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Some Inequalities for Elementary Mean Values

By Burnett Meyer

Abstract Upper and lower bounds for the difference between the arithmetic and harmonic

means of n positive numbers are obtained in terms of n and the largest and smallest of the

numbers. Also, results of S. H. Tung [2], are used to obtain upper and lower bounds for the

elementary mean values Mp of Hardy. Littlewood, and Pólya.

1. In 1975, S. H. Tung proved the following theorem [2]:

Let 0 < b = x, «s x2 < • • • < x„ = B. Let A and G be the arithmetic and geo-

metric means, respectively, of x,.x„. Then

n-x(Bx/2 - bx/2)2 ^ A -G^g(b,B),

whereg(b, B) = cb + (1 - c)B - bcBl~c, and

\og[(b/B-b)\ogB/b]

C log B/b

We will derive somewhat similar bounds for the difference between the arithmetic

and the harmonic means of n positive numbers.

2. In [1, Chapter 2] Hardy, Littlewood. and Pólya discussed the elementary mean

values, which are defined as follows:

Let xx, x2.x„ be positive numbers, and let p be a real number. Then

M (xx,..., x„) is defined as [n'x L'l„x xk7\x/p, up * 0; M0(xx,..., x„) is defined as

(njî_i xk)x/". We denote Mx, the arithmetic mean, by A; M0, the geometric mean,

by G; and M_x, the harmonic mean, by H. Since Mp(kxx,..., kx„) = kMp(xx,..., x„)

for all p and for all k > 0, we may, without loss of generality, assume x, = 1.

Theorem 1. Let 1 «■ x, < x2 < • • • < x„ = B. Then

{?~lt*Ah...,B)-H(l.B)^(B^-l)2.
n(B + 1)

Proof. For each k, 2 < k < n, let

Ak = A(xx,x2.xk_x,x„)    and   Hk = H(xx, x2,..., xk_x, x„).

Fixx,, x2,..., x„_2, x„, and letx„_, = x vary in [1, B). Let

D(x) = A„ - H„ =
(« - 1)^,-1 + x nxH„_x

n (n-\)x + Hni-

Computation of D'(x) shows that x = Hn_x is its only positive zero, and standard

methods of analysis show that a minimum for D(x) is attained at x = Hn_x.
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Therefore,

A„-H„>D(H„   ,) = «-'(«- OK,   ^-Hl,   ,).

This process may be repeated, giving

A. - H, > ̂ K,  , - «„  ,) » ^K  : - ",,  :>

S..^(.,-»,)-",-|)2
>r  -      -      «(5+ i)'

The maximum of D(x) must occur at an endpoint. 1 or B, as each of the variables

.v2, Xy.v„   | in turn varies from 1 to B. So

nB-(B-\)k_l}B_ '

A"     H"^ n (B-\)k + n      t(kl

for some k. 0 < k sS n. The maximum of F(.\) on [0, /;] will, then, be an upper

bound for An - Hn. Again, computation of F'(x) and standard methods of analysis

show that a maximum is attained for x = n( B1/2 - l)/( B - 1). Hence

A„-H„^F(n(BX/1- \)/(B- \)) = (BX/2- \f.

This completes the proof of Theorem 1.

Upper and lower bounds for Gn - //„ may be obtained using Theorem 1 and

Tung's Theorem, since

G„-Hn = (A„-H„)-(AH-G„).

3. Tung's Theorem may be used to obtain upper and lower bounds for the

elementary mean values M , by using the relation

Mp(xx.xm)-{A(x(.x?,))X/p.

(See[lJ.)

Theorem 2. Let 1 = x, < x, < • • • ^ x„ = B. and let p > 0. Then

[«"'(ß^'2 - 1): + G']l/P < Mp(\.B) ^ [g(l. B>') + G1']1"'.

where G = G(\.B ), and g is the function defined in Tung 's Theorem.

Theorem 3. Let 1 = x, < x, < • • ■ x„ = B, and let p < 0. Then

[g(B", 1) + Cy/r ^ Mp(\.B) < [«"'(I - B»/2)2 + G"Y/r,

where G = G(\.B) and g is the function of Tung \v Theorem.
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