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A Series Expansion for the First Positive Zero

of the Bessel Functions

By R. Piessens

Abstract. It is shown that the first positive zeroy,, , of the Bessel function Jv(x) is given by

(v + 1)      l(v + l)2     49(r + l)3      8363(y + l)4
/,.|-2(' + 1)'/2
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for  - I < v < 0.

1. It is well known that, when v is real and v > — 1, the Bessel function J„(x) has

an infinite number of zeros and that all zeros are real (Watson [9]). We denote the

ith positive zero of J„(x) by/, r

Several approximations, asymptotic expansions or bounds for the zeros of Bessel

functions exist (see [1], [2], [4], [6], [7], [9]). Especially McMahon's expansion for

large zeros (see Abramowitz and Stegun [1]), Olver's asymptotic expansion for large

orders and Olver's uniform asymptotic expansions (see Olver [6]) are interesting

formulas, but, unfortunately, they are not applicable when s and v are small. The

purpose of this note is to give a series expansion for/,, when - 1 < v < 0.

2. Cayley [3] noticed that Graeffe's method for solving a polynomial equation can

be applied for the efficient computation of

(D E^.vr-^<r).       r-1,2.
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An upper bound for/„, is given by Chambers [4]:

(2) jrA < (r + \)l/2[(v + 2)i/2 + l].

Further it is known that, when k > 1,

(3). Hm yM -7i.*-i > °-
i>_» — i

Thus, the first term in the left side of (1) is dominant when v = - 1, so that

(4) ¿,, =2(,+ l)l/2<¡>»+0((*'+ir')'        v^-\,

where

11/2r

(5) *»

is analytic at v = - 1.
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By approximating 4>r(v) by a Taylor polynomial, we obtain

(6) ¿,, = 2(v + 1)I/2I Ck(v + 1)* + o((v + l)r-'),

*=o

-1,

where

(7)
J_ d\(v)

k     k\      A..kdvk
v- -1

is independent of r.

When r -» oo, (6) becomes a series expansion for jvX, which, because of the

presence of a branchpoint of <$>r(v) at v = -2, converges only in the interval

-1 < v < 0.
Using REDUCE, which is a computer language for formula manipulation [5], we

have computed Ck, k = 0, 1, 2, 3, 4, using (7), where r = 8 and

(8) <*>«(»') =
(» + 2)4(y + 3)2(v + 4)2(» + S)(y + 6)(y + 7)(r + 8)

429x5 + 7640k4 + 53752k3 + 185430k2 + 311387k + 202738

1/16

The result is

(9)

7„ = 2(»<+l)1/2
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In Table 1, we compare the exact values oijvX with the approximate values given by

(9), for v = -3/4, -2/3, -1/2, - 1/3, - 1/4 and also for v = 0 (although we

were not able to prove the convergences of the expansion for v = 0).

Table 1

Values of the first zerojvX ofJv(x)

exact approximation (9)

-3/4

-2/3

-1/2

-1/3

-1/4
0

1.058508

1.243046

1.570796

1.866351

2.006300

2.404826

1.058489

1.242958

1.570056

1.863061

2.000273

2.378740

3. An interesting application of (9) is the estimation of the smallest zero of

Laguerre- and Gegenbauer-polynomials [8]. For example, the smallest zero £„ of the

Laguerre polynomials L(na)(x) is approximated by (see Tricomi [8])

(10) "     Ak„
1 + 2(«2-i)+;a2,

AM2

where kn = n + (a + l)/2. In Table 2, this approximation, where ja , is replaced by

(9), is compared with the exact value of £„.
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Table 2

Values of the smallest zero of L[a)( x )

a                 n              exact approximation (10)

- 3/4            3           0.089682 0.089679
15           0.018520 0.018519

- 1/2            3           0.190163 0.189982
15           0.040452 0.040415

- 1/4            3           0.299347 0.297530
15          0.065463 0.065071

0            3           0.415775 0.406686

15           0.093308 0.091294
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