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Chebyshev Quadrature Rules for a New Class

of Weight Functions

By Paul F. Byrd and Lawrence Stalla

Abstract. Proof is given that the weight functions w(x, p) = \/[it(p + x)yjx(\ - x) ] on

(0,1) admit Chebyshev quadratures for any fixed p > 1, and every N. For the particular cases

when p = 1 and p = 2, the nodes are tabulated to ten decimal places for N-point rules with

N = 2,4,6,8, and 12. Numerical tables are also given for a coefficient in the expression of the

error term.

1. Introduction. With a specified nonnegative weight function w, the problem of

constructing the sequence of Chebyshev quadrature formulas

(1) Jb^ix)fix)dx^HNZfixkN)       (N=l,2,...),
» k = \

consists in determining the common coefficient HN and the unique N nodes xkN so

that (1) is exact if/is any polynomial not exceeding degree N. All the nodes must be

distinct and located in the interval [a, b] for each value of N; otherwise, the desired

formula does not exist. Uniformity in the coefficients maximizes numerical stability

and minimizes computational work. The question of the possibility of the construc-

tion leads to the main task of investigating the zeros of the polynomial that provides

the nodes. Such an investigation, however, may be very difficult, particularly if the

given weight function contains parameters.

Some broad results regarding the existence of Chebyshev rules over infinite

intervals of integration are found in Kahaner and Ullman [1], Wilf [2], and Ullman

[3]. Several results (of a negative and positive nature) are also known for some

specific weight functions on a finite interval. Bernstein [4], for example, proved that

quadrature formulas (1) are impossible if wix) = 1 on [-1,1] and N = 8 or N > 10.

Hermite showed that for every value of N, the weight function wix) = 1/W1 - x2

on (-1,1) allows these integration rules (as well as having the Gaussian degree of

precision 2 N — 1). More recently, Ullman [5] proved that Chebyshev quadrature

formulas (1) are admissible for the weight function

. . ,       , 1 + 2ax
(2) w(x,a) =-

tt(1 + 4a2 + 4ax)vi - x2

on (-1,1) for N > 1, when \a\ < 1/4. (This represents an infinite one-parameter

family, and it yields the familiar Hermite weight function when a = 0.)
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There appears to be no other concrete example in the literature where Chebyshev

quadrature is possible for every JVona finite interval of integration. The problem oí

characterizing all weight functions, such that formulas (1) exist for all N, remains

open. Hopefully, exhibiting further specific examples may help elucidate a solution

to the problem.

In this paper, we shall show that functions of the form

(3) wix,p) = --'       ,- (-Kx<l),
Tr(2p + 1 + jc)V1 - x2

also furnish an infinite one-parameter class of weight functions that admits

Chebyshev quadrature for every N and any fixed p > I. Note that none of these

functions can be obtained from Ullman's weight function by assigning any given

value to his parameter a, in Eq. (2). Instead of (3) on (-1,1), however, we actually

take the equivalent weight functions

,    ,   M/>+ 0 i
(4) wix,p) =- (p>\),

« (p + x^xil -x)

on the interval 0 < x < 1, the constant factor \jpip + I) being introduced for the

convenience of making the zero moment equal to unity. It is seen that when p = oo,

the family has 1/tt/x(1 — x) as a member, which is equivalent to l/iry 1 - x2 on

(-1,1). After establishing the existence of Chebyshev quadrature for the class (4), we

shall give some numerical results for the particular cases

and

w(x, I) = i/2/[*r(l + x^jtO - x)]

wix,2) = v/6/[w(2 + x)y'xil - *)].

2. Construction of the Chebyshev Formulas. In order to develop /V-point Chebyshev

quadrature rules

(5)       CN(f) = HN(p)ZfixkN)
k=\

\¡pip + 1)   ,, fix)dx

w Jo ip + x)pil - x)

for our weight function (4), we must find N + 1 parameters, the N abscissas xkN and

the coefficient HN, such that the error ENif) = 0 whenever / is an arbitrary

polynomial of degree n ^ N. The common coefficient is simply

(6) HN = l/N,

determined by the requirement that ENif) = 0 when/(x) ■ 1. There are two main

approaches (viz., algebraic and analytic) to the determination of the remaining

unknown parameters.

To get the abscissas xkN algebraically, one may calculate the moments

(7) M„ = flx',w(x,p)dx,
•>n
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and obtain the simultaneous nonlinear system

(8) £ x"kN = NMn = ßnN       in = 1,2,..., N),
k=\

which can be resolved by use of Newton's identities. The unique N nodes xkN are

then found to be zeros of the TVth-degree monic polynomial

(9)      YNix,p) =
N\

xN      /"' X

ßlN        1 0

ß2N       ßlN 2

ßlN       02/V ß\N

N-2 N-3

PAW      ßN-\.N      ßN~2,N      ßN-3.N

involving the power sums

x

0

0

0

ßiN    N

(10)

with

(11)

ßnNia) = NMn = ^n (^) + 2¿(-l)V(n2_».

a = 2p + \ - 2\¡pip + 1) ,    or   p = (1 - a) /4a.

Except for small values of N, this method is unwieldy.

An alternate, analytical approach, due to Chebyshev himself [6], provides us with

a better expression for the desired polynomial. This requires the use of the familiar

form (e.g., see Krylov [7, p. 183])

1    /-i
(12) Uiz, p) = G ■ exp — ( w(x,p)\n(z - x)

rïw Jn
dx

1NJ0
Z>   1,

where only the polynomial part of its expansion is to be considered, with the

constant G being chosen so that the coefficient of zN is unity. Equation (12) can be

manipulated to produce

~ £   (-1)'
(13) ( w(x, p)ln(z - x) dx = In-/- - 2 £  -î-^-(ar)m = In

u m= 1

where a is given by (11), and

(14) r = 2z - I + 2{ziz - 1) = (fz + jz - 1 )2.

(1 +ar)2

4r

Therefore, with (6) and (13), Eq. (12) leads to

<15,        »(..ri-^o^l"-^^',

which must be truncated in order to get the so-called "proper terms" of the series.

Noting that the polynomial part of l/rN~J is the shifted Chebyshev polynomial

T£_jiz), taking G = 2, and setting z = x, we obtain the final explicit form

(16) Y„ix, p) m <j>Nix, a) = polynomial part of t/(;c, p)

=Mf/K^>'



176 PAUL F. BYRD AND LAWRENCE STALLA

where the prime on the summation sign means that the term when j = N is to be

halved. If a = 0, i.e., when/» = co, this reduces immediately to

(17) YN(x,co) = i>N(x,0)-—Tt(x),

whose zeros are the abscissas for the Chebyshev quadrature involving the well-known

function l/7r/x(l - x).

3. Establishment of Existence. To prove that the N zeros of (16), which provide the

nodes xkN for formulas (5), are all distinct and located in the interval [0,1] for every

fixed p > 1 and each N > 1, we now show that YNix, p) will change signs N times

on [0,1] if 0 < a < 3 - 2^2, i.e., for all p > 1. The analysis is straightforward but

involves some manipulative details that, for brevity, are not included.

Replacing T*_jix) in (16) by 7*_,(;») = ^[RN~J + R'N+J], where

(18) R = 2x - 1 + 2/x(x - 1) ,

gives

(19) YNix,p) = <l>Nix,cx)

Since the truncated binomial series

(20) £ (™)«<R™-> = (« + R)2N - *(™)£(« - tf(R + tf-ldt,

Eq. ( 19) becomes

i21)<pAx,a) = -£(2»)+±[R-»ia + Rr + R»ia + R-xn

It can be shown that

(22) {-[R-Ni<x + R)2N + R"i<x + R-*)2N]

= ^[il-a)2 + 4ax]NT*
x(\ +af

(1 -a)2 + 4ax

and that

(23)      -^(2^)/o'(« - 01ä-"(A-» + ,)"- + Jt»(Jt- + ,)»-'] d,

Hence Eq. (16) may be written in the interesting form

(24)    <t>Nix,a) = ^[il-a)2 + 4ax]NT*
x(l +af

(1 -a)2+ 4
a2N<t>Nix,l/a),
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or as

(25) <*>„(*,<*) - ^[(1 - a)2 + 4ax]" • cos(AM) - a2N<bNix, l/a),

where

d£\ ,oc a      2x(l+a2)-(l-«)2(26) cos A =-.
(1 - a)   + 4ax

We note from (26) that if 0 < x < 1, then m > A > 0. Noticing also that when

A = Am = mir/N, i.e., if

(n\ = , (l-")2(l+cos^m)

(    } X      mN     2{l+a2-2acosAm)

pcos2imir/2N)
im = 0,l,...,N),

p + sin2imTr/2N)

we then have œsiNAm) = (-l)m. Thus the left-hand side of Eq. (25) will change

signs exactly N times whenever

(28) ^[(1 - a)2 + 4ax]N> a™\*N(x,l/a)\> 0

for 0 < x < 1. If 0 < a < 1, however, we have, from (16),

(29, «^(,,./«)i-^|off).»-i^(-)l<^|;|2;)-.»;

so, instead of (28), it is sufficient to consider the inequality

(30) 4? [0 - a)2 + 4aJClN >«">0,   or   p + x > (2)-,/v.

Now this is clearly true for each N and any x in [0,1] if p > 1, i.e., for all a in

0 < a < 3 — 2\/2 . But it will not hold for a fixed p and every N and x if p < 1, i.e.,

when a > 3 — 2^2 . The case for a = 0 ip = oo) is given by (17).

Since the polynomial <t>Nix, a), or its equivalent YNix, p) in (16), has N variations

of sign in the interval [0,1] for every value of N whenever p > 1, it will indeed

furnish the N distinct real nodes xkN for the quadratures (5), with the common

coefficient being HN = l/N. The functions given by (4) therefore represent an

infinite one-parameter family of Chebyshev weight functions on (0,1). One can show

that the sequence CNif) of approximate integration formulas (5) will converge to

the true value for any continuous function /.

4. Remark. It can be seen that our weight function (4), as well as Ullman's (2), is a

product

(31) w(x,p) = q(x,p)h(x),

in which qix, p) is a certain rational function containing a parameter, and where

hix) is the classical Hermite weight function l/ir\jxil - x) which already admits

Chebyshev quadrature on (0,1). The form (31) may thus be regarded as a special

modification of the weight function hix). Since Ullman and the authors have
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actually found two concrete examples of q of a similar type, where Chebyshev

quadrature is still possible with the modified weight function w, this suggests a

broader problem of characterizing all nonnegative rational functions q such that the

product qix)hix) is again a Chebyshev weight function on the same interval.

5. The Error Term. If the function/is other than a polynomial of degree »=: N, the

integration formulas (5) have an error term given (e.g., see Kopal [8, p. 419]) by

(32) M/)=(£^/<V+l,(e),       0<e<l,

where

MM..    .  -
N(33) **(«)-i NMN+X- Yd(xiN)

N+ I

with MN + , given by (7). Knowing the coefficient KN permits an estimate of the

maximum error made by Chebyshev quadrature, of the form

(34) lEAnli^L^J^ix%

6. Some Computational Results. In order for the quadrature rules (5) to be usable

in numerical calculations, the roots xiN, 1 < i< N, of the polynomial (16) must be

found, preferably by an on-line, readily user-reproducible technique which incorpo-

rates a provision for verifying the accuracy of its results. Such a procedure, based on

a single-parameter Newton's method analysis, is used to obtain numerical results for

the particular cases when p = 1 (for « = 3 - 2v/2 ), and when p = 2 (for a = 5 -

2v/6). N-point Chebyshev quadrature rules for these two weight functions are

tabulated to ten decimal places for N = 2,4,6,8, and 12. Since the error coefficients

KN in the remainder term (34) may be useful when a bound on the (N + l)th

derivative can be estimated, we give tabulations of them.

The polynomial <pNix, a) and its first derivative <b'Nix, a) may be written as

1 v

<¡>„ix,a) = -Vi)„ia)+ £ VJNia)1Jix),

>-i

1 V-'
<?'Nix,a) = -P0Nia)+  Yd PjNi«)T*ix),

j-\

where the coefficients VjNia) and PjNia) are recursively defined by

2

4'
^A/iv(«) = TA7.        />v+i,/v(«) = /,)viv(«) = 0,

and

. Pj-\.N{») = Pj+\.Ni*) + 4jVjA*)       0'= 1,2,..., N).
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These coefficients depend only on the user-chosen values of N and a, and may

therefore be calculated prior to the iterations by Newton's method. The shifted

Chebyshev polynomials are evaluated recursively using

T*(x)=l,   T?(x)-2x-l,   TJ*(x) = 2(2x-l)TJ_x(x)-TJ*_2(x).

The iterative scheme

x(k+i) = x(k)_ M*.^.") (i- = 0  1        )

<fW(jv\«)

was found to be stable and rapidly convergent, because for most N of computational

interest, the quantity |<i>^(j£;, a)\ tends to maximize near the roots of <f>N(x, a); this

can be seen in the sample plot of <i>4(x, a) given in Figure 1 for three values of a.

Since, as shown from (27), the ith root of <$>N lies in the interval tN_i+x N < xxN <

ts-i.N Wltn 0 < xXN < x2N < • • •  < xNN < 1, we take

Xi\ = ^[^N-i,N "*"  'jV-;+ l,/vl (' =   1,2,..., N),

as the initial guess for each root.

O     a=3 - 2/2

Figure 1

Graph illustrating the behavior of <f>4ix, a) on [0,1] for 3

particular values of the parameter a within the allowed range of

values of a.
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Results generated by following this procedure on a CDC 3150 computer with

N = 2,4,6,8, and 12, and for a = 0, 5 - 2\/6 , and 3 - 2y/2 , are tabulated in Table

1. The extent to which the differences

N

DJN(a) = ßjN(a) - £*/„        (j= 1,2,..., N),
i=\

deviate from zero provides a measure of the computed accuracy of the N nodes xjN.

From all the calculations of the entries in Table 1, we found DjNia) < 10"28,

indicating that our computations were reliable to at least twenty-eight significant

figures. For the values of N and a used in Table 1, the error coefficients KNi<x),

defined by (34), are tabulated in Table 2.

Table 1

Abscissas xiN, i = 1,2,.... N, for our quadrature, generated for

5 particular values of N and 3 values of the parameter a or p.

Note that a - 0 i or p = oo) corresponds to the familiar

H ermite weight function.

a - 0
(p   -  oo)

a ■= 5 - 2i/6

(p - 2)

a - 3 - 2/2

(p - 1)

N - 2 0.1464466094
0.8535533906

N - 4 0.0380602337
0.3086582838
0.6913417162
0.9619397663

JV - 6 0. 0170370869
0.1464466094
0.3705904774
0.6294095226
0.8535533906
0.9829629131

ff-8 0.0096073598
0.0842651938
0.2222148835
0.4024548390
0.5975451610
0.7777851165
0.9157348062
0.9903926402

N - 12 0.0042775693
0.0380602337
0.1033233299
0.1956192855
0.3086582838
0.4347369039
0.5652630961
0.6913417162
0.8043807145
0.8966766701
0.9619397663
0.9957224307

0.0977450101
0.8012344754

0.0254733441
0.2298526735
0.5985128515
0.9441201021

0.0114021218
0.1026906220
0.2818298930
0.5310518400
0.7952976760
0.9746663039

0.0064229328
0.0578066622
0.1599869457
0.3098793161
0.4974414108
0.7000112490
0.8787112362
0.9856581895

0.0028557266
0.0256996862
0.0713390234
0.1395099838
0.2293711548
0.3389414828
0.4643319085
0.5989121599
0.7327141797
0.8526284749
0.9439757914
0.9935973415

0.0659028626
0.7625242621

0.0170752109
0.1871077662
0.5249093675
0.9277619049

0.0077412136
0.0808809415
0.2257712812
0.4601690701
0.7441166973
0.9666021705

0.0044099845
0.0449660816
0.1240124328
0.2525702250
0.4257406510
0.6365128547
0.8445150007
0.9809812686

0.0019908973
0.0197860323
0.0540285177
0.1087757624
0.1822621767
0.2778606180
0.3939298750
0.5283045990
0.6727649545
0.8127084158
0.9266692963
0.9914816035
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Table 2

Error coefficients K N(a) for the values of N and a used in Tablel.

a S  - 2        N  - 4 N  - 6 W - 8        » - 12

0 0.18933D-28 0.37865D-28 0.546940-28 0.34710D-28 0.652130-28

5-2/î" 0.93740D-02 0.697540-04 0.587280-06 0.521740-08 0.445970-12

3-2'? 0.156110-01 0.33509D-03 0.81380D-0S 0.208550-06 0.148320-09
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