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Explicit Estimates for 0( x; 3,1) andt//(x; 3,/)

By Kevin S. McCurley

Abstract. Let B(x; 3,1) be the sum of the logarithms of the primes not exceeding x that are

congruent to / modulo 3, where / is 1 or 2. By the prime number theorem for arithmetic

progressions, 0(x; 3,1) ~ x/2 as x -> oo. Using information concerning zeros of Dirichlet

/.-functions, we prove explicit numerical bounds for 9(x\ 3,1) of the form \6(x; 3,1) - x/2\ <

fa, .v 3* xn(e).

5. Introduction. For positive integers k and /, define

0(x;k,l)=      £      logp,       *(x;k,l)=       £       logp,
p < x p" < X

psl(modk) p" = l(modk)

where the sums extend over primes p and prime powers p", respectively. In a

previous paper [4] we derived estimates ¡[/(x; k,l) and 0(x; k,l) when A; :> 10. We

now consider the case k = 3, I = 1 or 2. For convenience we shall continue the

numbering of sections and equations from [4], Unless otherwise noted we shall also

use the same notation.

In the case A: > 10 our estimates were primarily based on an explicit zero-free

region for Dirichlet L-functions L(s,x) and an estimate for N(T,x), the number of

zeros of L(s,x) in a > 0, |/| < T. In the case of a fixed modulus such as k - 3, we

can make use of certain computational information concerning the zeros of the <p(k)

L-functions formed with characters modulo k. For example, if the generalized

Riemann hypothesis were known to hold for zeros up to a height H (H » A: log A:),

then by the methods of Section 3 we could prove that

,1/2

*(*;*,/)-
<P(*)

,i/2,„ Jog_A:/7
« x[/¿log¿kH + x

<p(k)H

In particular, if the generalized Riemann hypothesis holds, we can take H = x to

obtain

*(*;*,/)-
<p(k)

«: x'/¿log¿kx;

a well-known result.

In the case Ac = 3 there are two characters; a principal character x0 and a real

nonprincipal character Xi- The zeros of L(s,x0) have been studied extensively, since

(5.1) L(s,Xo) = (l-3-*)t(s).
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In particular, calculations of Brent [1] showed that if A = 32585736.4, then

N(A,Xq)= 150000000 and all of the zeros p = ß + iy with |y| ^ A have ß = {.

Much less is known about the zeros of L(s,X\), but Davies [2], [6] calculated the

first 2500 zeros in the critical strip to within 10 ~6. Spira [8] also calculated the first 6

zeros to within 10-17. The calculations of Davies showed that if //, = 2571.388782,

then/vX/YpXi) - 5000, and all of the zeros with \y\ < Hx haveß = \.

Using this information about the zeros and the methods of Section 3, we are able

to tabulate values of L and e such that

(5.2) *(*:3,/)-f < ex. x > e'

for / = 1 or 2. As an application of these results, we prove the following

Theorem 5.1.  The maximum value of 6(x;  3,2)/.x occurs at x = 1619, and

furthermore

0(x; 3,2) < .50933118*,       x > 0.

Theorem 5.2. If x > 0, then

0(x; 3,1) < .5040354JC.

Theorem 5.3. If x ^ x0, then 6(x; 3,1) > ex, where x0 and c are given by the

following tables.

/=1 1=2

151

727

17377

91807

.40722

.45116

.49026

.49585

47

233

3761

21317

.40755

.45398

.49042

.49595

6. A Zero-Free Region for L(s,xx)- In this section we prove a result which is a

slight improvement of Theorem 1 of [3].

Theorem 6.1. If R = 9.645908801. then L(s.X[) * 0 for \t\ > 2000 and o > 1 -

l/(Rlog(\t\/A)).

The proof is essentially the same as that of Theorem 1 of [3], so we indicate only

the necessary changes. Lemma 2 of [3] can be replaced by

Lemma   2'.   //   1 < a < 1.055,   / ^ 2000,   1 < m < 4,   s = o + imt,   a, =

(1 + Jl + Aa2)/2, sx = a, + imt, andk = (5 - y/5 )/10, then

Re
Y' i s + a \       1    r (sx + a\ Imt

("ATI —)      <«'°g(T + 1

1000m

The proof of Lemma 2' is the same as for Lemma 2, except that we use

„    rx      u - [u] - {
Re /    -L-J-2—- du

Jo   (u + (z + a)/2)

1  /•«= du

2 A)    \u+ (z + a)/2\2  " 2y'
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In place of (9) of [3] we then obtain

289

Ik«
r / .v + a \ _    1    V isx+ a

r\   2  J   /5 r \   2
,     mt      (a + a) w 77

< «log — + -   —r^- + —- +
2 4m2,2        Amt     4/5 wf

,     w/ 1
<Kl°gT + Töööm-

If o < 1.055 and / > 2000, the proofs of Lemmas 5, 6, and 7 yield

1
(6.1)

(6.2)

(6.3)

(6.4)

/(y.Xi) < KlogTL +
2tt      1000      a - ß

f(2y,X())<Klog± + — +T(3,l)

f(3y,X])<Klogp- +
1

2 77     3000 '

/(4Y,x0)<Klog^ + ^+r(3,l).

For a < 1.055, the proof of Lemma 3 yields

1
/(0,Xo)< .9838 - .v(3) <

1
1.3862.

o-l ' v  '     a - I

It follows from (6.1 ), (6.2), (6.3), (6.4) and (27) of [3] that

-^S < -^-r + K(a, + a, + a3 + ajlog- - 1.386:
O  —  ¡S O  —   I 77

4

«(a, +ü3)log3 + (a2 + a4)r(3,l)
m = 1

< ^TZT + K(ai + a2 + «3 + «4)!og J,

since 7(3,1) < .65. Theorem 6.1 then follows by choosing a = 1 + .33901/log(y/4).

7. Estimates for N(T,\()) and N(T,xx). In this section we improve slightly the

results of Section 2 for the characters x(, and Xi- Henceforth we shall write N:(T) for

N(T,x,), i' = 0,1. From (2.17) we obtain immediately

(7.1) \N0(T)-F0(T)\<R0(T),       T > 7436,

where

F0(T) = ^iog¿,     Ä0(r) = fl,iogr+fl2.
77 Z77e

ß, = .49144 and B2 = A.926.

For the zeros of L(s,x¡) we prove the following result.

Theorem 7.1. IfT> 100, then

(7.2) |rv,(r) -F,(r)|<Ä,(r),

where

F,(7-) = -log
37

77 2?7e

2
C, =

77 log 2

Ä,(r) = c,iogr+ c2,

and   C7 = 4.7928.
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Note that this notation differs from that of Section 2. The proof of Theorem 7.1 is

the same as that of Theorem 2.1. except for the following changes. In (2.8) we have

/ 3        T\      T        T      T      I 9
ImlogP - + ;-) = Tlog—+ -log 1 +

27

From

we obtain

7
0 < - log 1 4--

4     °\        47-:

+ - tan   '   —    +

+ - tan
4

47:

e_
37'

— \ < —     -
3   )       167 + 8

Nt(T) = 7,(7) + .255710 + -AL,argL(.v.Xl )

in place of (2.9). Equation (2.12) is replaced by

¿(W2|og|/(a0+(l +2ri)e'B)\dO

<£-(] + 2r,)log(.4872 7) + ylogf(l + i,).
Z77 I

Using this, we obtain (7.2) with

c _ l +2n
' 77 log 2

G =
41ogf(l+ii)      21og^(2 + 27?l

log 2

2 ,     J3

log 2

+ -logf(- + 2tj) - .0745 - ,66043t?.

If 7) = {■, this yields the result. ,

8. Estimation of \p(x; 3,1) and 0(x: 3,1). Let //, and A be as in Section 5, and

define H0 = 7436.76651. Our starting point is the following.

Theorem 8.1. If m is a positive integer. 0 < o < (x - 2)/m.x. and I is 1 or 2. then

(8.1!
1

•M*: 3.0-2

1/        mS\
I

1/2 £   -+   E  -IpI IpI
lTl<//ii IyK/'i

+ 2/,-(ô)
,/<- i

pe.-(xo)   'Yl
//,,<lY|«/<

C6--IX»)   l?l
,4<|y|

^+   L
rl<     I

pe.-(Xl) m
Wi<|y|

+
1 .    /   4x2log 27^T + 1.39305

m8
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Proof. As in the proof of Theorem 3.6, we obtain

(8.2)    |£m(x,±ox)|

(8x)m I        m8
*     2       1+T~

+ -(8xy"Am(8)

X x-~\        X

IpI + \p\pe.-(Xn) XHX       pez(Xl) ln
E

=**(x
lYl<»() lYK«,

PG-(Xo)

",)<lYl

|p(p+ !)••• (p + m]

r~i X

+ pÀx,) |P(P+ \)---(p + m]
H,<\y\

+ —x'
2

per(xol

,8 = 0

P   A)

/• ±Sx f ±Sx r,

I ■'o ■'o

Note that Xi 's primitive, and the only zeros in z(xo) Wltn ß = 0 occur at

p = 277 in /log 3, 0 < |m| < oo. Hence we can write the contribution from the purely

imaginary zeros as

r-r e [*(1+J>i + ---+J>w)]'

0<l«|<oo
p = 27rm/log3

¿y, • • • ¿y„

The interchange of summation and integration is justified by the fact that the partial

sums are uniformly bounded. The integrand may be written as

log 3   ^   sin(nz)

n= 1

where

Z = loi3log[x(1 +yx + ■■■+J'«)]-

In particular the integrand is bounded by (log3)/2 in absolute value. Hence the

contribution from the imaginary zeros in (8.2) does not exceed

(8.3)
rt log3 (5x)mlog3

2 •'o       •'o

From (3.10) we obtain

rs       /•« log 3

/    " /   ~T~ ̂ i " ' ^* =J(\ Jr, Z.

(8.4) \f(y)\<^ogly~i

since í/2 = — { from (3.5). Furthermore we have

(8.5) dx+d2= -|(log277-^log3)-|x,(/)Y(°'X.)-
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Spira [9] gives the values L(0,Xl) = J and L'(0,Xx) « .31606627554754. It follows

from (8.4) and (8.5) that

(8.6) \f(x+yx + ---+ym)\<\log^^-r)+ 1.11839.

The theorem then follows from Lemma 3.4, (8.2), (8.3), (8.6) and the calculations of

Brent and Davies mentioned in Section 5.

The first two sums involving zeros on the right of (8.1) may be calculated from the

known zeros. From the tables of Davies [6], the author calculated that

(8.7) E    ~< 8.7642.
pe--(Xi) xPx

and Schoenfeld [7] gave the estimate

(8.8) E     ¿7 < 7.93485.
per(Xo) ln

IyKWii

From Schoenfeld we also obtain that /V0( H{)) = 14384.

Note that the bound given on the right of (8.1) is decreasing in „v, so that for the

purposes of (5.2) we may henceforth assume that log.v = L.

Lemma 8.2. If L < (m + l)Rlog2(A/ll),then

1
1/2      E      -77 +     E-IT < £i + £l + £i-

pe.-(Xo) iyi       pe--(xii) M
//„<|Yl«-1 A<\y

where

ex=e-L/2[G(H0)-{G(A)\,

1  [ -N0(t) , (m + 1)(1 + wlog(//2w)) ,   l/„ , Ä,

62 = M^iog^/i7) )^(/,) + *"M) - "oH)]/^1.

7       ., /„ / wjL

3      mtrRll"1    2\   V   R
K-, \2\  — ,V,

log( 17/277)   I  L   v i      mL+  %i7-    V^*'2V1T'K'

i    *■     /      L      a:  2t/(w+1)¿   k
+ 17"+,V (m+1)/?*1  2V * 2

ImR A (m+ \)R A
Vx = V T log Tr     Kz = V —L— logn-
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Proof. Theorem 1 of Rosser and Schoenfeld [5] states that if p = ß + iy is a zero

of f(s), then

From this and the fact that 1 - p is a zero whenever p is, we obtain

<*■* £     £^<X2X~W2    L    ^ + ~2     L    *"(lYl)'
pe-(Xo) I'I P^(Xo) I'I pez(xo)

A<\y\ A<\y\ A <\y\

where

9»(0 =

If /70 < « < o, then

y        1     _ fvdM

x-iAÄiog((/n»l

,m+ 1

pg-*(xo> ItI
«<IyI<"

^o(o)   *o(«) ,,   , ,,r^o(0
„»+■ „»+■ V V„    tm+2

If we use (7.1) to estimate the last integral, we obtain

(8.10) E     -^ < G(u) - G(v).

u<|yI<u

We now write

E   <pJ\y\) = (\m(t)dN0(t)
pe--(xo)

A<\y\

= -<Pm(A)N0(A) - f<p'm(t)N0(t)dt.

The condition 7 < (m + l)R log2(v4/17) implies that <f>'m(t) < 0 for t > A; hence

(7.1) yields

E    <Pm(M)< -<pm(A)N0(A) - r<p'Jt)[F0(t) + R0(t)]dt
pe;(xo> A

<4<M

= <pm(^)[70(^) + R0(A) - N0(A)] + f°°<pm(t)[F¿(t) + R'0(t)]dt
JA

= 2(e2 + e3).

The lemma then follows from (8.9) and (8.10).

Lemma 8.3. If L =$ (m + l)Rlog2(Hx/A), then

v/9-i

p^(xi) 171
»l<M

—- < e4 + e, + e*,
m+l 4 5 6'
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where

c    =-L'/2
e4        t

■NX(HX)      (m + 1)(1 + mlog(3Hx/2ire))

/Y,m+1 77 m2Ht"

+ 7^(Cx]0*Hx + ^h + C2)

*> = ̂ (ri^^)YFxW

4"'+'V (m+l)R A|rV /?

mÄ   .     W,          ..        /(w + l)R        Hx
— logT.        K4=l/-7— logT

The proof of Lemma 8.3 is virtually identical to that of Lemma 8.2, except that we

use Theorem 6.1 for the zero-free region and (7.2) in place of (7.1).

As an immediate consequence of Theorem 8.1, Lemmas 8.2 and 8.3, and (8.7) and

(8.8) we obtain the following.

Corollary 8.4. If x > e', L *s (m + l)R\og2(Hx/A), 0 < 8 < (x - 2)/mx. and

I = 1 or 2, then

*(*;3./)-| l+^)(8.349525)e-'-/2 + ^

+ \Aj8)Íel + l 1.39305 +zrlog
1 .    /    Ax2

2    °\ 2x - 1

Using Corollary 8.4 we tabulate in Table 4 values of e and L for which (5.2) holds.

The functions Kv(z,y) that occur in e3 and e6 are easily estimated by the methods of

Section 4. The values of m and 8 used for each L were chosen experimentally and are

also listed in the table.
Theorems 5.1, 5.2, and 5.3 follow from the estimates of Table 4 and direct

computation of B(x; 3,1) and 6(x; 3,2). The author calculated 6(p; 3,1) and

0(p; 3,2) for every prime p, p < 108. These calculations were performed in double

precision on CDC Cyber computers at the University of Illinois and Michigan State

University, using a standard sieve procedure to generate the primes.

If x > 107, then Table 4 yields

6(x; 3,2) < .5058681 x.

Theorem 5.1 then follows by direct calculation for x < 107, since 6(x; 3,2)/x is

decreasing for x between primes. The proof of Theorem 5.2 is similar, except that we

use direct calculation for x < 108.
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Table 4

13.815

16.118

18.420

20.723

23.025

27.631

35

50

75

100

150

200

250

300

350

400

450

500

600

700

800

900

lOOO

e

1.1636Í-2)

5.868K-3)

4.0354(-3)

3.4445(-3)

3.2466(-3)

3.1385(-3)

3.0789(-3)

2.9769(-3)

2.8083(-3)

2.6317(-3)

2.3114(-3)

1.9870(-3)

1.7027(-3)

1.4137(-3)

1.1706(-3)

9.6194(-4)

7.5760(-4)

5. 9764(-4)

3.7386(-4)

2. 3566(-4)

1.4980(-4)

9.6109(-5)

6.2280(-5)

6

6

6

6

6

6

6

6

5

5

5

4

4

3

3

2

2

2

2

2

2

2

2

1.839K-3)

1.8325(-3)

1.8239(-3)

1.8147(-3)

1.8055(-3)

1.7870(-3)

1.7577(-3)

1.6996(-3)

1.8704(-3)

1.7529(-3)

1.5397(-3)

1.5883(-3)

1.3612(-3)

1.4127(-3)

1.1706(-3)

1.2818(-3)

1.0O96(-3)

7. 9653(-4)

4.9834(-4)

3.1415(-4)

1.997K-4)

1.2814(-4)

8.3036(-5)

If x > 108, then from Table 4 and (4.1) we obtain

0(x; 3,1) > .4959646 jc - 1.001093 xx/1 - 3x1/3 > .49585 x.

The estimates for 6(x; 3,1) in Theorem 5.3 then follow from direct calculation for

x:0 < x < 108.

If p is a prime, note thatp2"1 =*= 2 (mod 3) andp2m+l = p (mod 3). It follows that

Hx; 3,2) - 6(x; 3,2) =  £ 0(xW»+»; 3,2).
m=\

Let x > 108. The number of nonzero terms in the sum with m > 1 does not exceed

logx/21og2 - 3/2; hence from Theorem 5.1 we obtain

log*   _ 2~ 24>(x; 3,2) - 6(x; 3,2) < .50933118 rl/3 + X /5

21og2
< 1.1 xx/\

It follows from Table 4 that

B(x; 3,2) > .4959646 x - l.lx,/3 > .49595 x.

Theorem 5.3 then follows by direct calculation for x0 < x < 108.
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It is interesting to note that Theorems 5.1 and 5.3 are essentially best possible as

they are stated, but Theorem 5.2 is probably not best possible. The calculations

performed by the author show that for x < 108 the maximum of 6(x; 3, l)/x occurs

at x = 52553329, and that 6(x; 3,1) < .499935* for x < 108. It would require

significantly more calculation to determine the point at which 6(x; 3, \)/x assumes

its maximum value.

This paper is based on the work contained in the author's Ph.D. thesis, written

under the direction of Professor Paul T. Bateman at the University of Illinois. The

author acknowledges with gratitude many valuable discussions with Professor Bate-

man.

Department of Mathematics

Michigan State University

East Lansing, Michigan 48824

1. R. Brent, "On the zeros of the Riemann zeta function in the critical strip." Math. Comp., v. 33,

1979, pp. 1361-1372.

2. D. Davies, "An approximate functional equation for Dirichlet /.-functions," PrtK. Roy. Sw. London.

v. 284. 1965, pp. 224-236.

3. K. S. McCurley, "Explicit zero-free regions for Dirichlet /.-functions." (To appear.)

4. K. S. McCurley, "Explicit estimates for the error term in the prime number theorem for arithmetic

progressions," Math. Comp., v. 42, 1984, pp. 265-285.

5. J. B. Rosser & L. Schoenfeld, "Sharper bounds for the Chebyshev functions 6(x) and <H v)."

Math. Comp., v. 29. 1975, pp. 243-269.

6. Royal Society of London, Mathematical Tables Committee, Royal Society Depository of

Unpublished Mathematical Tables, Table 83.

7. L. Schoenfeld, "Sharper bounds for the Chebyshev functions 8(x) and ip(x ). II," Math. Comp.. v.

30. 1976, pp. 337-360.

8. R. Spira. "Calculation of Dirichlet /.-functions." Math. Comp.. v. 23, 1969, pp. 489-497. Microfiche

supplement.


