of steps and versus the number of operations for

Examples 2 and 3.

THE LANCZOS ALGORITHM WITH PARTIAL REORTHOGONALIZATION 139

10 20 30 0.5" 10« 1.0*10* 1.5*10'

Number of Steps Number of Operations

Figure 10.4

Residual norms for Example 2 with preconditioning.

10 30 50 2*10* *,io* 6*10*

Number of Steps Number of Operations

Figure 10.5

Residual norms for Example 3 with preconditioning.

In many applications the same problem has to be solved for several right-hand

sides. Since LANPRO keeps the semiorthogonal Lanczos vectors, they can be easily

used to compute first approximations to the solution for consecutive right-hand

sides. CG on the other hand does not have this information directly available, and

thus has to start anew with each problem. We consider here two common situations.

As a typical structural engineering problem we solved the equations from Example

1.2 for 20 consecutive right-hand sides, which were just unit loads applied to 20

neighboring elements. In LANPRO we computed an initial approximation from the

subspace spanned by the Lanczos vectors from the first run and used it as a starting

guess. It then took only four iterations to obtain a reduction of the residual norm by

10"8, and no more orthogonalizations were necessary. For CG we used the solution

140 HORST D SIMON

from the previous right-hand side as a starting guess. Here it took between 11 and 13

iterations to obtain the same reduction in the residual norm. If the number of

operations is plotted against the number of right-hand sides for both methods the

following graph is obtained.

5 10 15 20

Number of Right Hand Sides

Figure 10.6

Comparison for consecutive right-hand sides. Example 1.2.

Figure 10.6 shows the clear advantage of LANPRO if the system has to be solved

for consecutive right-hand sides. When two right-hand sides are present, the perfor-

mances of LANPRO and CG are roughly equal. Since the cost for all further

right-hand sides is constant in both algorithms, LANPRO's relative efficiency

increases with the number of right-hand sides to be treated.

A similar situation occurs if parabolic partial differential equations are solved for

several time steps using an implicit method in time direction. We modeled this by

solving the linear system arising in Example 5 with the identity matrix added for 20

consecutive right-hand sides. The new right-hand side was chosen as the solution

from the previous run. We proceed as above for Example 1.2. In this case, LANPRO

has the additional advantage that the projection of the new right-hand side on the

subspace spanned by the Lanczos vectors does not have to be computed, since it is

already known from the previous run.

This numerical experiment showed results similar to those above. For all consecu-

tive right-hand sides, LANPRO needed 5 iteration steps, whereas CG needed 8. The

corresponding graph is given in Figure 10.7.

THE LANCZOS ALGORITHM WITH PARTIAL REORTHOGONALIZATION 141

5 10 15 20

Number of Right Hand Sides

Figure 10.7

Comparison for consecutive right-hand sides, Example 5.

Figure 10.7 shows qualitatively the same behavior of LANPRO as Figure 10.6.

Again, for two consecutive right-hand sides the cost of LANPRO and CG are about

the same. The nice feature about LANPRO now becomes very clear. For a little

extra cost we are able to produce a semiorthogonal basis for the Krylov subspace,

which can be exploited for consecutive right-hand sides. The updating and monitor-

ing of the recurrence and the occurrence of a few reorthogonalizations are a small

price to pay for it and, yet, LANPRO compares favorably with CG in terms of cost.

Let us draw some conclusions from the observed behavior of the Lanczos

algorithm with partial reorthogonalization. The above examples show that LANPRO

D finds a solution in < n steps,

D is very economical for the treatment of several right-hand sides,

D can handle definite and indefinite problems equally well.

Acknowledgement. I wish to thank Professor B. N. Parle« for his support of this

work. His suggestions and criticism improved the contents and presentation of this

paper considerably.

Boeing Computer Services Company, MS 9C-01

565 Andover Park West

Tukwila, Washington 98188

1. J. Cullum & R. Willoughby, "Lanczos and the computation in specified intervals of the

spectrum of large sparse real symmetric matrices," in Sparse Matrix Proceedings (I. Duff and G. W.

Stewart, eds.), SIAM, Philadelphia, Pa., 1979.
2. J. Cullum & R. Willoughby, " Computing eigenvectors and eigenvalues of large sparse symmetric

matrices using Lanczos tridiagonalization," in Numerical Analysis Proceedings, Dundee 1979 (G. A.

Watson, ed.), Springer-Verlag, Berlin, 1980.

142 HORST D. SIMON

3. G. Golub, R. Underwood & J. H. Wilkinson, The Lanczos Algorithm for the Symmetric

Ax - \B.\ Problem. Tech. Rep. STAN-CS-72-720. Comp. Sei. Dept., Stanford University. 1972.

4. J. Grcar, Analyses of the Lanczos Algorithm and of the Approximation Problem in Richardson's

Method. Ph.D. thesis. University of Illinois at Urbana-Champaign, 1981.

5. D. S. Kershaw. "The incomplete Cholcski-conjugate gradient method for the iterative solution of

systems of linear equations," J. Comput. Phys., v. 24. 1978. pp. 43-65.

6. C. Lanczos, "Solution of systems of linear equations by minimized iterations," J. Res. Nat. Bur.

Standards, v. 49. 1952, pp. 33-53.
7. N. Munksgaard, "Solving sparse symmetric sets of linear equations by preconditioned conjugate

gradients," A CM TOMS. v. 6. 1980, pp. 206-219.

8. B. Nour-Omid. A Newton-1Mnczos Method for Solution of Nonlinear Finite Element Equations.

Report UCB/SESM-81/04, Dept. of Civil Engineering, University of California. Berkeley, 1981.

9. B. Nour - Omid. B. N. Parlett & R. Taylor, " Lanczos versus subspace iteration for the solution

of eigenvalue problems," Internat. J. Numer. Methods Engrg.. v. 19. 1983. pp. 859-871.

10. C. Paige. The Computation of Eigenvalues and Eigenvectors of Ven Ijirge Sparse Matrices, Ph.D.

Thesis. Univ. of London, 1971.

U.C. Paige. "Computational variants of the Lanczos method for the eigenproblem." J. Inst. Math.

Appl. v. 10, 1972, pp. 373-381.

12. C. Paige, "Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix." ./

lust. Math. Appl.. v. 18, 1976, pp. 341-349.

13. C. Paige. "Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem."

Linear Algebra Appl., v. 34. 1980. pp. 235-258.

14. C. Paige & M. Saunders. "Solution of sparse indefinite systems of linear equations." SI A M J

Numer. Anal., v. 12. 1975, pp. 617-629.

15. B. N. PaRLETT, 77ie Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs. N. J.. 1980.

16. B. N. Parlett. "A new look at the Lanczos algorithm for solving symmetric systems of linear

equations," Linear Algebra Appl., v. 29. 1980. pp 323-346.

17. B. N. Parlett & J. K. Reíd, "Tracking the progress of the Lanczos algorithm for large symmetric

eigenproblems." IMA J. Numer Anal., v. I, 1981. pp. 135-155.

18. B. N. Parlett & D. Scott. "The Lanczos algorithm with selective orthogonalization." Math.

Comp.. v. 33, 1979. pp. 217-238.

19. D. S. SCOTT, Analysis of the Symmetric ¡Mnczos Process. Ph.D. thesis, Dept. of Math.. University of

California, Berkeley, 1978.

20. H. D. Simon. The Lanczos Algorithm for Solving Symmetric Linear Systems. Report PAM-74. Center

for Pure and Appl. Math., Univ. of California. Berkeley. 1982.

21. H. Takahasi & M. Natori. Eigenvalue Problem of luirge Sparse Matrices. Rep. Comp Center.

Univ. Tokyo. No. 4. 1971-1972, pp. 129-148.

22. J. H. Wilkinson, The Algebraic Eigenvalue Problem. Clarendon Press. Oxford, 1965.

23. E. Wilson, private communication.

24. O. C. ZlENKIEWicz, The Finite Element Method. 3rd ed., McGraw-Hill. London. 1977.

