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Explicit Estimates for the Error Term
in the Prime Number Theorem for
Arithmetic Progressions

By Kevin S. McCurley

Abstract. We give explicit numerical estimates for the Chebyshev functions y(x; k, /) and
0(x; k, I) for certain nonexceptional moduli k. For values of ¢ and b, a constant c is tabulated
such that |y(x; k,[) = x/@(k)| < ex/@(k), provided (k,/) =1, x > exp(clog? k), and
k > 10*. The methods are similar to those used by Rosser and Schoenfeld in the case k = 1,
but are based on explicit estimates of N(T, x) and an explicit zero-free region for Dirichlet
L-functions.

1. Introduction. Let k£ and / be positive integers. The Chebyshev prime counting
functions ¥ (x; k, /) and 6(x; k, /) are defined by

0(x;k, )= Y  logp, ¥(x;k,l)= Y logp,
psx pisx
p=I(mod k) p*=1I(mod k)

where the sums extend over all primes p and prime powers p®, respectively. The
prime number theorem for arithmetic progressions is equivalent to the statement
that

Y(xik, 1) = x/p(k) +o(x), x— oo,

if k and [ are fixed relatively prime integers. An alternative statement is that for any
positive € there exists x, = x,(k, /, €) such that

W (x; k, 1) = x/@(k) < ex/@(k), x> x,.
The purpose of this paper is to give explicit numerical estimates for x,(k, /, €) for
some values of k and &.

The case k = 1 or 2 has been investigated in a series of papers by J. B. Rosser and
L. Schoenfeld. The methods used in this paper are similar to those used by Rosser
and Schoenfeld, and we shall make frequent reference to their work.

The size of the error term in the prime number theorem depends on the location
of zeros of the Riemann zeta function {(s). The estimates of Y(x; 1,1) in [10] and
[11] are based on the computation of 3,502,500 zeros of {(s) and a zero-free region
for {(s) of the type originally proved by de la Vallée Poussin. A similar situation
exists in the case of the prime number theorem for arithmetic progressions, where
the size of x,(k, /, €) depends on the location of zeros of Dirichlet L-functions
formed with characters modulo k. In the case of a fixed modulus k we can make use

Received June 21, 1982.
1980 Mathematics Subject Classification. Primary 10H20, 10HO8.

©1984 American Mathematical Society
0025-5718/84 $1.00 + $.25 per page




266 KEVIN S. McCURLEY

of computational information concerning the zeros of L-functions modulo k in the
same way that Rosser and Schoenfeld used information concerning the zeros of {(s).
In the estimation of x,(k,/, €) as k tends to infinity, we can no longer derive
significant benefit from the mere computation of zeros, since it is no longer a finite
computational problem to compute enough zeros. In this case we can base our
estimates on the following explicit zero-free region.

Let R = 9.645908801 and £, (s) = I'T, poq s L(s, X)-

THEOREM 1.1. There exists at most a single zero of £, (s) in the region (s = ¢ + it
o > 1 — 1/[Rlogmax{k, k|t}, 10}]). The only possible zero in this region is a simple
real zero arising from an L-function formed with a real nonprincipal character modulo
k.

If X is an integer for which there exists a real zero of £,(s) with B> 1 —
1/(Rlog k), then we shall refer to k as an exceptional modulus. A proof of Theorem
1.1 appears in [5], as well as a further result concerning exceptional moduli.

TABLE |
b\ 1 .5 2 1 05 01 .005 001 L0001 .00MN;
1 34,13 41.01  53.23  65.28 79.94 124.3 147.2  208.3 313.3  LI&.S
2 20.62  23.35  27.98  32.37  37.55 52.25 59.53 78.3% 109.7  14h.9
3 1€.85 18.51  21.29 23.88 26.84 34.92 38.82 48.74 64.8R8  K3.19
4 15.08 16.28 18.26  20.05 22.08 27.48  30.04  36.4Y  46.80  58.36
5 14.04  16.98  16.51 17.88  19.40  23.41  25.°8  26.97  37.3  L%.5%
6 13.36  14.12  15.37  16.47 17.69  20.83  22.33  25.94  31.62  37.94
7 12.86  13.52  14.58  15.50 16.49  i9.09 20.28 23.23 27.81 32.78
3 12.49 13.07 13.9¢& 14.76 15.62 1/.81 )8.82 21.29 25.11 29.23
12.20  12.73  13.52  14.21  14.94  16.86 17.72  19.85 23.09  24.58
10 11.98  12.44  13.15 13.76 14.43  16.1¢  16.87 18.71  21.54  24.57
11 11.79  12.20  12.85 13.38 13.99  15.47 16.15 17.81 20.3¢  22.96
12 11.64 12.03  12.60 13.09 13.62 14.99 15.58 17.08 19.31 21.67
13 11.50  11.84 12.37 12.83 13.32 14.55 i5.10 16.44 18.48  20.60
14 11,39 11.72  12.19  12.62 13.08 14.20 14.71 15.93 17.76 19.72
15 11,29 11.58 12.03 12.42 12.85 13.88 14.35 15.48 17.17 18.96
20 10.93  11.14 11.68 11.76 12.08 12.81 13.16 13.97 15.15 16.61
25 10.69 10.88 11.14 11.36 11.60 i2.20 12.45 13.07 14.00 14.95
30 10.55 10.69 10.91 11.0¢ 11.30 11.78 11.99 12.51 13.25 16.01
35 10.44  10.55 10.74  10.90 11.08 11.47 11.65 12,08 12.72 13.37
40 10.35 10.45 10.62 10.76  10.90 11.25 il.s1 11.79  12.32 12.89
45 10.29  10.39  16.52 10.646 10.78 !1.08 11.23  11.5 12,02 12.51
50 10.24  10.33  10.45 10.56 19.66 10.95 11.06 11.37 11.78 12.22
60 10.15  10.21  10.32  16.43  10.52 10.76  10.84 11.08 11.42 11.78
70 10.08 10.14 10.23 10.32 10.40 10.59 10.68 10.89 11.17 11.a7
80 10.06 10.08 10.18 10.23 10.31 10.48 10.56 10.73 10.98 1:.25
90 10.00 10.04 :0.11 10.18 10.23 10.41 ju.45 10.61 10.85 .1.08
100 9.96 10.01 10.07 10.13, 10.18 10.32 i0.39 10.54 10.72 i5.93
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The main result of this paper is the following:

THEOREM 1.2. Let k be a nonexceptional modulus, and let (k, 1) = 1. For various
values of € and b, Table 1 gives values of c such that

X < EX
(k)| o(k)

provided that k > 10" and x > exp(clog? k).

o (k)| 9k’

V(x; k, 1) - and |0(x;k,1) -

For any given values of ¢ and b the methods of this paper will yield a value of c,
but the methods are limited by the requirement that ¢ > R. The methods could also
be used to calculate an explicit constant A with the property that

(k) ) X log x log x
— Y(x; k, 1) tp(k)l<Ak\/ R exp(— R )

provided x > exp(Rlog? k) and k& is not exceptional. In the interests of brevity this
will be deferred to a later paper. Later papers will also deal with the case k = 3 and
implications of the generalized Riemann hypothesis.

2. Estimates of N(T, x). Throughout this paper x will be a Dirichlet character
modulo ., and x, modulo k, will be the primitive character which induces x. We

write x, for the principal character, and in this case we take k, = | and x, = L
Note that
(2.1) L(s,x)=L(s,x,)l_£('1 -xi(p)p)

pi

Define N(T, x) = N(T, x,) as the number of zeros p = B + iy of L(s, x) with
0 < B < 1 and |y| < T. The main result of this section is the following.

THEOREM 2.1. Let T > 1 and x be a primitive nonprincipal character modulo k. If
0 <n <1, then

T kT
(2.2) N(T’X)_;l‘)gz_,,.e < C,log kT + G,,
where
1+ 29
(2.3) ¢ = mlog2’
_ 4log¢(1 +n) 2log¢(2 + 29)
(2.4) C, = 3038 = 268y + =1 o5

2 3
+; logf(i + 217).

Proof. The method of proof is essentially due to Backlund [2], with refinements
due to Rosser [9] and the author. Assuming that +7 does not coincide with the
ordinate of a zero, consider the rectangle R with vertices at o, — iT, o, + iT,
1 — o, +iT,and 1 — o, — iT, where 0, > 1. Then we have

(25) N(T,X) = 37 Bearg (s, X),
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where

@6 &0 = (5360, a= (- xn)2

Let © denote the portion of the contour in ¢ > 3. From the functional equation of
£(s, x) and (2.6) we obtain

(2.7) Aparg&(s,x) =24.arg (s, x)

k s+a)/2
= 2[Aearg(—) + Aparg l‘( ) + A.arg L(s, x)]

= 2Tlog k + 4Im|ogI‘( +2 5+ zZ) +2Aarg L(s, x).

We shall apply Stirling’s formula in the form

0
logI'(z) = (z - E)logz —z+ = log211 + — &
where |0| < | and |arg z| < 7/2. This error term is well known and appears in Olver
[6, p. 294). Hence

2
(2.8) ImlogF( +2+‘§)=%1082—7;+§log]+(2az;:1)
c2a2 1 2T] 4
4 1+ 2a 3|%+a+iT].

Denote the last three terms by f,(T'), f,(T) and f;(T). If a = 0, then f, and f, are
decreasing for T > 1, so that

1
N+h+AI<IN+AI+ W15
< max{|f,(1) + (1)), 1f,(00) + f,(0)]) + .2982 < .6909.

If a =1, then f, and f, are positive, f, is decreasing, and f, is increasing. The
maximum value of f, + f, occurs between T = 1.64 and T = 1.65, so that

1
+f,+ f5]1 < f,(1.64) + £,(1.65) + < .6425.
Ifl f2 f3' fl( ) f;( ) 3m
It follows from (2.5), (2.7) and (2.8) that
(2.9) N(T, x) = ~ T]ogzk—T+ 138186 + Agarg L(s, x)|.

It remains to estimate Acarg L(s, x). We divide C into 3 pieces C,, C,, and C, as
follows:

Ci:3—iT to o, —iT,
Cyioy—iT to o, +iT,
Cyioy +iT to 3+iT.

We first estimate A arg L(s, x). In view of the fact that L(3, x) =L(s, X), an
upper bound for the change in argument on €, will also serve as an upper bound on
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©,, provided the bound is valid for any primitive nonprincipal x modulo k.
Let N be a positive integer, and define

f(s) = LG +iT, )" + L(s - iT, 0)"].
Note that »
f(6)=ReL(o +iT,x)"

if o is real. Suppose f(o) has n real zeros in the interval § < o < ;. These zeros
partition the interval into n + 1 subintervals, and on each subinterval the quantity
arg L(o + iT, x)" can change by at most =, since Re L(¢ + iT, x)" is nonzero on
the interior of each subinterval. It follows that ‘
(n+ )7
N

We now estimate n from above. Let 0 < < 3, and define o, = 3 + 27 and
o, = 1 + 7. It follows from Jensen’s theorem that

loglf (oo + (1 + 2n)e)|d8 — logf(a,)l.

1
(2.10) 8¢, arg L(s, x)| = ylAe,arg L(s, x)"| <

1 3n/2
(2.11)  nlog2 < Ef-w/z

In order to estimate | f(s)| we appeal to a result of Rademacher [8]. He proved that if
-7 <0< 1+, then :

kis + l')<'+n‘o)/z§(l ).

LG 01 < (F5

It follows that

(2.12) Lf:"'/zlogu(o(, +(1+2n)e®) d8

27 Jap
(k(\/T2 +Q2+9)) +1+ 21,)')
dé

< ;—:[3"/2%(1 + 27m) cosflog

/2 27

+ 2 log (1 + )

< 2—1\;(1 + 27m)log(.74685 kT) + %log{(l + 1),

sinceT> landn < 3.
If 6 > 1 + n, then we use the trivial estimate

1f () <81 +m)7,
and it follows from (2.11) and (2.12) that
N(1 + 29)
27

Now write L(a, + iT, x) = re'?. We choose a sequence of N’s tending to infinity
such that No tends to 0 modulo 2. It follows that

(2.14) lim f(2) =1

(2.13) nlog2 < log(.74685 kT ) + Nlog¢(1 + ) — log f(,)l- ”

N—w |L(ay + iT, x)I¥
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Note that for 6 > 1 we have

(LG = TIn = x(p)p=1™ > T1 (1 + i)_'= £(20)
X » x\p)p = » po §(o)
Hence from (2.10), (2.13), and (2.14) we obtain
1+ 29
(2.15) |A¢,arg L(s. x)| < 2iog2 log(.74685 kT
2wlog$(l + ) wlog(2 + 27)
+ - .
log2 log2

Finally we estimate the change along ¢,. If 6 > 1, then
larg L(s. x)I < log L(s. x)| < log{(a).
Hence
|A¢,arg L(s.x)| < 2log¢(3 + 27).

The result then follows from (2.9) and (2.15).
Theorem 2.1 may be stated as well for imprimitive or principal characters.
Henceforth we shall abbreviate N(T, x) as N(T'), and furthermore we use

T kT T
F(T)'—‘ ;logm. F,(T)= ;

log 2—;;
R(T)=C,logkT + C,, R\(T)=C,logk,T + C,.
COROLLARY 2.2. If T > | and C, and C, are as in Theorem 2.1, then
(2~l6) |N(T)"F|(T)|<R|(T)-

Proof. If x is nonprincipal this follow immediately from Theorem 2.1, since
N(T, x,) = N(T, x). If x = x, is the principal character, then we appeal to a result
of Rosser [9], who proved that (in our notation)

T T
(2.]7) IN(T. XO) - ; log m
3.75, 0<T<280
< {5.75, 0 < T < 1467
274log T + .886loglog T + 4926, 2< T

If 6 > 1, note that

2log$(o) — log$(20) = ) 108( I’;: t : )
p

is decreasing in o. It follows that G, is decreasing in 7, and
(2.18) C, > 5.365.

If 1 £ T <280 or 280 < T < 1467, the result follows immediately from (2.17)
and (2.18). If T > 1467, then by (2.17) and (2.18) it suffices to prove that

(2.19) (;&5 - .274) log T — .886loglog T + .439 > 0.

The left side of (2.19) is increasing in T for T > 1467, and is positive for T = 1467.
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3. Bounds for y(x; k,/). Let k and / be positive integers with (k, /) = 1. Our
method of estimation for y(x; k, /) is based on an “explicit formula” for certain
integral averages of y(x; k, /). This is the method used by Rosser [9] in the case
k = 1, and reduces the problem to that of estimating certain sums involving zeros of
Dirichlet L-functions.

Before we state the explicit formula we require some notation. If x is a Dirichlet
character modulo &, we use z(x) to represent the set of zeros p = B + iy of L(s, x)
with B > 0 and p = 0. Since x, is the associated primitive character, z(x,) is the
subset of z(x) consisting of the zeros with 8 > 0. We use b(x) for the constant term
in the Laurent expansion of L'(s, x)/L(s,x) about 0, ¢(x) for the constant term in
the expansion about -1, and m(x) for the order of the zero of L(s, x) at s = 0.
Note that

(3.1) 0<m(x)<w(k)<

where w(k) is the number of distinct prime factors of k. Unless otherwise indicated,

a sum over x is to be interpreted as a sum over all characters modulo .
LEMMA 3.1. Let ¢\ (x; k, 1) = [Fy(t; k, 1) dt, where x > 1. Then

Zx( ) X

20(k) peztx) P ( + 1)

+d,x + dleogx +d,logx +d,,

(32) ¥(xik )= (x)

where
(9800 = - EXO T 58 =,
a=(1-x(-1)/2,
(34) d, = (k)Zx(l)['n(x) b(x)].
(35) dy= (k)Zx(l)'n(x)
(3.6) dﬁ#k)x(-ﬁ-l’w)’
67 d- ooy T ROFCL0+ o T0leto 1l

Proof. A “smoothed” Perron inversion formula gives

Wk D = s TR0 [ R e @

The remainder of the proof involves an application of the residue theorem to express
the contour integral as a sum of residues. The details justifying this appear in
Ingham [4, pp. 68—74], and Prachar [7, pp. 224-228].
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For x > 1, define

(3.8) E(x)=y(x;k, 1) - x/9(k),

and for m a positive integer, x + mh > 1, define

h h
(39)  Eu(x.h)= [ [CE(x4y 4+ y)dy o dy,
0 0
Further let
-2n+
(3.10) f(x)= (k)zx(l)"):‘,I S, + dlogx +d, +d,.

LEMMA 3.2. If|h| < (x — 1)/m, then

Em(x'h)
_; - 1 “ _ymtitl m \p+m
(k) g"(')pe}.:(x, plp+ 1) (p+ 'n)EO( ) (1 )(x+jh)
+f fof(X+y. Ay dyy e

Proof. We use induction on m. If m = 1, it follows from (3.8), (3.9), and Lemma
3.1 that

E,(x. h) =f0"5(x +y)dy

xP* - (x + h)**!
(k)z"(”pez(x) e Tk

+d,(x + h)log(x + h) — d,xlog x + dylog(x + h)
—d,log x + g(x + h) — g(x).

The result then follows for m = 1 from (3.3), (3.4), (3.5). (3.6), and (3.10).
If m > 1, we have

E,(x,h) =f”Em_.(x + Y h) dy,

1

T o0 L e e
'Y (—1)'"”(’"; l)foh(xﬂ“y,.,+1'h)"+'""dym

Jj=0

h h
+fo ---fof(x+y.+~'+ym)dy. s dy,,
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the term-by-term integration being justified by the fact that ¥ ., 1/lp(p + 1)| .
converges. The sum on j may be written as ’

1 mi'(_l)m+j+|(m; 1)(x+jh)p+m

p+m j=0
1 “ m+i+i{m — l) L \ptm
+p+m,§’,(_]) (i—l (x + ih)
_ 1 - m+j+1 m g\ptm
e ) CRY Dl

and this completes the proof.

LEMMA 3.3. If0 < h < (x — 1)/m, then there exists a z such that 0 < z < mh and
E,(x,h) mh 2 .

h™ 29(k)  o(k)
If0 < —h < (x = 1)/m, then there exists a z such that mh < z < O and
E,(x,h) mh 2z

h™ 29(k)  o(k)

Proof. Let G(t) = E(x + t) + t/@(k). If h > 0, then clearly there exists a z such
that 0 < z < mh and '

1 rn h
G(Z)<h—m[)---/()G(y.+"-+y,..)dy. cdy,,

and this proves the first part. If A < 0, then there exists a z such that mh < z <0
and

E(x+z) <

E(x+2z)>

1 0 0 '
(-h)'"[;. '“th(y|+~--+ym)dy. oy,

LEMMA 3.4.If0 < 8 < (x — 1)/(mx), then

k)E,(x,- ,
PU)Ey(x.8x) _m8 @(k) )y o @K)E(x.8x)  m
(-8)"xm T2 S srxmt 2

G(z)>

Proof. In Lemma 3.3 we put h = 8x, and it follows that there exists a z > 0 with

Y(x+zk 1) < — + En(x,8x) = mbx

+ ,
o(k)  (8x)"  29(k)
but Y(x; k,!) < Y(x + z; k, 1), so that this proves the upper bound. The lower
bound is proved with h = —8x.

This reduces the problem to the estimation of |E,,,(5c; +6x)|, for which we require a
lemma.

LemMMA 3.5. If d, and d, are defined by (3.4) and (3.5), and k is not exceptional, then

|d, + d,| < % log k + C;log*k + C,log k + C;,




274 KEVIN S. MCCURLEY

where

(3.11) G =11C, + 4,
(3.12) C,=11G, + 2C, - 8,
(3.13) C=C, +2C - 2.

Proof. From (3.4) and (3.5) we obtain
-1
d +d,=——=) x(1)b(x):;

hence
(3.14) |d, + d,| < max|b(x)|.
X
If x, is the principal character modulo &, then

L 'S log p

T x0) =F () + X 25

L ° § prk PP
and it follows that

1
b(x,) = log2m — 3 Y log p.
Pk
Hence we have trivially
[6(xo)l < log27 + {logk < 4log’ k.

and the result follows from (2.18).
If x is nonprincipal, then from (2.1) we obtain

1
w-sea-d e 5

xipry=1 xi(p)=1
If x,(p) = 1. note that

2

]

>~ &

n=xipl=1 - °"p( wi:i))

hence
(3.15)  16(x) < 1b(x))| + £ log p max{
plk
From Davenport (3, p. 85] we have
1 a 1TI"(s+a

L 1 1
T(LX:)-ElOSk—l "‘2'-1':(—2“) + B(x) +pe§,x|)(s =+ ;).

k k
‘Z} <Ib(x))I + 5 log k.

0| —

If we subtract the same expression with s replaced by 2, we obtain

L _ 2
b(x,) = L (2,x,) +a pe:z(xﬂ o(2=p)

and it follows from (3.15) that

§ ' 2 k
)| +1 — = 4+
I( ) ¥ +pe;2(x|)'p(2_p)|+4

(3.16) 1b(x)l < log k.
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It remains to estimate the sum on p. If |y| < 1, we use the fact that
1
—o)=2B2-B)> =7
2 =0)>B2-B)> 557507
since k is not exceptional. It follows from (2.16) that

317y X

pez(x)) lp( - P)
lyl<l1

I< 111log k N(1)

< n( +C )loglk + 11(c2 - —71; log27re)logk.

If |y| > 1, we use the estimate |p(2 — p)| > y?, integrate by parts, and use (2.16) to
obtain

2 = dN(1) « N(1)
—_— <2 <4f =Zar
pef\;x,, lo(2 = p)l f, 2 /n r
1> 1

< (% + 2C,)]ogk - % log 2 + C, + 2G,.
The lemma then follows from (3.14), (3.16), (3.17), and the fact that [{'(2) /¢(2)] < .57.

THEOREM 3.6. If m is a positive integer, x > 2,0 < 8§ < (x — 2)/(mx). H > 1, and
A, (8)=8""ET (7)1 + j8)"" ", then

2y xinny -l <[1+ BT ¢ T md

X PEX) Ipl
yl<H
B—1
X
Z Z + €
Xpe()IP(P+1)"'(P+m)| I
1> 11
Y|>

where

_ k| log klog x
T ox log 2

£

+ % logk + Gylog %k + (C, + 1)logk + C; + 1].
Proof. From Lemma 3.2 we obtain

m m+j . m+
R IR P M

(3.18)  |E,(x, +8x)| < (k) - & o(p+ 1) (p+m)

+

+6x +6x
/ / f(x+yl'”+ym)dyl“'dym'
0 0

For the zeros with |y| > H the summand is bounded in absolute value by

xﬂ+m m

(3.19) > (';')(1 + )"

lo(p+1)--- (p+m)| ;5o

For the zeros with |y| < H, we write the summand inside the absolute values as

8 +8
[ [P ) e
0 0

p+m
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The integrand satisfies
I(l+yl+“‘+ym)p|<l+Zl}{,l'
j=1

so that the absolute value of the summand does not exceed
xﬁ+m 5 5 xp-nn ma
1+ +...+md ...dm= 8"'(].{,_)'

o] fo fo (1 +y Ym) 4y b,
If y > 1, then from (3.10) we obtain

(3.20)

0 -n

<y &L

n=1

+ |dyllog y + |d, + d,.
since a = 0 for half of the characters and a = 1 for the rest. Hence for | y;| < éx and
0 <8 < (x — 2)/(mx) we have

If(x+y + - +y,) <3log2 +|d,|log2x + |d, + d,|.

From (3.1) and Lemma 3.5 we obtain

+8) +6x
B2n) [55 [Tyt b ) by
mf 1 log k k )
< (6x) [2log2+ log2 log2x + 4logk+C3log k + C,log k + Cs.

The result then follows from Lemma 3.4, (3.18), (3.19), (3.20), and (3.21).
In order to simplify the statements of results, we shall use the notation L = log k
and H = k°. As in Rosser and Schoenfeld [10}, we use

K, (z,y)= % fwu""exp[—%(u + i—)] du
and also

x—I/Rlogkl
e, (1) =T

LEMMA 3.7. If k is not an exceptional modulus, k > 10, x > exp(ARL?), and
A= (1 + a)? then

xB-!
Y —— <t te,,
pEZ(X) Ip
lylsH
where
1o, l+4a+a’,, 2+a R(H)
(322) &=3x { ara a2t B +2R(1)+c,}
+x"YkL + aL?},
(3.23) &y =(H)R(H),
and
2
(324) e = 1‘2’“7{ )\LZ[I‘(—Z, %L) (-2, AL)]

—Iog27r[I‘(—], T—:‘_—;L) - I‘(—l,)\L)]}.
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Proof. Consider first the contribution from the zeros with 8 = 0. These zeros arise
from the factors 1 — x,(p)p™* in (2.1). Let N,(T) be the number of zeros of
1 — x,;(p)p~*in the region |s| < T. An elementary argument yields the estimate

+ 2.

Tlog p
(3.25) N,(T) < —

Furthermore for each p there exists at most a single zero p =+ 0 within 7 /log p of the
origin, and for this zero we have |p| > 27 /k, log p. It follows from (3.25) that

k1 2
(3.26) > 'l‘ <X ogp l()7grp(——lo1grp+2)]<&+£+E

> .
oez(x)ll plk 21 7

B=0
lvist
From (3.25) we obtain

3 » fHdN (1)

pEz(x) |P| plk
B=0 ptk,y
I<|ylsH

N (H N (¢t
\Z[ o) f" p(z)dt]<;l,-(]+logH)L.
plk ot

It follows from (3.26) that

2
(3.27) Y l<iL+L—+3£+-’“-10gH<kL+LlogH
pEz(X) lel 2w
B=0
lyl<H

N
\

since k > 10.
The zeros of L(s, x) with 8 > 0 are symmetrically located with respect to the line
|
o = 3. Hence

Z xB-! < z _l_(xﬂ" + x~h )

~ .
A [ N AN -8
lris! vl

By Theorem 1.1 and the fact that & is not exceptional we have 8 > (log x)™', so that
x# /B is an increasing function of B. It follows that

Bl x-1/RL x-172
(3.28) ,,e,z(x,, = <2N(1)(I_VRL+ % )
lyl<1
N(l) ()R - N(1)x 2,
(pO RL

For the zeros with 1 < |y| < H Theorem 1.1 yields

(3.29) Y

<3 [ w0 aN () + 3

PEz(Xx1) Ipl
I<ly|<H




278 KEVIN S. McCCURLEY

In the second integral we integrate by parts and apply (2.16) to obtain
HdN(t) N(H) F(H)log H 1 3

(3.30) f. <= = N() + = 5o log? H

R(H)
T H

+ R + c,(n - %)

< N(:) - N(1) + 52 log H+ F(1)log H + R(1) + C,.

Integration by parts yields
3310 [ w0 aN()
; “3o(0) dFi() + 3 ["00(0) d[N(0) - Fy(0)]
-3 ' “go(t) dF, () + 3o H)[N(H) = F,(H)]

- 39N = FO] - 3 ["ING) - F(0)loi(0) ar.

The condition A > (1 + a)? implies that g(1) > 0 for 1 < ¢ < H, and (2.16) yields

_%LH[N(’)'Fu(')]%(l)dt
< %flukl(l)%(t) drt < %R(H)j;”%(’) dr

= 3R(H)eo(H) = 9o(1)]-

It follows from (3.28), (3,29), (3.30), and (3.31) that

6w § 2
’ pecixn 1Pl
lricH

<

; -1/2{ N(H)

+ 5[ ®o(t) dF(1) + @(H)R(H)

N(I)

+ 3000 ey + () - )|

From (2.16) and the trivial estimate F(1) < (7log kt)/m we obtain

N(H)

(3.33) +N(l)+—|og H + F(1)log H + R(1) + C,

<l+4a+aL 2+aL+R(H)

27 H

+ N(l)+—log H+ F(l)log H + R(l)+C}

+2R(1) + C,.
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Furthermore we have

N(1)
RL-1

+ F(1) - R(H) < F() g + o),

._RL* L RL-2
m(RL—1) 'RL-1

- R(1)

L <0,

since L > log10 and C, > 1/7log2. The lemma then follows from (3.27), (3.32),
(3.33) and the fact that

(3.34) %fl”%(z) dF(1) = e,

LEMMA 3.8. If k > 10, x > exp(ARL?), and A < (m + 1X1 + a)?, then

xB-1

E <&+ g + €,
e IP(p+ 1) (p+m) ~ 76T
lv|>H
where
xV? (H C, 4L
(335) &= { (1 + @)L+ 2R(H) + — 1} e

(3.36) —k’"L{——Kz(Z\/_L (1+a)\/7)

- \/§ l°g172"i<, (2/}3?1,,(1 + a)\/?)

+C,k\/ﬁ K,(Z\/(m+ DAL, (1 + a) '”;'1 )}

and
(3.37) e, =R(H)e¢,(H).
Proof. From (3.25) and integration by parts we obtain
o dN, (I)
(338) Z mal Z f m+1
pGZ(x)l ‘ plk t
B=0 ptk
lyi>H
m+ 1 2
log p +
p|k Z il OBP T
Lim+1, 2 | _A4AL
S H™| mm Hlog2| = H’"'
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For the zeros with 8 > 0 we use Theorem 1.1 and the symmetric location of the
zeros with respect to the line o = § to obtain

xB-!
3.39
(3.39) pe§xl,|p(p+ 1) (p+m)
lyI>H
1 [ 1 o x™'/2
< EfH @, (1) dN(1) +5/" T AN ().

If we integrate by parts in the second integral and apply (2.16), we find that

o) [T <
* H'}'+l {ﬁr:_lF'(H) * ”,:,,:21 H+ R\(H) +;C+'—l}
< H']"“ {%F(”) ¥ ’:":z]H+ 2R(H) +7n-§+'—]}
< H’l+' {%long+ 2R(H) + mc_: l}'

For the first integral we proceed as in (3.31) to obtain
1 [ 1 o 1
2, #n(0) aN() = 3 [ "9n(1) dF\ (1) + 3 (H)[ FL(H) = N(H)]
1 rx
+5 [ TR = Nl (1) ar

The condition A < (m + 1)1 + «)? implies that ¢,(t) < 0 for t > H, so we apply
(2.16) and integrate by parts again to obtain

%f:%(t) dN(t) < —;—f:%(z) dF(1) + ¢, (H)R(H)
t S o=t e

The lemma then follows from (3.38), (3.39), and (3.40).

THEOREM 3.9. Let k be a nonexceptional modulus, (k,1) =1,k > ky > 10, m be a
positive integer, 0 < § < (x — 2)/(mx), and x > exp(ARL?). Let (1 + a)> < A <
(m + (1 + a)? and

2 + 2a log2x 2
(3.41) L>max{)\—l—a+l+a’A-—l+IOg2ﬂ}'
IfXA > m(1 + a)?, then let
(3.42) 2 + log27

L > .
2mA —-m—-1 l+a
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Then

) | x
etk -5

< 1+ B2 kolealo) + (ko) + ealko)] + 22

+e,(ko) + A, (8)ko[es(ko) + e5(ko) + 87("0)]-

Proof. We may assume that x = exp(ARL?), since our upper bound from Theo-
rem 3.6 is decreasing in x. By Theorem 3.6 and Lemmas 3.7 and 3.8 it suffices to
prove that (for fixed A, 0, m, and a) ¢,(k) and ke, (k), i = 2,..., 7, are decreasing in
k. Of these, the functions ¢, ke,, and ke, are easily shown to be decreasing in L.

It follows from (3.41) that Lexp[L(1 — A/(1 + a) — a)] is decreasing in L, and
this suffices to prove that ke, and ke, are decreasing in L.
From (3.24) we obtain

m8

I+a

2mke (k) = f(L,u)du,
where
f(L,u)= (L%~ Llog21r)exp[(l - %)L]

Note that for 1 < u < 1 + a we have

(3.43) L"exp[(% - I)L]‘;LLJ’(L, u)

)\log 27

<(L+2)u+———log2m — AL

< max{(L +2)(1 + a) + 22827 “°32"’

,L+2+ Mog21r}
—log27 — AL <0,

by (3.41). Hence ke, is decreasing in L.

From (3.36) we obtain
1 poo ]
(3.44) 2ke6(k)=-f & (L, u)du+c,] g(L,u) du,
T +a 1+a
where

g(L,u)=(L%u—- LlogZW)exp[L(m +1—mu- %)],

g (L, u) = Lexp{ L[m +2-(m+ u- %]}

The first integrand satisfies

Lg,(L u) < L{(Lu - log21r)(m +1 = mu— 5) + Zu}

XCxp[L(m +1—mu-— %)] <0,
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provided

2 log2nw

L>A/u+mu—m—] l1+a’

uzl+a.

If 1 + « </A/m, this condition is met by (3.42) and if 1 + « > \/A/m, then it
follows from (3.41).

The second integral in (3.44) can similarly be shown to be decreasing provided
L>AN/(1+a)+(m+ Da—- 1"

4. Computations. In this section we describe the methods used in the preparation
of Table 1. Note that Theorem 1.2 gives estimates for 6(x; k, /) as well as ¢ (x; k, /).
By a result of Schoenfeld [11], we have

(4.1) 0<y(x; k. 1) —0(x:k, 1)< y(x;1,1) - 8(x;1,1)
< 1.001093x'/2 + 3x'73.

Hence we obtain the estimate

X | < 1.001093x'72 + 3x' + | (x: k. 1) — —>

Nx;k’l)_cp(k) o(k) I’

and the extra terms are negligible for the range of x under consideration.

Estimates for the incomplete gamma function and incomplete Bessel functions
may be found in [11] and [10]. Upper bounds for K,(z. x) are provided by Lemma
4, Lemma 5, (2.30). and (2.31) of [10]. In addition, if x < 1, we can use Lemma 3
combined with Lemma 4 and the asymptotic expansions of K,(z) (9.7.2 of [1]). A
lower bound for K,(z, x) is provided by Lemma 4 or (2.22) and (2.33) of [10],
resulting in the estimate

If x < 1, another method for bounding K,(z, x) from below is to use (2.10) of [10]
and 9.7.2 of [1]. Other methods for estimating K,(z, x) are available in [10] and [12],
but in the interests of simplifying the computations these were not used in the
preparation of Table 1.

The choices of the parameters m, 7, a, and § are completely at our disposal. We
used m = 2 since it seemed to give the best results. Tables 2 and 3 give the values of
71 and a used in the preparation of Table 1. The best values of a turn out to be only
slightly less than YA — 1, and the choice a = VA — 1 would lead to results that are
nearly as good. The major effect of n is to control the size of &; and ¢,. For this
reason, and the fact that the best a is near VA = 1, we chose 7 to minimize
R(A -,

This leaves only 8 to be chosen. For m = 2, the optimal § is approximately that
which minimizes

5(1+ w, + 10w,) + (4672 + 1287 + 18)w,,
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where
w, = ke, + ke, + ke,, w, = keg + keg + ke,

We can then find § by elementary calculus. If 1 + w; < 102w,, a minimum exists at
the positive real root of 8° — a8 — 2a/3, where a = 12w, /(1 + w, + 10w,). This
leads to the choice

8=D+a/(3D),

a @ 1/3
D= 3(1-{-‘/1—3) .

All computations were performed on the CDC Cyber Computer at Michigan State
University, using double precision Fortran (approximately 28 significant decimal
digits). We have listed in Table 1 only values of ¢ for which we were able to find
appropriate values of n and a, but Theorem 3.9 may actually yield slightly smaller
values of c.

where

TABLE 2
n
b \* 1 .5 .2 .1 .05 .01 .005 .001 .0001  .00001
1 .500  .500 .500  .500 .500 .500 .500 436 .369 .321
2 .500 .500 . 500 .500 .497 435 413 .369 . 321' .285
3 .495 476 .451 . 430 410 .369 L1352 . 321 .285 .255
o A1 .398 .379 .365 .351 . 320 .308 .285 .255 .233

5 .352 L3462 .329 .318 .307 .284 275 .255 .233 L2313
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TABLE 3
a

b g 1 .5 .2 .1 .05 .01 .005 .001 .0001 L0006
1 .879 1.06 1.345 1.599 1.873 2.564 2.879 3.584 4,584 5.584
P 461 .552 .700 .829 .969 1.296 1.451 1.791 2.281 2.786
K} .319 .383 L6484 . 564 . 647 .851 .953 1.187 1.524 1.858
4 . 246 .294 .369 434 . 480 . 644 aw .8402 1.143 1.394
5 .202 L2642 .298 .338 .391 .522 . 579 L7115 915 1.114
5 170 .207 .253  .286 .331 L4310 L4888 .399  .762 .932
7 . 149 177 214 .233 .287 . 380 612 516 .653 .794
3 13 . 153 L177  .207  .238  .323  .358  .445  .574 694
3 123 .129 .160 . 186 L2132 .281 .332 .406 .512 617
i0 . 106 .118 . 146 . 169 . 195 .254 .281 .367 L4603 .557
B .098 .116 . 134 . 154 178 .232 . 264 .335 421 . 5086
i2 .085 .10l L1260 L1430 164 .215 236 .288  .388  .466
13 .085 .096 115 .133 .153 .199 .219 .275 . 360 432
14 .075 .089 .108 . 125 143 . 186 L2064 . 249 .326 .402
15 .070 .083 . 101 117 L1346 174 191 .232 . 302 .375
20 .048 .064 .067 .091 .089 133 147 177 .228 .285
25 045 .046 .055  .063  .072  .108  .119  .143  .178  .228
3) .033 .039 047 .054 061 .091 .099 120 . 150 . 185
35 .030  .033 .041 047 053 .072 082 L1064 .129 154
40 .026 .030 .036 L0462 047 063 .076 .091 113 . 135
45 026 .027 .033  .037 062 082 .058 .08l .10l .120
%0 .C22 .025 .030 .034 .038 .048 .058 074 .091 . 109
60 .018 .021 .025 .029 .033 .041 L045 .062 .077 .091
70 .016 .018 .021 .025 - .028 .035 .039 L0646 .066 .N78
30 .015  .016 020 .021 .024 .031 0% .047 .057 .069
90 .013 .015 .017 .020 .021 .028 .032 042 .052 .062
400 .012 .013 .015 .018 .020 .025 .027 .033 047 .056

The conditions (3.41) and (3.42) fail to hold for several entries of Table 1, and this
required a check of all values of k up to a point where (3.41) and (3.42) were in
effect.

This paper is based on the work contained in the author’s Ph.D. thesis, written
under the direction of Professor Paul T. Bateman at the University of Illinois. The
author acknowledges with gratitude many valuable discussions with Professor Bate-
man.
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