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Approximation of Complex Harmonic Functions by

Complex Harmonic Splines

By Han-Lin Chen and Tron Hvaring

Abstract. In this paper, a class of complex harmonic spline functions (C.H.S.) are defined on

the unit disc U. We use the C.H.S. to approximate the complex harmonic function on U,

showing that C.H.S. may be represented by elementary functions. If the maximum step tends

to zero and the mesh ratio is bounded, then C.H.S. converge uniformly to the interpolated

function Fon the closed disc U. If the interpolated function Fis a conformai mapping, then

the C.H.S. is a quasi-conformal mapping.

1. Introduction. This paper deals with the spline approximation of a complex

harmonic function defined on the unit disc U.

Since an important subclass of complex harmonic functions is the class of analytic

functions, we are naturally interested in the following problem: can we use the

splines to approximate a conformai mapping? We shall explain the reasons for using

splines for this purpose.

It is well known that any simply connected domain D contained in a closed

Riemann surface, whose boundary T is a continuum, can be mapped conformally on

|Z|< I.
In practice, the important thing is to construct the mapping function, but as we

know, if the domain is arbitrarily prescribed, it is difficult to obtain the analytic

expression of the mapping function. For this reason, mathematicians devote a lot of

work to develop approximations to the mapping function.

Recently, L. Reichel used the Lagrange interpolation polynomials for equi-spaced

points on the unit circle y to approximate the mapping function which maps the unit

disc U onto a simply connected domain D [9, pp. 32-34]. The data of function

values were obtained by solving a system of integral equations derived from D.

Gaier's theory [7]. The method used in that paper [9], combined with analytic

techniques and Fast Fourier transformation, is effective in some cases.

We note, however, that in general, the Lagrange interpolation polynomials do not

converge uniformly to the mapping function FiZ) on the closed disc U [6].

Ahlberg, Nilson and Walsh [1], [2] used analytic splines. These functions can be

proved to converge uniformly on a closed point set interior to y, but not on the

closed disc U.

Instead of Lagrange interpolation polynomials and analytic splines, we used

complex harmonic splines to approximate a complex harmonic function defined on

U. The formulas and the error bounds were given in [3].

Received September 17, 1982; revised December 6, 1982 and February 8, 1983.

1980 Mathematics Subject Classification. Primary 30C30; Secondary 41A15.

©1984 American Mathematical Society

0025-5718/84 $1.00 + $.25 per page

151



152 HAN LIN CHEN AND TRON HVARING

The complex harmonic splines (C.H.S.) have the following properties:

(i) If the maximum step |A| tends to zero, and the mesh ratio R is bounded, then

C.H.S. converge uniformly to the interpolated function F(Z) on the closed disc U.

(ii) C.H.S. may be represented by elementary functions.

(iii) If the interpolated function F(Z) maps U conformally onto a simply

connected domain D satisfying the Ljapunov condition (see after Remark 2) and

|A| = maXj\Zj - Zj_x\ (the maximum step) is sufficiently small, then the C.H.S.

maps U onto a simply connected domain and this mapping is univalent, in fact, it is

a quasi-conformal mapping [3].

In [3], we used complex pseudo-interpolation splines as the boundary function of

C.H.S., and we stipulated that the approximated functions F(Z) have absolutely

continuous nth derivatives (« > 2) on y (see [3, Theorems 1-4]), where the pseudo-

interpolation splines are piecewise polynomials of degree n.

In this paper, we use the complex cubic interpolation spline function as the

boundary function of C.H.S. Under a much weaker condition we can prove that (i)

and (ii) are still valid, and we obtain the error bound in an explicit form (Theorems

L2).
Under a weaker condition, we prove that (iii) is also valid (Theorems 3,4).

In the last paragraph of this paper we give formulas for the calculation of the

C.H.S. and a program which implements the C.H.S. in practice:

If ». = ?(r ), 0 < / < 2, is the parametric representation of the Jordan curve T, then

the following program is performed.

Input: f = f(r). Output: The graph of C.H.S., where C.H.S. is the approximation

of the conformai mapping f(Z) which maps U onto a simply connected domain D.

To save space, we delete the program and the graphs; they may be found in [5].

2. C.H.S. Approximation. A real function u(x, y) belonging to C2(D) is said to be

harmonic in D if it satisfies the Laplace equation Aw = 0.

If Uj ij'■ — l,...,n) are harmonic functions in D, and a- (j — 1.n) are

complex numbers, then the function u = £" afu] also belongs to C2(D) and satisfies

the Laplace equation, but « is a complex-valued function; we call it a complex

harmonic function and denote by H(D) the family of all such functions defined

on£>.

A nonconstant complex harmonic function u(Z) cannot have a maximal absolute

value in its domain of definition. Consequently, the maximal value |m(Z)| on a

closed set E is attained on the boundary of E.

H(D) contains a wide class of functions, for instance, the function P(Z) defined

by the Poisson formula

P(Z) = ¿/2V(*")Re(41!) dO,       ZeU,
2* Jo \e'e - Z I

where w(f ) is any complex continuous function defined on y, y is the boundary of

U, and U the unit disc; evidently, P(Z) e H(U).

Let A = (Z,,..., ZN) be points on y arranged in counterclockwise order, separat-

ing y into y¿ij = l,N) with y, being the arc from Z, to Zy+, (ZN +, = Z,).

We stipulate: \Z~$J+i\ = |y,| < it (j = ÏJV).
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Given complex data Yt,..., YN, there exists one and only one complex cubic

spline function S(Z) with nodes A on y such that S(Zj) = Y¡,j = 1, N; see [4].

The Poisson formula

<»> ^z>:= ¿f^H^K      z&u'
defines a function P(Z) on U, where S(f ) is a complex spline function on y. We

then call P(Z) the complex harmonic spline (C.H.S.) on U.

Now we use the C.H.S. to approximate a function belonging to H(U) C\ CiU).

Theorem 1. Let FiZ) be a complex harmonic function on U, continuous in the

closed disc U. Let PiZ) be the complex harmonic spline defined by il), where S(f ) is

the complex cubic spline interpolating at Z, SiZj) = F(Z/),j m 1,..., N. Then, PiZ)

converges uniformly to FiZ) in the closed disc U. Moreover, we obtain the error

estimation

(2) \FiZ)-PiZ)\<KiR)o>iF,\A\),       Z^U,

where

KiR) = Min(5.13Ä + 1.13,0.01R2 + 1.5),

Ä = Max|Z>+1-Z,|/Min|Z,.+ 1-Z,|
/ j

and co is the modulus of continuity of F on y, |A| = Maxy|Z/+, - Z,|.

Proof. Since the error function £(Z) = FiZ) — PiZ) belongs to HiU), by

Schwarz's theorem and the condition on F we conclude that £(Z) is continuous in

U. If we can estimate E(Z) on y, then, by the maximum modulus principle, (2)

follows.

Now we prove the following

Lemma 1. Let Y(Z) be continuous on y, and S(Z) be the complex cubic spline with

nodes A such that S( Z¡ ) = Y( Z} ) ( j = 1, ./V). Then we have

(3) \S(Z)-Y(Z)\<K(R)U(Y,\,i\\),       Zey,

where R is the mesh ratio defined in Theorem 1, and w(y, |A|) is the modulus of

continuity of Y on y, K(R) being defined as in (2).

Proof. For Z on y,_, (y7_, = ZJ_iZJ)

s(z) = ̂ (zrzf(z-zH)--^(z-zrl)2(zrz)
h]_x hj_x

(4) +-^(Z,-Z)2[2(Z-Z,_I) + V.]
"j-\

+ -^iZ-ZJ_i)2[2iZJ-Z) + hj_x],
nj-\

where Ä,_, - Z,. - Z,_„ Y} = SiZ}), m) = S'(Z}).
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The quantities /ny satisfy the requirement that Sa)iZ¡-  ) = S(2)iZ¡ +  ) for

J=T7Ñ:
(5) OjM^, + 2mJ + bjmJ+, « Qp

where

a¡ —
1     h.

TAT'   bJ=X~ar   Qi = 3aJ
YJ~YJ-> ,,,Y^-Y,

+ 3b

(5) may be written in matrix form as

(6) Am = Q.

Since we can prove the following inequalities:

V- '
7       A,

(7)      M-'||<

\(Z) =

1 1

min,-(2 - \aj\ - |6,|)     2 - /2 '

liz-z^.Kz-z,)2!   |/,y

I V.I3
^    forZey,,

M,(Z) =

g(X) =

Kz-z^.^z-z,.)!   i*y_,

|A,->I:

3X        2Â3

2V-     Aj-,

it follows from (6) and (7) that

(8)

'—    forZey,.,,

< 1,       A = Z--(Z/_1 +Zy),ZeyH,

.    . £ ,    .,     maxJOJ

/-i

For Z e yt _,, in view of (4), (7), (8) we have

\x\mk\(Xk((9)    |S(Z) - y(Z)|< maxK|(X4(Z) + m*(Z)) + s(Mln " i*-.l

-nz)

«=^-,1 + y* V*~'-nz) +m-n-.i
2- {2

From (9) we can easily prove the following inequality

(10) \S(Z) - Y(Z)\* (5.13Ä + 7.13)«(y,|A|).

On the other hand, the continuity of S'(Z) at Z yields the following expression

(ID

where

bjMj_, + 2Mj + 0jMJ+ , = />,      j= l,N,

A/, = S<2>(Z,),       P]
1 YJ^~Yj      Yj~Yj-

<KV,+A,.)[      A>

(11) may be written in matrix form as

(12) BM = P.

V-i
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Since we can prove the following inequalities:

(13) ||ß-'||<(2-v/2r1,

-t    IV ,l2
|«,| = |(Z, - Z)[(Z, - z)2 - V.]| I^V.f ' < ̂

\ß^\(Z - Zj^Z - Zs_xf - h^hj. r1 JV.I2il    <     12 forZe yy_„

\P\ <
co(y.iAi)

vl^3vï|A7V,r

it follows from (12) and (13) that

(i + /2>(y,|A|)
(14) M*    ÓMinJAA-.l >= 1.JV.

For Z e y-, in view of (13), (14), we have

(is)   |s(z)-y(z)| Ç+Ç-.
o,My_, + jByA/y +     '   2J-   - YiZ)

Z.+ Z._,-2Z
-(Yj- Yj_x)-± 2h

7-1

3      1 + JÏ
1 2 + —36— /v2]co(y,|A|) < (1.5 + 0.07Ä2)<o(y,|A|).

(3) is obtained from (10) and (15).

Remark 1. A similar estimate for the real periodic cubic splines and functions

/e Ci-co, co) has been obtained by Sharma and Meir [11], where they have an

error 0(Ä2)w(5).

From Lemma 1, the proof of Theorem 1 is complete.

We note that the coefficient K(R) in the error estimation (2), (3) is a function of

R. If R = 1 or R > 1 but not too large,* then K(R) = 1.5 + 0.07Ä2; if R is

sufficiently large, then K(R) = 5.13R + 7.13.

Remark 2. From Theorem 1, we see that if |A| -» 0, and R is bounded, then P(Z)

converges uniformly to F(Z) on the closed disc U.

In particular, if F(Z) is analytic in U and continuous in U, then the approxima-

tion C.H.S. PiZ) converges uniformly to FiZ) on the closed U.

Let £ = f(0 (0 < t < 2tt) be the parametric representation of T. Suppose 0 <

|f'(01 < oo- Then Y■ = FiZ/) ij' = 1, N) may be obtained by solving the integral

equations as in [9], [10], and then the cubic spline SiZ) which interpolates FiZ) at

Zjij = 1, N) may be easily constructed [4].

The closed Jordan curve T is said to satisfy the Ljapunov condition (see [8, p.

122]), if it can be represented by f = f(s), 0 < 5 < L, where L is the length of T and

s the arc length of T, measured from a fixed point, such that if j varies from 0 to L,

* In fact, if R > R, (= 74.40), then K{R) = 5.13Ä + 7.13; if 1 « R ^ Rx, then K(R) = 0.01R2 + 1.5,

where /?, is the positive root of the equation 1R2 - 513/Í - 563 = 0.
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then f(s) makes one turn on T in the positive sense, T has a tangent at every point,

which varies continuously, and Ç'(s) satisfies the following Holder condition:

i irt

|n*i) ~ S'(s2)\ < J\s[ - s2\ ,       0 < a < I,»/ = const.

If the function W = F(Z) maps U conformally onto D and T = dD satisfies the

Ljapunov condition, then F'(Z) exists in U, is different from zero, and satisfies the

same Holder condition:

\F(e">) - F'ie'e'-)\ ^ AT|t9, - 02\".       k = const

(see [8], [12]).

It follows that F\Z) is continuous in U [8, p. 122].

Lemma 2.IfT satisfies the Ljapunov condition, and W — F(Z) maps U conformally

onto D, dD = T, and S(Z) is the complex cubic spline which interpolates F(Z) at

A = {Z/Zl—lhe knots of S(Z)—then, for Z e y, y = 3(7, we have

(16) |S(Z)-F(Z)|<tf,|A|'

(17) \S'(Z)-F'(Z)\^K2\i\

(S'(.,)-F(/,))-(5'(/2)-F(7-2))

|A|a-Ä

for any 0,0 < 8 < a, where R is the mesh ratio and

|A| = max \Z - Z _,|,

(18)

.    Zey,
a

.        ZGy,

< Ky\tx - t2\ ,       t[,t2 e y.

*,-§*,.       ^ = (26+14/2)^(1
<> +1

,^ih¡ KR.

Proof. From (5),

(19) Aim - \Q) = (31 - A)\Q.

Theyth element of the vector (3/ - A)\Q may be estimated as follows. Since

(20)

we have

(21)       Uil-A)-Q]j-

J        *-,

< 4 max
A

From (19), we have

(22)
■ V.-5 ,

mj - I bj-h- + a,

¿c,(F(,)-F(^')*<^(frw-

FJ-Fj-*\

77-l

| max
A- "KJ*l(«+l)(2-VÎ)l
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Therefore, from (20), (22) and aj + b¡ = 1, we find
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(23) m       Fj~Fj-1
J    v.

,Fi+\ - FJ> . T FJ-FJ-l

1 y—aT"   '~VT~

+ l/Z-'(F(*)-F(Zy))*

-L./z>(F(0-F(Zy))<ft

2-/2

,\ 2# /7T\a+1IAl<»

Furthermore,

(24) 5'(Z) - 5~5-.
'>-!

3e2        J_

*,2-  " 4

„5-5-!my_, +my-2—j¡—
V-1

where

and evidently,

(25)

Let

(26)

Then, from (20), (22),

(27)    |my-my_,|<

e =

V-i

Zy + Zy-i

|«y-my-il   forZeyy_,,

-Zj-Z-Zj,

e <
I A,-, I

/2    '

3£2        1

*J-       4
7

^4-

-±/*'♦*».5-¿7,'*\m-Fiz^))*.■i '*,

m        F'~Fj-X

J~ v.
I wy_, -

V2
+ IV.-V2I

2-/2

Combining (24)-(27), we obtain

A        2K   /7r\a+,lAla

(28) 5'(Z) - 5-3-1
V-i

<(25 + 14/2)^T(f)a+,|Ar,       Zery_,.

Thus, for Z 6 y_„

|S'(Z)-F'(Z)|< S'(Z)- 5-5-1
v-i

+ -r±-p F'iZ) - F'it)) dt

! a+1

<(26 + 14ß)_A_(|)    w
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Inequality (17) is proved.

Inequality (16) follows from (17) by an integration. Since

(29)     \S'(Z)-S'(t)\ = \Z-t\

m
y-1

5-5-1
Ay-. m>~    h

5-5-1
y-1

ly-i V-i

3(Z + /)-6Z^ | wy-my.,

•y-1 r'y-i

Z = HZy_1+Z;),i,ZGyy_1,

from (23), (27), (29) and |(3(Z + /) - 6Z)/Ay_ ,| < 3/2, we have

(30) wzí-WNSitt-ÉlGpjwZ-'
V-'

Therefore, if Z, / e y._,, we have

\jS'jZ) - F'jZ)) - jS'jt) - F'jt))\

" 19 + 20/2

(31)

a + 1
7TÄ +   1 (f)'flz '    -

where/? = |A|/min;|Zy - Zy_||.

If, on the other hand, Z g yy, t g y,,y * /, we distinguish three cases:

(l)If|r- Z|>|A|, then from (17)

(32) \js'jz) - rjz^-isV) - Fjt))i k 2K2iA[S k ^ _ Z|4

(2) If |/ - Z\< |A|, |Z - t\ > miny|Ay|, then from (17)

(33) to-toi-wo-W s 2Ki|4|, „ Kill _ Z|.

(3) If \t - Z\ < |A| and \Z - t\ < min|Ay|, we assume, without loss of generality,

that / G yy+,, Z g yy. Then

(34) \jS'jZ) - F'jZ)) - jS'jt) - F'jt))\

\à\-»

g \(S'(Z)-F'(Z))-{S'(ZJ+])        -F'(AJ+X))\

|A|"-Ä

\(S'(t)-F'(t))-{S'(ZJ^)-F'(ZJ+i))\

|A|--a

« *'(|Z - Zy+I|a + |f - Z,+ 1|s) < 2K'\Z - t\* < K3\Z - t\\

where

K' =
19 + 20/2

a+ 1
ff/v +   1

(§)'*•
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the second inequality being obtained from (31).

From (31)-(34), formula (18) follows.   Q.E.D.

Remark 3. Ahlberg, Nilson and Walsh in [1] estimated the order of errors. Here

we estimate not only the order of the errors but also give the explicit form of the

error coefficients.

Theorem 2. Let T satisfy the Ljapunov condition. Let W = F(Z) be the mapping

function from U onto D, S(Z) the complex cubic spline which interpolates F(Z) at

A = (Zj)?_x, and P(Z) the C.H.S. with the boundary function S(Z).

Then, for all Z G U,we have

(35) |P(Z)-F(Z)|<tf,|A|l+«,

(36) |/>z(Z)-F'(Z)|<£|Ar2,

(37) |/>7;(Z)|<£|Ar2,

where £ = i2a/2/a)K3 + AT2|A|a/2, P7, P^are complex derivatives isee [3]). K¡, K2,

K3 are constants as in Lemma 2.

Proof. (35) is obtained directly from the maximum modulus principle and (16).

Now we prove (36).

Let <p(f, Z0) represent the function (S'(D - F'(O) - (S'(Z0) - F\Zn)); from

(18),

\<pi^ZQ)\^K3\A\a~S\^-Z0\S.

We have [3]

(38)     \PZ(Z) - F'(Z)\ <  Sup
Z0GY

Since

(39)

let S = a/2; then

(40)

s/yTF^« + sW-H}'

(If-Zof Vfl<2Vo\

i  f<p(S,z0)

ir-Zolit i r- dS « 2—K3\*r.a

From (17), (39) and (38), forZei/we have

2«/2

(41) |FZ(Z)-F'(Z)|< K^ + K2\ù>
a/2 |A|°/2 = ¿iAr'2.

(36) is proved.

For ZeÜ, from (18) and (39), we have [3]

/•7:(z)|<— sup
2W Z0ey

(SSXS) - ZqSXZq)) - (ff (f) - z0F'(z0))

f-Zo
dS

2*
Sup

/

f[(5'(f) - r(S)) ~(S'(Z0) - F(Z„))] +   (f - Z,)(5'(Z0) - P(Z0))

f-z0
rff

«y-^iArv«-'+ 2»j.2iai"}.
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Let ô = a/2; then

(42)

(37) is thus proved.

a/2
\Pz(Z)\zi\b\'     forZG/7

Theorem 3. IfT satisfies the Ljapunov condition and PiZ) is the complex harmonic

spline defined in Theorem 2, and if

(43) |A|<
1

2/c\
2aa2K2 + 2K2- min|F'(f)|

T/2
2"^a-lK,   ,

then PiZ) is an open mapping on U.

Proof. The Jacobian»/(Z) does not vanish, since from (43),

J(Z) =\PziZ)\2 -|F77(Z)|2 >\F'iZ)\(\F'iZ)\ - 2||A|a/2) > 0

for all Z e U, thus F(Z) is an open mapping.   Q.E.D.

Theorem 4. IfT satisfies the Ljapunov condition and PiZ) is the complex harmonic

spline defined in Theorem 2 and if

(44)

where

|A| < ^{[2-a-2*2 + 2K2mF\/2 - 2"/2a-%},

FiZx)-FiZ2)
mF =     inf

Z,.Z,ey Zx-Z2

then W = PiZ) is a homeomorphism.

Proof. From Kellogg's theorem [12, pp. 361-364], it is easy to see that mF > 0.

Define

„(z„Zl), '<zl>-?z'>.     F(z„z2)- S^-»
z,-z,

Then

9F _ 9F

9/9    a/,(45)       |//(Z„ Z2) - F(Z„ Z2)\ < |Za _ Z[| jT

= ^^/o/|(/>Z-ne'S + (/,f-°)e"1

z2-z,

i//

|Z2 - Z,|
Sup|Fz(Z)-F'(Z)|+Sup|Fz-(Z)|}/'d/
Zey Zey ' ■'o

»/2
< 2*|A|"

where / = |Z2 - Z,|, dP/dle, 3F/3/9 are the directional derivatives along the straight

line joining Z, and Z2, and 0 is the inclination of the line ZXZ2.

It follows from (45) that

(46)    (mF- 2||Ar/2)|Z2 - Z,| <|P(Z2) - F(Z,)| »5 (mf + 2¿|Af/2)|Z2 - Z,|.

(46), (44) lead to the following conclusion: F(Z2) = F(Z,) if and only if Z, = Z2.

Q.E.D.
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Following the proof given in [3] we conclude that if T and PiZ), FiZ) are defined

as in Theorem 2, then P(Z) maps U onto a simply connected domain Dp. The

mapping is one-to-one. Moreover,

Lim DB = D,       D is the interior of T,
|A|-0   '

in Caratheodory's sense.

3. The Calculation of C.H.S. and Examples. We rewrite the C.H.S. as follows

(47) P(Z) = PX(Z) + P2(Z),

where

PÁZ)

Z g U, y = dU. 5(f) is the interpolating cubic spline.

m*- r^--ûm«- *='z">-'IviJA-Z t-z

Suppose that S(f ) = Sy(f), f g yy, yy = ZyZy+1; then (see [2], [3]) we have

(48) p,(z)=^ESy(z)/ fZy+.     *

y-i z,    f"z

■èï^f
(49)

where

(50)

-1
P2iZ) = j- L ïiZ) Ln

27TÍ

iy.y+1(Z)-/y+,rfaig(f-Z),

^ + I(Z) = /-'»iarg(f-Z)

Both functions <9, 7 + 1(Z), tpy>y+l(Z) are single valued and continuous. They may

be calculated as follows.

Denote by /y y+, the straight line joining the points Zy and Zj+i; the Z-plane £2 is

divided by /y y+, into B, and fl2 say, the half-plane ß2 contains the circular arc y; (we

have stipulated that |yy| < it).

Then Ojj+\, Çy,y+1 maY he represented as follows:

¡X, Zet/nO,,

(51) 6J,J+X(Z) = K, zei/n/y,y+1,

\2w -X,    Zg i/n ß2,

where

(52)   A = cos"1
(Xj-X)(Xj+x-X) + (Yj-Y)(Yj+x-Y)

v2\'/2/
l((A;.-^)2 + (^-^)2n(V.-^)2MV.-^)2),/2J

Z, = *y + flj,    Zy+, = Xj+ x+iYJ+x,   Z = X+ iY.
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l-x,   ¿<=cunn2,

(53) <P,.y+,(Z)=    0,       ZeO/n/,,y+1,

[a,       ZeCl/nQ,,

where A is calculated as in (52) but we use Z = X + i Y instead of Z = A' + iT.

Let | be a point in £2, the straight line joining the point £ and Z = 0 is denoted by

/; let Z0 (if it exists) be the intersection of / with /y y+). Then

(54) {GO,        ifandonlyif|í|-||í-Z0|-|Z0||,or/||/y.y+1,

(55) ¿Gß2 ifandonlyif|í| = |Z0| + ||-Z0|,

(56) i^ljj+l    ifandonlyif|î| = |Z0|.

But in the programming, instead of (54), (55), (56) we use

(57) |É|>||£-Z0|-|Z0||-e,

(58) |£| < |Z0| + |f - Z()| + e,

(59) IÍI - t « |Z0| < |£| + e,

respectively, where e is a small number, say,

|£| ~   10-8.

From the formulas (47)-(59) the values of F(Z) (for Z g U) may be calculated if

the spline function S(f ) is given.

Now SiZ) may be written as

ajZ} + a2Z2 + axZ + a0,       Z G y^,,

A

a3Z3 + a2Z2 + axZ + a0 +   £ C^Z - Z,)\       Z G yk,

y-i

k= 1.TV,

and(Cy}jl| satisfy

N

£CZ; = 0,       / = 0,1,2,3.
y-1

If {F(Zy))ji| are given, then SiZ) may be obtained by solving the system of

equations:

sizJ) = Fizl),    y-Tjv,
N

£CyZy'-0,       / = 0,1,2,3.
7=1

It was proved in [4] that the system of equations (61) can be solved uniquely for

(fl^.0and{Cy)*,.

In particular, the data values of a conformai mapping function may be obtained

as follows:

Let W = FiZ) be a mapping function, such that F(0) = 0, F(l) = f0 G T, Z = e'e,

0 = argZ = arg(F-'(f)).

(60)    S(Z) =

(61)
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From [9, p. 32, Theorem 9.1], the following system of equations

(62) g+ ÎLn\W-$\oiS)\dÇ\ = Ln\W\,       W<eT,

Mm #i = i

has a unique solution (g*,a*), g* = 0, and

(63) 0in = 2irfo*irV)dW.

Integration is done along T in the positive direction.

Using the numerical method presented in [10], we have

"   a ""' ß ""' ß
(64) B(W(t)) = t + I -fsvnjt = - I -jcosjt + L ^,

y-i -^ 7=1 ^ y=i •/

0 < / < 2tt, where ay, /8y are constants.

By solving the equations

#(w(0)-^.     / = Tjv,

the data values F, = Fie'2*'/"), / = 1, N, are obtained.

We have written a complete program for the whole system.

The input is the parametric representation of the curve T, and the output is the

graph of the C.H.S. We give nine examples in [5].

Remark 4. If T is an arbitrary rectifiable Jordan curve, under a stronger assump-

tion on the approximated function F, we can obtain

(65) hm     / —-— = / for all Zefl,
max|»i,| — O-'r    »■  — ^ -T   J  ~ Z

D = (£> U T, D = interior to T).

But the limit value on the left side of (65) is more complicated than in the special

case where T is the circle, since in this case, we use PiZ)—the complex harmonic

spline—in which case the boundary value of F(Z) is SiZ0).

We shall discuss this in more detail in another paper.
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