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On the Diophantine Equation L Xt■ = n Xt

By M. L. Brown

Abstract. The diophantine equation Xx + ■ ■ ■ + Xk — Xx • ■ ■ Xk has at least one solution in

positive integers for k > 2. The set of integers k for which this is the only solution arc

investigated; in particular, this set is conjectured to be a known finite sequence.

The equation fk(\) = Xx + X2 + ■ ■ ■ + Xk - XXX2 ■ ■ ■ Xk = 0 has the solution,

for k is 2, given by Xx = 2, X2 = k, X} = X4 = ■ ■ ■ = Xk — 1. Schinzel showed that

there are no other solutions in positive integers, apart from permutations of this

given solution, for k = 6 and k = 24. Misiurewicz [2] states that k — 2, 3, 4, 6, 24,

144, 174, 444 are the only values of k < 1000 for which fk(\) = 0 has essentially one

solution, as above. But the number 144 in this list (given in both [2] and [1, D24]) is

probably a misprint for 114, for with this correction Misiurewicz's assertion is then

correct (evidently 144 will not do because of the extra solution l'4' • 2 • 4 • 21 = 168

= (141) -1 + 2 + 44- 21). We report here on some further calculations with this

equation.

Proposition 1. The equation fk(X) = 0, for k ^ 4, has only one solution in positive

integers, apart from permutations, if and only if the following conditions hold:

( 1 ) k — 1 is a prime number.

(2) Let s, n be any integers, if any, with 3 *S s ^ log2/c + 1, 2(~2 < n <

(kx/s + l)s~2 and n being a product xx ■ • • xs_2 of s — 2 integers x, > 2. Put t =

x, + • ■ • + xs_2. Then no factor of N — (k — s + t)n + 1 is congruent to — 1 modulo

n except possibly for n — 1 and N/n — 1.

Proof. Let fk(\) = 0 be a solution in positive integers; we may suppose that

x,,..., Xj are precisely those integers among x,_, xk which do not equal 1. Thus

x, ■ ■ ■ xs = k - s + xx + ■ ■ ■ + xs. Since x, ^ 2 for all / ^ s, it follows that 2s < k

+ s. It is then elementary to show that for k > 4 we have s < log2A: + 1.

The case s = 1 is easily ruled out, so we next consider the case s = 2. A solution

/A.(x) = 0 with 5 = 2 gives x,(x2 - \) = k - 2 + x2.U this is distinct from the given

solution we have that x2 - 1 does not equal k - 1 and is a proper factor of

k - 2 + x2. It follows that x2 - 1 is a proper factor of k — 1. Thus no other

solution exists if and only if k - 1 is a prime number.

Suppose now s ^ 3. Given integers x,,..., xs_2 > 2, put n = x,x2 • • • xs_2 and

t = x, 4- x2 4- • ■ ■ + xi_2. Then there are integers xs_,, xs > 2 with fk(\) = k -

s + t + xs_x + xs_2 - nxs_xxs_2 = 0 if and only if/= xs_xn — 1 is a factor of,
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and not equal to, k - s + t + xv ,. Put N = (k - s + t)n + 1. We deduce x( ,,

xs > 2 exist as required if and only if N has a factor/* n - 1 and * N/(n — 1)

with/congruent to - 1 modulo n. It remains to bound /;.

Let x,.xv be a solution, as above, with the x, arranged in increasing magni-

tude. Consider the problem of maximizing n subject to fk(\) = 0, x¡ > 2, and the

other stated constraints on x, except that we now allow nonintegral values. Since n,

as a function of x,.xs. has no critical values in the given region, it must take its

extreme values for extreme values of the variables x,. It is easy to see that for the

maximum value of n we must have all the x,, / < s, being equal. Thus the maximum

value of n is x" 2 where x is the positive root of the equation xv = k — s + sx.

Plainly, kx/s < x < Al/v + 1; thus n ^ (kx/s + l)v~2 as required.

Corollary 1. Suppose fk(\) = 0 has only 1 essential solution in positive integers.

Then:

(\)k — 1 and 2k — 1 are prime numbers.

(2)6\kifk > 4.
(3) 4k + 1 and 4k + 5 are sums of two squares for k > 4.

Proof. (1) Take s = 3, n = 2 in the proposition. (2) follows from (1). (3) Take

n = 4, s = 3 or n = 2.2, s = 4 in the proposition and apply Fermat's criterion,

noting from (2) that neither 4A 4 1 nor 4k + 5 is divisible by 3 for k > 4.

Proposition 1 can be used to give an algorithm for testing if an integer A' has the

required property; the number of steps required is at most 0(k3/2 + f). for all e > 0.

Using this algorithm, a PET 4032 microprocessor was used to test suitable values of

k; this revealed the discrepancy in Misiurewicz's list, though it is easy to check by

hand using Proposition 1 that A: = 114 should be in the list. No other values of

k < 11,000 were found for which fk(\) = 0 has one solution, this computation

taking 40 minutes of computing time. We thus end with:

Conjecture. The only values of k for which fk(\) = 0 has one solution are k = 2, 3,

4,6,24, 114, 174,444.

Added in Proof. With a different program, the conjecture has now been verified

for all k < 50,000.
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