On the Diophantine Equation $\sum X_i = \prod X_i$

By M. L. Brown

Abstract. The diophantine equation $X_1 + \cdots + X_k = X_1 \cdots X_k$ has at least one solution in positive integers for $k \ge 2$. The set of integers k for which this is the only solution are investigated; in particular, this set is conjectured to be a known finite sequence.

The equation $f_k(\mathbf{X}) = X_1 + X_2 + \cdots + X_k - X_1 X_2 \cdots X_k = 0$ has the solution, for $k \ge 2$, given by $X_1 = 2$, $X_2 = k$, $X_3 = X_4 = \cdots = X_k = 1$. Schinzel showed that there are no other solutions in positive integers, apart from permutations of this given solution, for k = 6 and k = 24. Misiurewicz [2] states that k = 2, 3, 4, 6, 24, 144, 174, 444 are the only values of k < 1000 for which $f_k(\mathbf{X}) = 0$ has essentially one solution, as above. But the number 144 in this list (given in both [2] and [1, D24]) is probably a misprint for 114, for with this correction Misiurewicz's assertion is then correct (evidently 144 will not do because of the extra solution $1^{141} \cdot 2 \cdot 4 \cdot 21 = 168 = (141) \cdot 1 + 2 + 4 + 21$). We report here on some further calculations with this equation.

PROPOSITION 1. The equation $f_k(\mathbf{X}) = 0$, for $k \ge 4$, has only one solution in positive integers, apart from permutations, if and only if the following conditions hold:

- (1) k 1 is a prime number.
- (2) Let s, n be any integers, if any, with $3 \le s \le \log_2 k + 1$, $2^{s-2} \le n \le (k^{1/s} + 1)^{s-2}$ and n being a product $x_1 \cdots x_{s-2}$ of s-2 integers $x_i \ge 2$. Put $t = x_1 + \cdots + x_{s-2}$. Then no factor of N = (k-s+t)n + 1 is congruent to -1 modulo n except possibly for n-1 and N/n-1.

Proof. Let $f_k(\mathbf{x}) = 0$ be a solution in positive integers; we may suppose that x_1, \ldots, x_s are precisely those integers among x_1, \ldots, x_k which do not equal 1. Thus $x_1 \cdots x_s = k - s + x_1 + \cdots + x_s$. Since $x_i \ge 2$ for all $i \le s$, it follows that $2^s \le k + s$. It is then elementary to show that for $k \ge 4$ we have $s \le \log_2 k + 1$.

The case s=1 is easily ruled out, so we next consider the case s=2. A solution $f_k(\mathbf{x})=0$ with s=2 gives $x_1(x_2-1)=k-2+x_2$. If this is distinct from the given solution we have that x_2-1 does not equal k-1 and is a proper factor of $k-2+x_2$. It follows that x_2-1 is a proper factor of k-1. Thus no other solution exists if and only if k-1 is a prime number.

Suppose now $s \ge 3$. Given integers $x_1, \ldots, x_{s-2} \ge 2$, put $n = x_1 x_2 \cdots x_{s-2}$ and $t = x_1 + x_2 + \cdots + x_{s-2}$. Then there are integers $x_{s-1}, x_s \ge 2$ with $f_k(\mathbf{x}) = k - s + t + x_{s-1} + x_{s-2} - nx_{s-1}x_{s-2} = 0$ if and only if $f = x_{s-1}n - 1$ is a factor of,

Received September 28, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 10B15.

Key words and phrases. Diophantine equation, prime numbers.

240 M. L. BROWN

and not equal to, $k - s + t + x_{s-1}$. Put N = (k - s + t)n + 1. We deduce x_{s-1} , $x_s \ge 2$ exist as required if and only if N has a factor $f \ne n - 1$ and $\ne N/(n - 1)$ with f congruent to -1 modulo n. It remains to bound n.

Let x_1, \ldots, x_s be a solution, as above, with the x_i arranged in increasing magnitude. Consider the problem of maximizing n subject to $f_k(\mathbf{x}) = 0$, $x_i \ge 2$, and the other stated constraints on x_i except that we now allow nonintegral values. Since n, as a function of x_1, \ldots, x_s , has no critical values in the given region, it must take its extreme values for extreme values of the variables x_i . It is easy to see that for the maximum value of n we must have all the x_i , $i \le s$, being equal. Thus the maximum value of n is x^{s-2} where x is the positive root of the equation $x^s = k - s + sx$. Plainly, $k^{1/s} \le x \le k^{1/s} + 1$; thus $n \le (k^{1/s} + 1)^{s-2}$ as required.

COROLLARY 1. Suppose $f_k(\mathbf{X}) = 0$ has only 1 essential solution in positive integers. Then:

- (1) k 1 and 2k 1 are prime numbers.
- (2) 6|k if k > 4.
- (3) 4k + 1 and 4k + 5 are sums of two squares for k > 4.

Proof. (1) Take s = 3, n = 2 in the proposition. (2) follows from (1). (3) Take n = 4, s = 3 or n = 2.2, s = 4 in the proposition and apply Fermat's criterion, noting from (2) that neither 4k + 1 nor 4k + 5 is divisible by 3 for k > 4.

Proposition 1 can be used to give an algorithm for testing if an integer k has the required property; the number of steps required is at most $O(k^{3/2+\epsilon})$, for all $\epsilon > 0$. Using this algorithm, a PET 4032 microprocessor was used to test suitable values of k; this revealed the discrepancy in Misiurewicz's list, though it is easy to check by hand using Proposition 1 that k = 114 should be in the list. No other values of k < 11,000 were found for which $f_k(\mathbf{X}) = 0$ has one solution, this computation taking 40 minutes of computing time. We thus end with:

CONJECTURE. The only values of k for which $f_k(\mathbf{X}) = 0$ has one solution are k = 2, 3, 4, 6, 24, 114, 174, 444.

Added in Proof. With a different program, the conjecture has now been verified for all $k \le 50,000$.

Department of Pure Mathematics University College P.O. Box 78 Cardiff CF1 1XL, Great Britain

^{1.} R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, Heidelberg, Berlin, 1981

^{2.} M. MISIUREWICZ, "Ungelöste Probleme," Elem. Math., v. 21, 1966, p. 90.