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The Arithmetic-Harmonic Mean

By D. ML E. Foster and G. M. Phillips

In memory of Professor E. T. Copson

Abstract. Consider two sequences generated by

",,+ i - Mi"„<hn)-       hn*\ - M'i"„+X,b„),

where the a„ and b„ are positive and M and M' are means. The paper discusses the nine

processes which arise by restricting the choice of M and M' to the arithmetic, geometric and

harmonic means, one case being that used by Archimedes to estimate it. Most of the paper is

devoted to the arithmetic-harmonic mean, whose limit is expressed as an infinite product and

as an infinite series in two ways.

1. Introduction. Recently [3] we have discussed the generalized Archimedean

process in which two sequences (a„) and (¿>n) are defined by

(la) an + x = Mia„,b„),

(lb) b„+x=M'(a„+l,b„),

where a0, bQ e R+ and M and A/' are mappings from R+xR+toR+ which satisfy

the following three properties:

(2) a < b =» a ^ Mia,b) < b,

(3) M(a,b) = M(b,a),

(4) a = Mia,b)=> a = b.

We shall refer to such mappings as means. In [3] we showed that for all means M

and M' the sequences (a„) and (è„) converge monotonically to a common limit,

which we will denote by L(a0, ¿>0), and that the errors of both sequences (a„) and

ibn) tend to zero like 1/4" provided that M and M' possess continuous partial

derivatives up to the second order.

Archimedes' process for estimating it (see [4, p. 50]) is a special case (the original

case) of (1) with a0 = 3\f3, b0 = {- 3/3^ and M and M', respectively, the harmonic

and geometric means. It is well known (see, for example, Phillips [6]) that, for this

choice of M and M', there are two cases to consider depending on the initial values

a0 and b0. First, if a0> b0> 0,

(5) an-2°      a°b°      M8/2*),
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(6) ft,-2" ,  /°% 1/2«in(J/2"),
(flo-*o)

where 60/a0 = cos ^-ln llús case we see tnat

(«o - *o)

Second, if ¿>0 > a0 > 0, we put b0/a0 = cosh»? and find that a„ and 6„ and L are

given by (5), (6) and (7) with a0 and b0 interchanged in these three formulae and

with tan, sin and cos replaced by the corresponding hyperbolic functions. We also

note that an alternative formulation of L(a0, r>0) for this latter case allows us to use

the Archimedean process to compute the logarithm function from

(8) (/2-l)L(l/(/2+l),l/2i) = log.

for t > 1. (See, for example, Carlson [2] and Miel [5].)

Thus we have results concerning the convergence and rate of convergence for the

general case (1), and we also have a full analysis of Archimedes' special case. This

paper is devoted to a study of other special cases of the generalized Archimedean

process which are of obvious interest. Specifically, we wish to explore thoroughly the

cases where M and M' are drawn from the set (A, G, H), where A, G and H denote

the arithmetic, geometric and harmonic means, respectively.

2. M = G M' = H. The second case which we consider is where M = G, M' = H,

which is the Archimedes process with the two means transposed. It is not difficult to

verify that, if 0 < a0 < b0,

(9) an = 2"-xasmi8/2"-i),

(10) bn = 2"atanie/2n).

where

(11) a0/b0 = cos2 8   and   a = b0/\ — -

1/2

It follows that

1/2

(12) Lia0,b0) = cos-x{ia0/b0)]/2)-b0/^- l)

For example, with a0 = 3^/4 and b0 = 3^ we have 0 = ir/3; then an and b„

correspond respectively to the areas of the inscribed and escribed regular polygons

of the unit circle with 3 • 2" sides. We recall that, in the Archimedes process proper,

a„ and bn are the semiperimeters of these same polygons. Thus we can think of this

'transposed Archimedes' process as one which Archimedes might have used. To

complete this case we note that, if 0 < b0 < a0, we need to replace sin, tan and cos

by the corresponding hyperbolic functions in (9), (10) and (11) and redefine a as

bQil - b0/aQyx/2.

3. M = M'. We now deal with the cases where M = A/' e (A, G, H). First we

observe that these means may be written in the form

(13) Mia,b)=f-xi\ifia)+fib))),
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where fix) = x, log x and l/x gives M = A, G and H, respectively. (We remark in

passing that (13) defines a mean in the sense used here for any continuous mapping/

from R+ to R+ which is strictly monotonie increasing.) Thus the process (1) may be

expressed as

(Ha) /(«„+i)-e(/(0+/(*■)).

(14b) /(*.+ i)-i(/(«.+i)+M)).

and the three cases M = M' e {A, G, H) are reduced to the single case M = A/' = A.

The explicit forms for an and b„ in this latter case are easily obtained as

2     1
(15) a„ = L(a0,b0) + -• — (a0-b0),

(16) bn = L(a0, b0) - - ■ — (a0-b0),

where the common limit is

(17) L(aQ,bQ) = \(aQ + 2bQ).

We note that (15) and (16) show very clearly both the monotonicity and rate of

convergence of the errors to which we referred in Section 1 above.

4. (A/, M1) = (A, G). When M = A and M' = G or M = G and M' = /4, we can

reduce the problem to one which we have already considered. For example, if

M = A and M' = G, (1) becomes

(18a) ß„+i =!(«„ + *„),

(18b) ¿„+, = K+A),/2

and the substitution un = l/a„, «„ = l/bn transforms (18) into the original Archi-

medean process.

5. The Arithmetic-Harmonic Mean. The final cases which remain to be explored in

this paper are when M = A and M' = H and also M = H and A/' = A. Let us write

L(a0, b0), as before, to denote the common limit of the sequences defined by

(19a) an+x={(an + bn),

(19b) 1A+1-Í0A.+ I + 1A).

The other case, with the means A and H interchanged gives the sequences defined by

(20a) l/an+x~\(\/an+\/bn),

(20b) bn+x={(an+x+bn).

If we denote the common limit of the latter pair of sequences by L'(a0, b0) it is clear

that

L'(a0,b0)=l/L(l/aQ,l/b0).

Thus we need consider only one of these two cases and we will restrict our attention

to (19).

First we note the homogeneous property, evident from (19), that

L(XaQ,Xb0) = XL(a0,b0)
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for any positive X, a0, b0. Thus it suffices to consider the case where, say, b0 = 1 and

a0= I + x, with x > - 1. It follows by induction that, for any n > 1,

(21a) an = 2'" fl (22'"' + x)/n (22r + x),
r=\ r=\

n

(21b) ¿V, = 2"n[(22r-'+*)/(22' + *)].
r-1

In analyzing the limit of this sequence we find it convenient to define

F(jc) = L(l + x,l)=  lim bn,
n—*oo

so that

(22) F(x) = fi [(1 + 2*/4r)/0 + x/4r)].
r= I

It follows immediately from (22) that

(23) (l+U)F(x) = (l+\x)F(U).

Now we write

(24) F(x) = 1 + c,jc 4- c2x2 + ■■■ .

On substituting (24) into (23) and comparing coefficients of xm, we obtain

cm + \cm_x=cm/4m + 2cm_x/4'"

for m > 1, with c0 = 1. Hence we obtain

CK\ r       I   ,^-■(4"-'-2) •••(4-2)(25) cm-(-l) (4»_1)...(4_1)   -

so that

(26) F{x)=l+ix-j-x2 + ^_...

and an inspection of (25) shows that the series (26) is convergent for |jc| < 4. Since

we are concerned only with x > - 1, the series (26) is valid for -1 < x < 4.

To obtain an expression for Fix) valid for x > 4, we could apply (23) repeatedly

and write

fix) = O [(1 + 2*/4')/0 + */4')](l + ttx/4") ~^ix/4")2 + •••),

where the latter series is convergent for |jc| < 4n+ '.

We now explore an alternative representation for F(x) for large x. We define

(27) *(*) = logF(x) = £ (log(l + ¿£) - log(l + ^))

and write x = 4' where m < r < m + 1 and m is a positive integer. We express

*(x)-Sx(x) + S2(x),

where Sxix) is the sum of the first m terms on the right of (27). Thus

^í>(,+¿)-'4+^))
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and, on using the monotonicity of log(l + x) and the inequality

log(l + x) < x

for x > 0, we obtain

0<S2(x)<    £    log(l+-^)<|,

so that S2ix) = 0(1) for large x. For Sx(x) we write

S,W=E(.o8(1+^)-log(,+^))

= mlog2 + £ (log(l + 5 ~) - tog(l + ^7)).

It follows that Sxix) = wlog2 + 0(1) and thus

(28) 4'(x) = L2logx + Oil).

We may similarly verify that

+ (x) - *(2/x) = wlog2 + *(«)- *(2/h),

where u = 4'~m = x/4m. This shows that

(29) <Kjc)-*(2/jc)-ik>gje

is unaltered when * is replaced by x/4m. It turns out that the expression (29)

provides the key to a full understanding of the function $ and thus of the limit of the

arithmetic-harmonic mean process. However, it is convenient to 'centralize' the

function (29) so that it is zero when x = ]/2. We therefore now study the function

(30) 6(x) = 4,(x) - i¡,(2/x) - i logx + ¿log2

and verify some of its properties.

6. The Function 5.

Lemma 1. For all x > 0, 0(1 A) = Six).

Proof. From (27) we have

HVx) - H2x) = £ (log(l + ¿) - log(l + ¿))

-£(log(l^)-log(l+f))

= £(log(1+¿)_log(1+_4_)) + log(1+I)

-£(log(l+^)-log(l+^))-log(l+x)

= ->p(2/x) + iKx)-logx

and Lemma 1 follows.
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Lemma 2. For all x > 0, S(2/x) = -5(;c).

Proof. This follows immediately from (30).

Lemma 3. For all x > 0, 5(2x) = -Six).

Proof. Applying Lemma 2 and then Lemma 1 we obtain

8(2x) = -S(\/x) = -Six).

An immediate consequence of this last lemma is that 5 is unaltered when x is

replaced by 4x. We note in passing that this confirms our earlier observation,

derived from a somewhat tedious manipulation of the infinite series for \pix), that

(29) is unaltered when x is replaced by x/4m.

Because of the symmetries of S revealed by the above lemmas, we need sketch the

graph of S only over the interval, say, [1, \Í2] to see how 5 behaves for all x > 0. By

direct calculation, Six) apparently decreases monotonically to zero over the interval

[l,v^] from a maximum value of 5(1) = 2.62 • 10"6. Thus, for all x > 0, using the

above lemmas and the computational evidence over [1, Jï~], Six) oscillates between

the values ±5(1). These calculations further suggest that, for all x > 0,

(3i) i(x),4(1)cM(»!a£).

In order to test these conjectures, we use (30) to express

fiW=£(l0g(l+^)-l0g(l-r^))

- j?, N1+4^y - M1+¿d -1***+4-***
= £(.og(l+^)-log(l^))

+ £ (log(l + ¿) - log(l + ¿)) + \ logx - log(l +x) + \ log2.

We now replace each logarithm above by its Maclaurin series and rearrange the

order of the summations to give

(32)   Six)- £iz^-I^(*" + ^)+^log*-log(l+*) + ilog2,

where this latter representation for 5(x) is valid for {- < x < 2. (There are no

difficulties in justifying the rearrangement of the double series.) We note that,

happily, the range of validity of (32) occupies precisely one cycle of the oscillatory

function 5.

Encouraged by the approximation (31) we put x = e~' in (32) and construct the

Fourier series for 5(e"') on [-log2, log2] of the form

(30

2^0 +   E (arcos(r-7Ti/log2) + ¿>rsin(™7/log2)).
r-l
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Since 8(e~') is an even function of t, as is shown by Lemma 1 and readily confirmed

by the representation (32), we see that each br = 0 and

(33, .,.     2     """■/"°8 «(«~')cos(nr//log2)<ft.
Jnlog 2y„

Further, let us express the above integral as a sum of two integrals

/•log 2 =    f>liog2 /•"'

Jn Jn J' í

flog 2

r;iog2

and make the substitution / = log 2 - t in the latter integral. Then, on using Lemma

3, we deduce that ar — 0 if r is even.

To pursue (33) for r odd, we need to evaluate several integrals. First we obtain

(34) /"'0gV"cos(r,r./log2) dt = -1(2" + 1)/ 1 + f-^)   ,
'o n '   |_        \ n log ¿ / _

for r odd, on integrating by parts twice. Second we derive

|loê2icos(^/log2)»/r = -2(^)2,

for r odd. We also need to evaluate

f °8 log(l + e"')cos(nri*/log2)i/r

which we do by expressing log(l -I- e') in powers of e~' and using (34) for « = -1,
-2.

Thus we derive from (32) and (33) the Fourier coefficients

(35) a. =
log 2

!2i!) -2£(-ir'. 1

«=i n2 + (r7r/log2)

for r odd and ar = 0 for r even. The latter series may be summed by using a

standard contour integration technique. We have

1
£ H)"

'  n2 + a2       2a2       2a
+ -r— csch ira.

ii = 0

(See, for example, Whittaker and Watson [7, Example 5 of p.  136].) Thus (35)

simplifies greatly to give

(36) a= — csch -—-  .
r      r        \log2J

It is easily verified that this Fourier series converges to 5 for all x > 0, and we may

write

7r2(2r- 1)
(37) 5(*) = 2£

1

r=l
2r- 1

csch
log 2

cos
j2r - l)7rlogx

ÍOÍ2

We note that the coefficients ar, given by (36), tend to zero very rapidly indeed. The

first few values are approximately

a, = 2.62 • 10-6,    a3 = 3.74- 10-'9,   a5 = 9.64 • 10"32.

This shows that the approximation to Six) conjectured in (31) is extremely good, the

maximum error being of order 10"19.
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7. The Limit for Large x. Having investigated the function 8, we return to (30) and

write

(38) Hx) = : log.v - » log2 + 5(a) + *(2/jf).

so that

F(x) = 2-|/4.ï|/V|ï|F(2A).

If x > \. we may use (26) to express Fi2/x) as a power series in l/x and thus

obtain

m      fW,2-.w.>(, + ¿-¿ + ¿-...).

valid for x > \, where 5(.v) is given by (37).

Having now attained our goal of obtaining an expression for F(x) for large x, we

remark on the subtle role played by the function 5. There is one very simple relation

involving F which we did not use in the foregoing analysis. This is

(40) F(jf)-F(2jf) = 1 +.Y.

which follows immediately from (22).

Before discerning the involvement of the function 5, we falsely conjectured from

(40) that, for large .v. F(x) had the form of (39) with the factor exp(5(.v)) missing. It

is amusing to see that this conjecture is consistent with (40), due to the fact (Lemma

3) that

f«(v) . ei<2v) _   J

Finally we draw a comparison between the arithmetic-harmonic mean process (19)

and the superficially similar process

(41a) a„^= \(an + hn).

(41b) \/b„+l =\(\/a„+ \/b„).

It is well known and readily verified that anbn is invariant and that (41) is the

Newton square root process

a»+x = \[a»+Jt)'

where a = anb{) and (an) converges quadratically to ja. (See Carlson [1].) Thus the

processes (19) and (41) both involve the square root function in their respective

limits.
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