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Primalitv Testing and Jacobi Sums

By H. Cohen and H. W. Lenstra, Jr.

Abstract. Wc present a theoretically and algorithmically simplified version of a primalitv

testing algorithm that was recently invented by Adleman and Rumely. The new algorithm

performs well in practice. It is the first primality test in existence that can routinely handle

numbers of hundreds of decimal digits.

1. Introduction. Most modern methods to determine whether a given number n is

prime are based on Fermat's theorem and its generalizations. This theorem asserts

that

(1.1)       if n is prime, then

a" = amodn   for all a e Z.

Thus, to prove that a number is composite, it suffices to find a single integer a for

which a" £ a mod«; here a"modn can be efficiently calculated by repeated squar-

ings and multiplications modulo n.

To prove that n is prime, however, we need a converse to (1.1). Two problems

present themselves in this connection.

The first problem is that the direct converse of (1.1) is false: the composite

numbers

« = 561 =3-11-17, n = 1105 = 5-13-17,
„ = 1729 = 7-13-19, n = 2465 = 5-17-29

also have the property that a" = amodn for all a e Z. Such composite numbers are

called Carmichael numbers, and there are probably infinitely many of them.

The second problem is that even if the converse of (1.1) were true, it would not

help us much, since checking all integers a (mod«) is not computationally feasible,

even for moderately sized n.

To solve the first problem we replace (1.1) by a stronger assertion. We discuss two

ways to do this.

The first depends on the Jacobi symbol (",), which is defined for a, n e Z, n

positive, gcd(2a,n) = 1; see [5, Section 9]. It can be calculated efficiently by means

of the quadratic reciprocity law. From the definition of (f ) it follows that

( 1.2)       if n is an odd prime, then

a<«  n/2 = 1<L\ = -j-imodn    for alla e Z withgcd(a.n) = 1.
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The converse of ( 1.2) is also true [ 14], [23]. More precisely, if n is odd and composite,

n > 1, then the congruence in (1.2) is valid for at most half of all a (mod«) with

gcd(a.n) = 1.

Another strengthening of Fermat's theorem that admits a converse reads as

follows:

( 1.3)       if n is prime, then for any commutative ring R we have

(a + b)" = a" + h"modnR    for all a,b e R.

Here nR denotes the ideal (x + x + • • • + x (n terms): x g R) of R. To prove (1.3)

one just observes that the binomial coefficients ('/ ), 0 < / < n. are divisible by n if n

is prime. For R = Z, we obtain (1.1) from ( 1.3) by putting b = 1 and using induction

on a.

It can be shown that the converse of (1.3) is also true: if n > 1, and the

congruence in (1.3) is valid for all commutative rings R and all a,b g R, then n is

prime. It suffices, in fact, to take R = Z[X], a = X,b = 1.

The primality test that we shall describe in this paper combines (1.2) and (1.3): the

congruences on which our test is based are obtained from (1.3), and they generalize

(1.2).
We are still faced with the second problem: it is not computationally feasible to

check the congruence in (1.2) for all a (mod«) with gcd(a.n) = 1. nor to check the

congruence in (1.3) for all R.a.b.

Several methods have been proposed to get around this problem. The first is to

sacrifice certainty: if« passes the test in (1.2) for 100 randomly chosen values a G {1.

2.n - 1), then it is overwhelmingly likely that n is prime. For an even better test

of this nature, due to Miller and Rabin, we refer to [19], [21], [8. p. 379].

The second method relies on future developments in analytic number theory: if

the generalized Riemann hypothesis is true, and n is an odd integer > 1 that passes

the test in (1.2) for all primes a not dividing n with a < 70 • (log«)2, then n is a

prime number (cf. [19], [24]). But even iT the generalized Riemann hypothesis were

proved, the practical value of this method would be questionable. For a typical

100-digit number this method is approximately 500 times as slow as the algorithm

described in this paper, although asymptotically it is faster.

The final method is presently the only one that leads to rigorous primality proofs.

It consists of subjecting « to a series of tests, similar to those in ( 1.2) and ( 1.3), with

the following two properties. First, if n is prime then it passes the tests. Secondly, if

n passes the tests, then information is obtained about the possible divisors of /;. This

information should eventually lead to the conclusion that 1 and n are the only

divisors of n, so that n is prime.

To describe the type of information that is obtained, we let H be a group, and \p a

map from the set of divisors of n to H with the property that \p(rr') = \p(r)\p(r') if

rr' divides n. If n passes the tests, then it follows that for suitable choices of H and \p

we have

(1.4) \p ( r ) is a power of v/> ( n ), for every divisor r of n.



PRIMALITY TESTING AND JACOBI SUMS 299

Thus it appears that one is trying to prove n prime by means of the following trivial

primality criterion:

an integer n > 1 is prime if and only if all divisors of n

are powers of n.

The above general description applies in particular to the tests of Lucas and

Lehmer, improved by Brillhart, Lehmer and Selfridge [2] and generalized by

Williams (see [26] for references). In these tests one takes H = (Z/sZ)*, the group of

units of Z/sZ, where s is an integer that is built up from known prime divisors of

n' — 1 for / = 1,2,3,4,6, and one puts \p(r) = (rmods) for r dividing n. If (1.4) is

true for this choice of H and i//, and s is sufficiently large, e.g. s > nx/2, then it is

easy to find all divisors of n and in particular to decide whether n is prime. In [16,

Section 8] it is shown how larger values of / can be used. For a discussion of these

tests from the point of view of algebraic number theory we refer to [17]; here H

arises as the Galois group of a suitable extension of the field Q of rational numbers,

and ^ is the Artin symbol.

The primality test that was recently invented by Adleman and Rumely [1, Section

4] also fits the above description, although this may not be clear from the way it is

formulated in [1]. In this algorithm one tests a collection of congruences involving

Jacobi sums in cyclotomic rings. Using the higher reciprocity laws from algebraic

number theory, one shows that any n satisfying all these congruences also satisfies

(1.4), with // = (Z/.vZ)*, \p(r) = (rmods) for an auxiliary number s that is cop rime

to n. This number v is a squarefree integer exceeding nx/2, and it is selected in such a

way that

a' = 1 mods-    for all a G Z with gcd(a,s) = 1,

where / is a relatively small squarefree positive integer.

In this paper we present a theoretically and algorithmically simplified version of

the test of Adleman and Rumely. The theoretical simplification is achieved, as in

[16]. by considering Gauss sums instead of Jacobi sums. This allows us to bypass the

higher reciprocity laws that were used in [1]. Our approach has the additional

advantage of working for nonsquarefree values of '. and s as well.

From an algorithmic point of view the Gauss sums appearing in our test are

distinctly inferior to the Jacobi sums from [1], since the latter belong to much

smaller rings. For this reason it is important to reformulate our test in terms of

Jacobi sums. This is done with the help of techniques that are familiar from the

theory of cyclotomic fields. The reformulation results in congruences involving

Jacobi sums that are simpler to test than the congruences appearing in [1].

It will be seen that assertions of the form (1.4) play an important role in this

paper. The choice H = (Z/sZ)*, \p(r) = (/-mods) was already mentioned. Further,

we shall consider H = C*, the multiplicative group of nonzero complex numbers,

and i/> equal to a character, as defined in Section 6. Finally, for several small primes

p we shall take // = Z*, the group of p-adic units, discussed in Section 5: in this case

\p is defined by \p(r) =-- rp~ '.

W. G. Dubuque programmed the test of Adleman and Rumely in Maclisp for a

DEC KL-10 computer at the Massachusetts Institute of Technology. He used it to
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prove the primality of a 62-digit number in 6 hours. This does not compare

favorably with the older tests discussed by Williams [26], In fact, Williams never

found a prime number of this size that took more than 20 minutes to prove prime on

an Amdahl 470-V7 computer. On the other hand, these older tests are slower for

sufficiently large n. It should also be taken into account that Dubuque's implemen-

tation uses the standard multiprecision routines provided in Maclisp, which is

certainly not the most efficient means possible.

Our algorithm has been implemented on the CDC Cyber 170-750 computer

system at the SARA computer center in Amsterdam. Two programs have been

written, one in Pascal and the other in Fortran; both programs make use of

multiprecision routines in Compass. The Pascal program is the first primality testing

program in existence that can routinely handle numbers of up to 100 decimal digits,

and it does so within approximately 45 seconds. The Fortran program can deal with

numbers of up to 200 decimal digits, and it does so within approximately 10

minutes.

The algorithm in this paper has been designed for optimal efficiency in practice. It

is. however, difficult to establish a rigorous upper bound for the running time. The

running time of the algorithm in [1, Section 4] has been analyzed by Pomerance and

Odlyzko [1, Theorems 1 and 3]. They proved that, for each n > e'', the algorithm

terminates within 0(A:(log«)<logloglog") steps with probability at least 1 - 2 *, for

every k ^ 1 ; here c is an absolute, effectively computable constant. The same upper

bound can be shown to hold for a suitable version of our algorithm, cf. ( 11.6)(b). For

another version an 0((log/j)'logloglog") upper bound can be rigorously established if

the truth of the generalized Riemann hypothesis is assumed. We do not go into the

details of this analysis since there exists a different algorithm for which this upper

bound can be proved without any unproved assumption. This algorithm, also due to

Adleman and Rumely, is described in [1, Section 5], and a simplified version in [16.

Section 5]. It is, however, not of practical importance.

The present paper draws upon a number of techniques from algebra and number

theory that have not traditionally been used in primality testing. We have therefore

attempted to keep the exposition as self-contained as possible. The contents of the

paper are as follows.

A brief outline of our algorithm, in three stages, is given in Section 2. Section 3 is

devoted to the last stage, and Section 4 to the first. The central stage occupies

Sections 5 to 11. In Sections 5 and 6 we collect the properties of p-adic numbers and

characters that we need. In Section 7 we show how Gauss sums can be used to

generalize the test in (1.2). The reformulation in terms of Jacobi sums occupies

Sections 8 and 9. In Section 10 we shall see how algorithms related to finite fields

lead to additional improvements, under certain conditions. Section 11, finally,

describes the central stage of the primality testing algorithm. A detailed description

of the entire algorithm, from a computational point of view, is contained in Section

12. The actual implementation is discussed in Section 13.

By Z, Zp, Q, C we denote the ring of integers, the ring of p-adic integers (see

Section 5), the field of rational numbers, and the field of complex numbers,

respectively. The number of times that a prime number p appears in m is denoted by

vp(m), for m G Z, m * 0 (cf. Section 5). By r\m we mean that r is a divisor of m, i.e.
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a positive integer dividing m. Rings are supposed to be commutative with 1, and

subrings have the same 1. The group of units of a ring R is denoted by R*. For fm,

Um, ox, G, see Section 7.

2. Outline of the Algorithm. We give a brief description of our primality testing

algorithm in three stages. Let n be the integer to be tested for primality, and assume

that n > 1.

Stage 1. Select two positive integers / and s with the following properties:

(2.1) / is "small"       (see Section 4),

(2.2) s > nx/1       (or s > nx/\ see Section 3),

(2.3) a'^lmodi   for all a g Z withgcd(a,i) = 1,

(2.4) the complete prime factorizations of / and 5 are known.

See Section 4 for more details concerning the selection of / and s.

Continuing Stage 1, check that gcd(st,n) = 1 using the Euclidean algorithm; if

gcd(st,n) * 1, then a prime factor of n is found, by (2.4), and the algorithm halts.

Stage 2. Subject « to a series of tests similar to the test in (1.2). If it fails to pass

any of these tests, then n is composite and the algorithm halts. Otherwise, attempt to

prove the following assertion, using the information obtained from the tests:

for every divisor r of n there exists /' G (0,1,..., / — 1) such

that r = «'modi.

The theoretical possibility exists that this attempt is unsuccessful within a reasonable

time limit. In this case one may tell the algorithm to halt with the message that it has

not been able to decide whether « is prime or not.

A more detailed description of Stage 2 is found in Section 11.

Stage 3. If (2.5) has been proved, use (2.5) and (2.2) to factor « completely, and

hence to decide whether « is prime or not. In Section 3 we shall see how this can be

done.

Remark. From the description of Stage 3 one should not get the impression that

the algorithm is helpful in factoring « if « is composite, since practically all

composite numbers will be eliminated in Stage 1 or Stage 2.

3. The Final Stage of the Algorithm. Suppose that (2.5) has been proved and that

5 > «l/2. To factor « completely it suffices to find all divisors r < «1/2 of n. Such a

divisor satisfies r < s and is, by (2.5), congruent to «'modi for some / G {0,

\,...,t- 1). Hence, if we determine rt by r¡ = «'modi and 0 < rx< s, for 0 < / < f,

and check which of the r¡ divide «, then we obtain the complete prime factorization

of«.

Next suppose that, besides (2.5), one knows only the weaker version s > «1/3 of

(2.2). Then the prime factorization of « is found by applying the following result to

d = r¡, for i = 0,1,..., t — 1; notice that gcd(r,,i) = 1 since in Stage 1 we checked

that gcd(i/,«) = 1.

(3.1) Theorem. Let d, s, n be positive integers satisfying gcd(d,i) = 1 and s > nx/3.

Then there exist at most 11 divisors of « that are congruent to d modulo s, and there is

an efficient algorithm determining all these divisors.
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We refer to [ 15] for a proof of this theorem and for a description of the algorithm.

The running time of this algorithm, measured in bit operations, is 0((log«)3), if

d < s < n. Its practical value remains to be tested.

4. Selection of Auxiliary Numbers. For a positive integer t we define

e(t) = 2 if ris odd,

e(0 = 2-       fi       qD<0)+i    if/is even,
«/prime, q- \\t

with v (t) as defined in the introduction. We recall the condition (2.3) to be satisfied

by the auxiliary numbers / and í:

(2.3) a' = 1 modi   for all a g Z with gcd(a,i) = 1.

(4.1) Proposition. Let t and s be positive integers. Then condition (2.3) holds if and

only if s divides e(t).

Proof. For odd t this is proved by taking a = - 1 in (2.3). Let now t be even. We

may clearly assume that i is a prime power: i = qm, with q prime and m ^ 1. In this

case the proposition easily follows from the following well-known result [5, Section

5]. If q is odd or m 4 2, then (Z/omZ)* is a cyclic group of order (q - l)qm~ '; and

if m > 3, then (Z/2mZ)* is the direct sum of a group of order two and a cyclic

group of order 2m~2. This proves (4.1).

Table 1. Valuesofe(t)

e(t)

2

12 = 22

60 = 22

180 = 22

840 = 23

1260 = 22

1680 = 24

2520 = 23

5040 = 24

15120 = 2*

55440 - 24

110880 = 25

720720 = 24

1441440 = 25

4324320 = 25

24504480 = 25

73513440 = 25

367567200 = 25

1396755360 = 25

6983776800 = 25

3
3- 5

32-5

3 • 5 •

32-5

3 ■ 5 •

32-5

32

33

32

32

32

32

33

32

33

33

33

33

5

5

5

5

5

5

5

5

5

52

5 ■

52

11

11

7 • 11

7- 11

7- 11

7- 11

7- 11
•7-11

7- 11
•7-11

13

13

13

13 ■

13 •

13

13 •

13

17

17

17

17-

17

19

19

24

65520

6.814

2.601

8.644

1.147

2.697

4.866

1.532

2.254

4.920

2.109

2.599

1.669

7.928

4.795

7.082

6.208

4.016

7.471

109

1015

1024

103'

1033

1040

1052

1079

10I06

10'37

10237

10301

10455

10656

10966

101501

101"3

1030.0
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(4.2) We now describe the selection of t and i in Stage 1.

First one chooses a positive integer / for which e(t) > «l/2 or e(t) > «l/3,

depending on which algorithm is used in Stage 3. In theory this can be done by

trying t = 1,2,3,... in succession. In practice it is more convenient to use a table

which is computed once and for all, and which gives the values of e(t) for some

well-chosen integers t. An example is provided by Table 1; the values of e(t) are

rounded off downwards in this table. From Table 1 we see that for « < 10100 we can

take / = 5040 if the naive algorithm in Stage 3 is used, while t = 1680 suffices if we

employ the algorithm from (3.1).

For the value of t that is chosen we write down the complete prime factorization

of e(t). This is done by listing all primes q for which q - 1 divides t, together with

the exponent m(q) of q in e(t); this exponent can be read from the definition of

e(t). It is also convenient to write down the prime factorizations of the numbers

q - 1, since these are needed in Stage 2. For t = 5040 = 24 • 32 • 5 • 7 all this has

been done in Table 2. This table is, of course, a byproduct of the computations

leading to Table 1.

Table 2. The prime factorization ofe(50A0), 5040 = 24 • 32 • 5 • 7

qm(q)        q- 1 qm(q)        q-l qm(q)        q-l

26 1 31 2-3-5 181 22-32-5

33 2 37 22 • 32 211 2-3-5-7

52 22 41 23 • 5 241 24 • 3 • 5

72 2-3 43 2-3-7 281 23 • 5 • 7

II 2-5 61 22 - 3 - 5 337 24 • 3 • 7

13 22 • 3 71 2-5-7 421 22 - 3 - 5 - 7

17 24 73 23 • 32 631 2 ■ 32 - 5 • 7

19 2-32 113 24-7 1009 24 • 32 - 7

29 22 • 7 127 2 • 32 - 7 2521 23 - 32 • 5 ■ 7

Next we have to choose i. One way to do this is as follows. First put s = e(t). If i

has a prime power factor qmiq) for which s/qm(q) is still larger than «l/2 (or n1/3,

depending on Stage 3), then we choose such a qm(q) with q as large as possible, and

we replace i by s/qm{q). This is repeated until it is no longer possible.

We describe a better way of choosing i. Write e(t) = Tl eEqm(q). We restrict to

divisors i of e(t) of the form i = Y\qeSqmiq) with S c E. As we shall see in Section

11, each a G 5 gives rise to a certain amount of work in Stage 2 of the algorithm.

The running time needed by this amount of work is proportional to a number w(q)

depending on q. The numbers w(q) depend on the implementation of Stage 2 and

they are best determined empirically. For a certain naive implementation a good

approximation to w(q) is given by

E     <f(pv^-l))\

p prime.p\q~ 1

where <p denotes Euler's function [4, Section 5.5]. In order to minimize the running

time we should now choose S such that ¿Zq^sw(q) is as small as possible, subject to



304 H  COHEN AND H. W. LENSTRA. JR

the condition that i > «1/2 or «l/3. Putting S' = E - S, we see that we have to

maximize LqeS-w(q) subject to the condition that LqeS'log(q'"{q)) < log(i-(/))-

(\ or l)log«. This is an instance of the knapsack problem. A well-known approxi-

mate solution method for this problem leads to the following way of selecting s. First

put i = e(t). If i has a prime power factor qm{q) for which s/q"Hq) is still larger than

n'/2 or «l/3, then we choose such a o"'"" with w(q)/log(qm{q)) as large as possible,

and we replace i by s/q'"{q). This is repeated until it is no longer possible. For more

subtle methods to solve the knapsack problem we refer to [18].

The final value for í is a divisor of e(t), so by (4.1) condition (2.3) is satisfied.

Conditions (2.2) and (2.4) are also satisfied, and below we shall see to which extent

(2.1) holds. This finishes the description of algorithm (4.2).

We now discuss how small t can be chosen such that we have e(t) > nx/1 or «1/3.

From

e(0<2/-n(¿+ O
d\t

and elementary estimates for the divisor function [4, Theorem 317] we obtain the

following lower bound:

/■ \(1 -rXlogloglog n)/log 2

for all e > 0 and all « exceeding a bound depending on e. The following theorem

shows that this result is best possible, apart from the value of the constant in the

exponent.

(4.3) Theorem. There exists an effectively computable positive constant c such that

for all n > ec there is a positive integer t satisfying

/ <(log«)''°ê'08'0&"    and   e(t)> nx'2.

This is a sharpening of a result of Prachar [20] that is due to Pomerance and

Odlyzko. For the proof we refer to [1, Section 6]. Pomerance and Odlyzko proved

that / can even be chosen squarefree; this was necessary for the test of Adleman and

Rumely [1].

5. p-adic Numbers. Let p be a prime number. In this section we recall, without

proofs, a few basic properties of p-adic numbers. For a fuller treatment we refer to

[22, Chapitre II] and [6].

A p-adic integer is a sequence (a,modp')J"L|, with (a,modp') G Z/p'Z, such that

ai+x = a,modp' for all / > 1. The set of p-adic integers forms a ring, denoted by Z ,

under coordinatewise addition and multiplication. We view Z as a subring of Z by

identifying a G Z with (amodp')^,, G Zp.

Let «i g Z, m 3; 1. The map Zp -* Z/p"'Z that sends (a,modp');'Ll to (a„,mod

pm) is a surjective ring homomorphism with kernel equal to p'"Zp. This shows that

Zp/p"'Zp » Z/p"'Z, so p-adic integers, when taken modulo pm, yield ordinary

integers modulo pm.

Let £ be a finite abelian group of p-power order. For a = (a, mod p')fí¡ G Z

and f G E the element f°m of E does not depend on m, (or m sufficiently large, and
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we denote it by ?". This operation of Zp on E satisfies the familiar rules

y\uY = rv,    r+ft = w,

for f,Tj g £, a,fe G Zp, so it makes £ into a module over Z^,; see [10, Chapter III,

Section 1].

A p-adic integer a is a unit of Zp if and only if a * Omodp, so Z* = Zp - pZ^.

Every nonzero p-adic integer a can be written in a unique way as a = pmu with

m g Z, «i ^ 0 and m g Z*; we write in this case vp(a) = m, and we put vp(0) = oo.

This extends the function vp that was defined on Z - (0) in the introduction.

The set 1 -I- pZp = {a g Zp: a = 1 modp) is a subgroup of Z*. Let a = (a¡)f_, g

1 + pZp. Then each a, has p-power order in (Z/p'Z)*, so for x G Zp we can define

ax = «)£,. This makes 1 4- pZp into a Zp-module. Writing az" = (ax: x G Zp),

we have

. a2' = 1 + pmZ/) form = vp(a - 1), provided

that w^l, and m ^ 2 in the casep = 2.

There are group isomorphisms

(5.2) Z;=B(Z/(p-l)Z)x(l+pZ„)=B(Z/(p-l)Z)xZ,   ifp > 3,

(5.3) Z$ - 1 + 2Z2 s= {1, -1} x (1 + 4Z2) SB (Z/2Z) X Z2;

see [22, Section II.3], [6, Chapter 15, Section 7].

6. Characters. Let a be a prime number. A character x modulo a is a group

homomorphism from (Z/qZ)* to C*. We extend such a character to a map

Z/qZ -» C by x(Omoda) = 0, and we put x(a) = x(omodq) for a g Z. The set of

all characters modulo q forms a group under multiplication. We denote this group

by*,.
It is well known that (Z/qZ)* is cyclic of order q — 1. Let a generator g be

chosen. Mapping x to x(g), we obtain an isomorphism between X and the group of

(q - l)st roots of unity. This implies easily:

ïix,y G (Z/oZ)* are such that \(x) = xiy)

' for allx g X , thenx =j;.

Letö - 1 = FI,,primep*</') be the prime factorization of ö - 1, with k(p) = ^(ç - 1).

For each prime p with k(p) ^ 1 we choose a character x^,9 e JrT of order p*(/,);

such a character is obtained by putting xP,q(s) = f/'o» a primitivep*(/,)th root of

unity. We write

(6.2) Yq= (xp,q-P Prime, p\q - I).

It is easy to see that Y generates the group Xq.

(6.3) Theorem. Let t and s be positive integers satisfying (2.3), and let n be an

integer satisfying n > 1 a«i7gcd(«,i/) = 1. Write

Ys=      U       Yq
q\s, q prime
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with Y as in (6.2). Assume that every prime p \ t satisfies the following condition :

. for every prime divisor r of n there exists l (r) G Z   such that

(6- > rP-^= („'-')'/.<'> in the group 1 + pZ,.

Assume moreover that every x e Ys satisfies the following condition:

.        for every prime divisor r of n we have x(r) - x(n)'p{r) w'tn L(r)

as in (6.4), where p is such that the order of x is a power of p.

Then (2.5) is satisfied, i.e. for every divisor r of n there exists ; G {0,1.t - 1) such

that r = «'modi.

Remark. Notice that / (r) in (6.4) is uniquely determined if it exists, by (5.2),

(5.3). In fact, we have lp(r) = log^r/log^«, where log,, denotes the p-adic logarithm

[25, Section 5.1]. In (6.5) it is meaningful to speak about lp(r), since if x = XP.q>

thenp divides /, by (4.1).

Proof. We have «' = 1 modi, by (2.3), so it suffices to consider prime divisors r of

«. Fix such an r, and let l(r) be a nonnegative integer satisfying

l(r) = lp(r)modphip)   for every primep|/;

here h(p) denotes a positive integer that is chosen sufficiently large for the rest of

the argument to be valid. In particular, we assume that the order of every xp q e Ys

divides ph{p). By (6.5) we then have

Xp.qy\r) = Xp.q{*)''(r) = Xp.M)l(r) = XP.M'{r))

for every x,,.,, e Ys. Let now q\s be a fixed prime. Then the characters x^ q generate

Xq, so it follows that x(0 = x("'<r>) for a11 X G xq- By (6.1) this implies that

r = «/(r) mod^. Put m(q) = v (s). We claim that

(6.6) r = nl(r) modqm(q).

If m(q) = 1, this has just been proved. Suppose therefore that m(q) ^ 2. Then q

divides t, by (4.1) and the definition of e(t), so (6.4) holds forp = q. This yields

r,-i = („»-■)',<'>= („i-i)Hr)modqn«q);

here h(q) is assumed to be so large that (nqX)q "" = lmod^r""'". We now know

that the ^r-adic integer a = r ■ n'(r) satisfies

a = lmod^,       aq~x = lmod^m<'".

The latter congruence implies that the multiplicative order of a modulo q"'iq) divides

q - 1, the former that it is a power of q. It follows that this order equals 1, so a = 1

modqm(q). This proves (6.6).

Since (6.6) holds for any prime q dividing s, we may conclude that r = nHr) mods.

Here l(r) may be reduced modulo /, since «' = 1 modi by (2.3). This proves (6.3).

(6.7) Remark. If (6.4) holds, then clearly for every divisor r of « there exists

lp(r)& Zpwithr''"1 = (np~x)'-{r\ and we have

lp(rxr2) = lp(rx) + lp(r2)    for r,r2 dividing «, lp(n) = 1.

7. Gauss Sums. For any positive integer m we denote by Um the group of wth

roots of unity in C, and by fm a primitive «ith root of unity; so fm generates Um.

In this section we fix a prime number q, a prime number p, and a positive integer

k such thatp* divides q-l. Further « is an integer with « > 1 and gcd(«,p^r) = 1.
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We put A = Z[i,*,f,], the ring generated by £,, and f?, and K = QC^*,^), the

field of fractions of A. We let B be the subring A[l/q] of K. Every element of K has

a unique representation

0<i<(p- \)pk~\0*Zj<q-t

with a¡j g Q, cf. [10, Chapter VIII, Section 3]. To multiply two such expressions one

uses the rules

í=0 /=0

Restricting the coefficients a,, to Z one obtains the ring A. An element of K belongs

to B if and only if the denominators of all of its coefficients aij are powers of q; and

it belongs to the principal ideal nB of B if and only if, in addition, the numerators of

these coefficients are divisible by n.

For x g Z, x * 0 modp, let ax be the field automorphism of K for which

«!*(£,«) = # and **(£,) = ?,. cf- [10, Chapter VIII, Section 3], Let

G = (ax: 1 < x < pA, x * 0 modp}.

This is the Galois group of K over Q(f?). It is isomorphic to (Z/pkZ)*, under an

isomorphism mapping ox to (xmodp*). Denote by Z[G] the group algebra of G over

Z, see [10, Chapter V, Section 1]. For u g B* and a = E,,«^«,,«* G Z[G] we define

ua G B* by

«•- n •(«)"•■

This operation of Z[G] on B* satisfies the rules

(uv)a = uava,       ua + ̂ ua-uP,

ua^=(ua)ß, ux=u,

for u,v g B*, a,ß G Z[G], 1 = a, G Z[G\, so it makes B* into a module over Z[G].

Let x be a character modulo q of order pk. The C7umíí sum j(x) associated to x is

the element of A defined by

(7.1) t(x)= Ex«
x=\

We have

(7.2) t(X)t(x-') = x(-1)-^

see [25, Lemma 6.1(b)], [7, Chapitre 5, Proposition 7], sot(x)-1 = x(_ l)T(X_')/9

G B. This implies that t(x) g B*, so the expression T(x)"_a" in the following

lemma makes sense.

(7.3) Lemma. If n is prime, then

T(x)"  °" - x(")  "mod«B.
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Proof. From (1.3) we obtain

i -i

x(«)"t(x)"= Ex(«A)'X'Aniod«5
v=l

q-\

= L x(y)aÇq    (withj = «xmod<?)
1 = 1

-t(x)"-,

and the lemma follows upon division by the unit x(")"T(x)°"- This proves (7.3).

(7.4) This lemma will lead to the tests that were mentioned in Section 2, Stage 2.

To see the connection with (1.2), we consider the case that x is quadratic, i.e. has

order pk = 2. Then q is an odd prime, and x is the Legendre symbol: x(x) = (t))-

From (7.2) we see that t(x): = a, where a = ( ~) • q. The automorphism a„ is the

identity, so the congruence of the lemma is equivalent to al"~ X)/1 = (%) mod«. This

is the same as (1.2), since (^7) = (77) by the quadratic reciprocity law, which can, in

fact, be proved in this way.

We return to the general situation. We shall investigate what can, conversely, be

said about « if the congruence in (7.3) is known to hold. For practical purposes it is

important to build in some extra degrees of freedom, as expressed in the following

corollary.

(7.5) Corollary. If n is prime, then

T(xf'-a")ß = x(n)  ""mod,,

for any ß G Z[G] and any ideal n of B with « G 11.

Proof. Raise the congruence in (7.3) to the power ß; this is allowed because

a[nB] = nB for all a G G. Next use that nB c n. This proves (7.5).

We shall make the following assumptions on ß and n:

(7.6) tf*l.

(7.7) nnZ = «Z,       a„[n] = n.

The reader may think of ß = 1,  n = nB.  If ß = IA«Aov G Z[G],  then (7.6) is

equivalent to

£«vx * 0 modp.
X

The map sending f to ^ is an automorphism of the group U 1, if (7.6) holds.

Condition (7.7) will be investigated in Section 10.

(7.8) Theorem. Let x be a character modulo q of order pk, and assume that

(19) r(x)(n~'")ß = fmodn   for   some   £ G Upi,   some   ß G Z[(7]

satisfying (7.6) and some ideal n of B satisfying (1.1).

Assume further that condition (6.4) is satisfied. Then x satisfies (6.5), i.e.

X(r) = x(«)''•(r,

for every divisor r of n, with lp(r) as in (6.4) and (6.7).
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Remark. For given ß and n, the congruence (7.9) is true for at most one Jei/y;

this follows from (7.17).

Proof. By (7.6) and gcd(«,p) = 1 we can write f = t]~"ß for some tj G Upk. Let

/ eZ,i> 0. We raise both sides of the congruence

(7.10) T{xf~°")ß s T?-B/,modn

to the power ¿Z'~x0n'~x ~Joj; this is allowed because a„[n] = n. Using that

/-i

(«-q.) • I ii'-'-V-»'-«!.'.       1*" -1"
7-0

and writing m = t(x)^, we find that

(7.11) m"'-"» = Tj-'^modn

for every / eZ,i> 0. With i = (p - l)pk it follows that

(7.12) /""'-'Hlmodn.

Let now r be a p/wie divisor of «. Then we know from (7.5) that (7.10), with n, tj,

n replaced by r, x(r), rB, is true, so the same holds for (7.11). Taking / = p - 1, we

obtain

(7.13) «^,-<"=x(r)^-"r'"%odrB.

We shall combine (7.11) and (7.13) modulo the ideal

r = rB + n,

which contains both rB and n.

By (6.4), we have r''~ ' = (np-x)'"{r) for some lp(r) G Zp. Choose m G Z, m > 0,

such that

(7.14) «j = /p(r)modpA.

From

it then follows that

(7.15) e,(r'-' - «('-|)m) > »,((«'-')'* - l),

and in particular, since the right-hand side exceeds k:

(7.16) r"-x = n(p-X)mmodpk,       op'x = a„("-|)m.

We apply (7.11) to i' = (p - l)m, and divide it by (7.13); this is allowed since both

sides of (7.13) are units in B. Using (7.16), we then find that

„irH"_,f-i  _   /     /    .    _m Up-l)r"-'ß ,
u" - (x(r)'n     ) modr.

Let a be the largest divisor of n(p~X)p - 1 that is not divisible by p. If we raise the

congruence to the power a, then by (7.15) the exponent on the left becomes divisible

byn{p-X)p" - 1, so by (7.12) we obtain

l = (x(')Tm)('~1>r'~VJamodr.

Assume, for the moment, the following lemma.
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(7.17) Lemma. //? g 1/ t satisfies f = 1 modr, then f = 1.

Then we find

(x(rh-)<'-,,""lM-l.

From ( p - l)r'~ 'a * 0 modp and (7.6) it now follows that x(r) = t/"', so

x(r) = V'(r)

by (7.14). This we proved for pr/»ie divisors r of «. By multiplicativity (cf. (6.7)) it

holds for any divisor r of «. In particular, since lp(n) = 1, we obtain x(n) = i)< so

X(r) = XÍ")''*0 f°r all r dividing «. This proves (7.8).

Proof of (1.11). We have an equality of polynomials

ri(*-n = (*p'-i)/(*-o= i *'.
f»l i=0

the product ranging over all f g t/^, f =*= 1. Substituting 1 for A" we find that

no-n = /.

Therefore, if the lemma is wrong, we have pk' e r = rB + n, so pk = rx + y for

certain ieij6n. Upon multiplication by n/r this would give pkn/r en, so

pkn/r G «Z by (7.7). But r is a prime dividing «, and p is a prime not dividing «, so

this is impossible. This proves (7.17).

We shall now develop several methods that can be used to prove that condition

(6.4), which occurs both in (6.3) and in (7.8), is satisfied. A different way to do this

can be found in Section 10; see (10.7). Our first two methods require that p > 3.

(7.18) Proposition. 7/p > 3 and np   ' * 1 modp2, then condition (6.4) is satisfied.

Proof. By (5.1), the hypotheses imply that (npX)zr = 1 + pZp. Since r"~x G 1

+ pZp for all divisors r of n, it follows that (6.4) is satisfied. This proves (7.18).

(7.19) Theorem. Let xbe a character modulo q of order pk, and assume that p > 3.

Suppose that (7.9) is satisfied with a primitive pkth root of unity f. Then p satisfies

condition (6.4).

Proof. As in the proof of (7.8) we write f = tj "** with tj G (J k. Since f is a

primitivep*th root of unity, the same is true for tj. Let u = t(x)^. Applying (7.11)

to/ = (p- l)p*_1, we find that

(7.20) u""""4",-,=T/'Á",',modn.

Let r be a prime dividing «. Replacing «, tj, n by r, x(r), rB, as in the proof of (7.8),

we obtain

(7.21) „."-»'--i ^x(r)pk^modrB.

We combine (7.20) and (7.21) modulo r = rB + n. Let w denote the order of

(umodr) in the group (B/x)*. Since tj is a primitive pA th root of unity, it follows

from (7.6) and (7.17) that tj'' ß * 1 modr. Therefore (7.20) implies that w does

not divide n(p~X)pk~' - 1, but that it does divide p(n(p'X)pk^ - 1). Consequently
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we have

vp(u)=l+vp(n<p-»pk-'-l).

From (7.21 ) we see that « divides p ( r( " ~ ')pk ' - 1 ), so

o,(«)< l+o,(r<'-')'*-'-1).

It follows that

(7.22) ^(r"-'"'"' - 1) > ^(«<"-"^"' - 1).

Notice that the equality sign holds if and only if x(r)^     * 1-

From (7.22), (5.1) and the fact thatp > 3 we obtain

r(p-\)Pk-' = (n<p-np"-'y

for some / g Zp. Since Z* contains no elements of order p, by (5.2), this immediately

implies that rp~ ' = (n"~x)'. This proves (7.19).

In the rest of this section we take p = 2 and, consequently, n odd. In this case an

important role is played by quadratic characters. For such characters it is convenient

to replace condition (7.9), with f a primitive 2nd root of unity (so with f = - 1), by

a condition of the form a{n~l)/2 = - 1 mod«; cf. (7.4).

(7.23) Lemma. Let a g Z, and suppose that a{n~X)/1 = - 1 mod«. Then for every

divisor r of n we have v2(r - 1) > v2(n - I), the equality sign holding if and only if

(?) = -I. In particular (*) = - 1.

Proof. It is not difficult to see that it suffices to consider prime divisors r of «. So

let r be a prime dividing «, and let w be the order of (a modr) in the group (Z/rZ)*.

From ain~X)/2 = -1 modr it follows that u2(w) = u2(« - 1), and since w divides

r - 1 this implies that v2(r - 1) > t>2(« - 1). The inequality is strict if and only if w

divides (r - l)/2, so if and only if a(r~X)/2 = 1 modr, and this is equivalent to

(7) = 1. This proves (7.23).

(7.24) Proposition. Suppose that n = lmod4, and that there exists a G Z for

which al"~X)/2 = — 1 mod«. Then condition (6.4) is satisfied for p = 2.

Proof. Let r|n be prime. By (7.23) we have v2(r - l)> v2(n - 1), and v2(n — 1)

> 2 by hypothesis. From (5.1) it now follows that r g «z*, as required. This proves

(7.24).

(7.25) Proposition. Suppose that n = 3mod8 and that 2("~1)/2 = - 1 mod«. Then

condition (6.4) is satisfied for p = 2.

Proof. Let r|« be prime. By (7.23) we have either r = lmod4 and (7) = 1, or

r = 3mod4 and (7) = - 1. Since (7) =1 for r = ± lmod8 and (f) = - 1 for

r = ±3mod8, it follows that we have either r = lmod8 or r = 3 = «mod8. There-

fore one of v2(r - 1) and v2(rn~x - 1) is > 3. But 3 = u2(«2 - 1), so (5.1) now

implies that r or rn~ ' belongs to («2)Z2. Hence r belongs to «2Z* U «'+ 2Zî = «Zz, as

required. This proves (7.25).

Remark. If « = 3mod8 and 2("~1)/2 * - 1 mod«, then « is clearly not prime, by

(1.2).
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The case n = 7 mod8, which is not covered by (7.24) or (7.25), is most conveni-

ently dealt with by means of Proposition (10.8). Alternatively one can use the

following theorem, which is the analogue of (7.19). We use the notation introduced

at the beginning of this section.

(7.26) Theorem. Let x be a character modulo q of order pk, with p - 2 and k > 2.

Suppose that (7.9) is satisfied with a primitive 2kth root of unity f. Suppose also that

q(n- n/2 _ _ j modn_ Then condition (6.4) is satisfied for p = 2.

Remark. Suppose that « is prime, and that (7.9) holds with a primitive 2* th root

of unity f. We claim that the extra condition q("~ l)/2 = - 1 mod« is then satisfied.

To prove this, we first note that f = x(n) "ß by (7-5) and (7.17), so x(w) IS a

primitive 2Ath root of unity, and x(n)2 = — 1. Let \p be the quadratic character

X2'". Then «K«) = -1 and ^(- 1) = x(- I)2'"' = 1, so by (7.2) and (7.3) we have

q("-n/2 = T(^y-t =^(n)= - 1 mod«, as required.

It follows that « is composite if it does not pass the extra testg1"   l)/2 = - 1 mod«.

Proof of (1.26). In the case that n = 1 mod 4 the theorem immediately follows from

(7.24). Assume therefore that « = 3 mod4. As in the remark above, let \p = x2    ■ Let

r be a prime divisor of «. Arguing as in the proof of (7.19), we find that

(7.27) t;2(r2' '- l) > u2(«2' ' - 1)

(cf. (7.22)), the equality sign holding if and only if i¡¿(r) = - 1. Since k ^ 2 we have

t>2(«2' ' - 1) > 3, so by (5.1) we have r2' ' = «2* '' for some / g Z2. By (5.3), the

only roots of unity in Z2 are ± 1, so r = ±n'. The remark about the equality sign in

(7.27) implies that / is odd if and only if \\/(r) = - 1. This can also be formulated as

4,(r) = (-l)'.

Notice that yp(r) = Ci), by applying (7.4) with \p, r in the role of x. n, and using

that \p(— 1) = 1. Therefore the extra condition ^<"-'i/2 = — lmod« and Lemma

(7.23) imply that

v2 ( r - 1 ) > v2 ( « - 1 ),    with equality if and only if \p ( r ) = - 1.

Since « = 3mod4, this can also be formulated as r = \l(r) mod4. From r = \b(r) =

( - 1)' = «'mod4 it now follows that the plus sign in r = ± n' must be valid.

This proves (7.26).

(7.28) Remark. The complications that arise in the case p = 2 disappear if, for

p = 2, we restrict to k = 1, i.e. to quadratic characters. In that case (6.4) can be

replaced by the simpler condition v2(r - l)> v2(n - 1) for all r|«; cf. [16, Section

2]. The restriction to quadratic characters implies that the auxiliary number / chosen

in Stage 1 of the algorithm (see Sections 2 and 4) should satisfy the extra condition

/ * 0mod4.

8. Jacobi Sums for Odd p. We let q, p, k, n, x, B, G, t(x) be as in the previous

section, and we retain the notations fm, Um, ox.

It is our purpose to reformulate condition (7.9) in such a way that it only refers to

elements of the subring Z[Çpk] of B.

Let a and b be two integers. The Jacobi sumj(x",xb) associated to the characters

X" and x* is the element of Z[f a] defined by

(8.1) y(x",x')= ExW(i-x),
x = 0
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In B, we have

(8.2) y(x°.Xfc) - r(xa)r(xb)/r(xa+h)   if a + b * 0 modp*,

with the Gauss sums defined as in (7.1). For the proof of (8.2), see [25, Lemma

6.2(d)] or [7, Chapitre 5, Proposition 9]. If ab(a + b) * Omodp then (8.2) can be

written as

(8.3) j(xa,x") = Áx)°° + °h~°°*h-

Notice that the condition ab(a + b) * 0 modp forcesp to be odd.

In what follows we write [y] for the greatest integer not exceeding y, for a real

number y. For p > 3, we put

(8.4) M = (x g Z: 1 < x <p*,x m Omodp}.

(8.5) Theorem. Suppose that p Ss 3. Let a, b be integers satisfying

(8.6) (a + b)p * ap + bpmodp2,       ab(a + b) m 0 modp,

and let m be an ideal of Z[$pk ] for which

(8.7) m n Z = «Z,       a„[m] = m.

Define a G Z[C7] by

«=   E «x

//, with this notation, we have

(8.8) /(x",xT s fmodm   for some£ G üp*,

then (7.9) is satisfied. //(8.8) does not hold, then « is composite.

(8.9) Remarks, (a) Notice thaty(xa,x'')a belongs to Z[f *], since the coefficients of

a are nonnegative.

(b) In the proof we shall see that if (8.8) holds, then (7.9) is true with the same ?.

This is important for (7.19).
(c) If 3 <p < 6 • 109, p <£ (1093, 3511), then condition (8.6) is satisfied for

a = b — 1, by [13]. From (p - l)p * p - 1 modp2 it follows that in any case (8.6)

holds for some a < p - 2 with b — 1.

(d) An example of an ideal m of Z^a] satisfying (8.7) is given by m = nZ\lpk\. In

Section 10 we shall discuss a different way of choosing m.

Proof of (8.5). Let n be the ideal of B generated by m. From

1-2

n = E aßq hJ:a;em(0<JM- 2), ¿eZ

and gcd(<7,n) = 1 it is not difficult to derive that

(8.10) n n Z[^a] = m.

From (8.7) it now follows that n satisfies (7.7).

Define ß G Z[G]by

(8.11) ß
xeA/

(a + b)x ax bx
k

IP

.-1

with M as in (8.4). The following lemma will be proved below.
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(8.12) Lemma. Let a,b g Z satisfy (8.6), and let a,ß g Z[G] be as in (8.5) and

(8.11). r«e« we/iaüe

(«-rjJ/? = (aa + ah - aa + h)a

in Z[G], and ß satisfies condition (7.6):

Assuming this lemma, we see from (8.3) that

y(xt.xT-r(x)K+,r^,a-r(x)("",")i-

so by (8.10) the congruence (8.8) is equivalent to

r(x)( = f modn   for some f e Í7 ».

Since /S and n satisfy (7.6) and (7.7), it is now immediate that (8.8) implies (7.9). The

second assertion of the theorem is clear from (7.5). This proves (8.5).

Proof of (8.12). Define* G Z[G] by

9=   Lxo;x,
xeU

with M as in (8.4). Let m g Z, m * 0 modp. Writing x = mymodp*, we then see

that

°me = E '■(»yHr1,
ve M

where r(my) is the element of M that is congruent to my modulo pk. From

r(my) = my — [my/pk]pk it now follows that

(8.13) (m-om)6 = pk-  E
veW

my .-,

Applying this torn = n,a, b,a + b,we find that

(n - on)8 = pka,

(8.14)    (a. + a„ - oB+é)í = ((a + b - oa + h) - (a - o.) - (b - oh))8 = pkß

and therefore

pk(n - a„)ß = (aa + ah - aa+h)(n - on)6 = p"(aa + ah - oa + h)a.

Dividing by pk, we obtain the first assertion of (8.12).

The second assertion is equivalent to

(8.15) E
xeM\ .

(a + b)x ax bx
x     * Omodp.

Here we consider the expression on the left as an element of Z , to make x"1

meaningful, and the same applies to similar expressions below. To prove (8.15) we

first show that

(8.16) vp( Ix'->) = *-l.
'lEM

The values assumed by (x1 'modp*), for x g M, are precisely the elements of

H = (y e (Z/pkZ)*: y = 1 modp), each taken p - 1 times. This is because H is a
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subgroup of index p - 1 in the cyclic group (Z/pkZ)*. Therefore we have

E xl~'m(p- 1) E jrnodp*

- (P -IK/"' +V(/-'-i)) modp*,

and (8.16) follows.

If x,.y g Z are congruent modulo p*, then xp = j»' modp*+l, by the binomial

theorem. It follows that there is a ring homomorphism Z[G] -* Z/p* + 1Z mapping

ax to (xp modp*+l), for x G M. Applying this ring homomorphism to (8.14), we

obtain a congruence

(ap + bp - (a + b)p) E;
(EM

\-p

= p*

:M

(a + b)x ax

Tk
bx

r.k
'modp k + \

By (8.6) and (8.16) the exponent of p in the expression on the left is precisely k.

Hence this is also true for the expression on the right, so

\M

(a + b)x ax

„k

bx

„A
x p * Omodp.

Since x p = x  ' modp this is the same as (8.15). This completes the proof of (8.12).

An alternative proof of (8.15) starts from the congruence

E
.(EM

mx
x'x = m(m(p-X)pk~' - l)/p*modp*,

which is valid for any m G Z, m * 0 modp. This congruence is proved by calculat-

ing Y\xGMmx in two different ways.

Remark. The elements 6,ß g Z[G] that we used in this section are familiar

operators from the theory of cyclotomic fields. See for example [11, Chapter IV,

Section 4], [25, Section 6.2], where they occur in connection with Stickelberger's

theorem on the factorization of Gauss sums and Jacobi sums.

9. Jacobi Sums for p = 2. In this section we do for p = 2 what we did in the

previous section for p St 3. The notation is unchanged; in particular, our hypothesis

gcd(«,p<7) = 1 implies that « is odd forp = 2. We distinguish the cases k — 1, k = 2

and k > 3.

(9.1) Theorem. Let p = 2 and k = 1. //, in this case, we have

(9.2)
,(n-D/2 = fmod«   for some J G (1, - 1),

then (7.9) is satisfied. If (9.2) does not hold, then « ü composite.

Proof. The first assertion follows from t(x)2 = x(~l)q (see (7.2)), with ß = 1

and n = nB in (7.9). The second assertion follows from (7.5). This proves (9.1).

(9.3) Theorem. Let p = 2, k = 2 and « = 1 mod 4. Let m be an ideal of Z[f4] for

which

m n Z = «z.
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//, in this situation, we have

(9-4) /(x^)'"""72 V""/4 = f modm   for some f g U4,

then (7.9) is satisfied. 7/(9.4) does not hold, then « is composite.

Proof. Let n be the ideal of B generated by m. As in the proof of (8.5) we have

n n Z[f4] = m. From n = 1 mod4 it follows that on is the identity automorphism, so

n satisfies (7.7).

By (8.2) and (7.2) we have

/(x-x) = t(x)2A(x2).     t(x2)" = x2(- 0? = q

and therefore

/     \»-o„ /     vm-I ./ \(n-l)/2    („-n/4
nx)     = T(x)     = y(x.x)       r    v■

It follows that (9.4) is the same as (7.9) with ß = 1 and n as above. The second

assertion of the theorem again follows from (7.5). This proves (9.3).

(9.5) Theorem. Let p = 2, k = 2 and « = 3 mod4. //, in this case, we have

(9.6) /(x,x)(" + n/V"-3)/4 = fmod«Z[f4]   for some t*UA,

then (7.9) /'i satisfied. If (9.6) does not hold, then « is composite.

Remark. There is no need to allow arbitrary ideals m of Z[f4] satisfying (8.7) in

this theorem, since from (10.5) it follows that the only such m is nZ[f4].

Proof of (9.5). By (7.2) we have

t(x)t(x-') = x(-1)<7,       r(X2)2 = q,

and therefore by (8.2) we have

t(x)""°" = T(x)"+I/(t(x)t(x-'))

= y(x.x)("+,)/V"+,)/4/(x(-i)<7)

= x(-l)VvX,x)(n+,)/V"-3)/4.

It follows that (9.6) is the same as (7.9) with ß = 1 and n = nB, and with f replaced

by x( - !)£• This implies (9.5).

In the rest of this section we assume that p = 2 and k ^ 3. The triple Jacobi sum

j(X.X.X) 's the element of Z[£2a] defined by

(9.7) y(x>x,x)=y(x,x)/(x,x2)-

To explain the notation we remark that

y'(x.x.x)- E x(x)x(y)x(*)
x,y,zeZ/qZ.x+y+z- ,

(see [7, Chapitre 5, Section 4]) but this will not be needed in the sequel. From (9.7)

and (8.2) we see that

(9-8) y(x,X,x) = T(x)3A(x3) = T(x)3"0'.

We put

(9.9) M = (x e Z: 1 < x < 2*, x = 1 or 3 mod8).
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Notice that M, when taken modulo 2*, is a subgroup of (Z/2*Z)*. The integer

brackets [ ] are as in Section 8.

(9.10) Theorem. Let p = 2, k > 3 and « = 1 or 3 mod 8. Let m be an ideal of

Z[f2a ] for which

mnZ = «Z,       a„ [ m ] = m.

Define a G Z[G] by

r nx

.2*
«= E

ieM

//, w/'f« //»i notation, we have

(9.11) y'(XiX>x)a - fmodm   forsomel G í/2*,

í«e« (7.9) jí satisfied. 7/(9.11) does «oí /ioW, ¡Tie« n /i composite.

Proof. Define j8 g Z[G] by

(9.12) 0-   E
3x

with M as in (9.9). Below we shall prove that

(9.13) (n - o„)ß = (3 - o,)a

for « = 1 or 3 mod 8, and that ß satisfies condition (7.6):

(9.14) (-l)'-l.

Assuming this, one proves the theorem in exactly the same way as (8.5) was deduced

from (8.12). The only difference is that (8.3) is replaced by (9.8).

To prove (9.13) we define 6 g Z[G] by

6=   £xa-'.
IE«

We have

(9.15)       (m-am)0 = 2*E
jeM

«IX
for m G Z, m = 1 or 3 mod8

by the same argument that was used to prove (8.13). Applying this to «i = n and

m = 3 we find that

(9.16)

(«-a„)0=2*a,

(3-a3)0 = 2*/?,

and this implies (9.13). To prove (9.14) we apply to (9.16) the ring homomorphism

Z[G] -* Z that maps every ox g G to 1. This leads to

3x
(9.17)

so

(9.18)

2 •   E x = 2* •   E

E
3x

2*.
= 2*-2
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This is odd, and therefore (- l)'* = - 1, as required. This completes the proof of

(9.10).

(9.19) Theorem. Let p = 2,k > 3 and n = 5 or 7 mod 8. Let m be an ideal o/Z[£2a ]

for which

m n Z = «Z,       o„[in] = nt.

Define a G Z[G] by

«=   E
JEM

nx

21

and put <j> = x      -7/, with this notation, we have

(9.20) /(X'X'X)°y(^»^3)   - fmodm   for some f G í/2»,

í«e« (7.9) /i satisfied. If (9.20) does «oí «oW, /ne« « m composite.

Proof. Let ß be defined by (9.12). Below we shall prove that

(9.2!) r(xr'-"")ß - x(~Dj(x^x)ttj(^)2.

From this the theorem follows by the argument used in the proof of (8.5). Notice

that ß satisfies condition (7.6), by (9.14).

To prove (9.21) we apply (9.15) to m = -«; this is allowed because -w = 1 or 3

mod 8. We find that

(-«-<,_„)* = 2* E
veM

«X
a;'=-2* «+   Ed-

v xeM     '

Combination with (9.16) leads to

(« + o.H)ß = (3 - aja +   E «,) = (3 - «,)« + 2 •   E «c
V jEM      ' veJW

SO

/     \(" + o   „iß ■( \« /      k2L>aU«,
nx) =y(x-x-x) -nx)

By (7.2) and (9.18) we have

/     \(o„ + o   „)P        ¡t      , \     \ß i      , v    2*   - - 1
nx) =(x(-i)<7)  =x(-i)í

Upon division we obtain

T(xr"^ = x(-l)y(X-X.x)"r(x)2L.'/Z "'' '-

To prove (9.21) it therefore suffices to show that

(9.22) t(x)2W< = q2" 3,/(^3)2-

This is easily seen to be a consequence of the Hasse-Davenport relations, see [12,

Chapter 2, Theorem 10.1]. We give a direct argument, by applying induction on A:.

For k = 3 we have x = <i>, so by (8.2), (7.2) and <¡>A( - 1) = 1 we find that

q -jU,^)2 = q • (T(*)n>3))2/ny )2 = (r(<t>)r(^)f.



PRIMALITY TESTINC; AND JACOBI SUMS 319

which is the same as (9.22). Let now k > 3. Put vb = </>4 = x2 ; this is the quadratic

character modulo q. From 8|2* ' it follows that x^ = Xy f°r some>> g M. There-

fore we have

tM2*"""'- (t(x)t(x*))E"-*.

Assume for the moment that

(9.23) t(x)t(x>/') = x(4)"It('/')t(x2).

Applying T.xeMox and using that \p = \px for x G M, we find that

r(x)2Wv = x(2r2W-T(*)2' 2-t(x2)^m0'-

By (9.17), the first factor on the right-hand side is 1. Since \p is quadratic and

\p(- 1) = 1, we see from (7.2) that the second factor equals q2 . The third factor

can be written as

t(x2)2""W°\

where W = (x: 1 < x < 2*~\ x = 1 or 3 mod 8), and by the induction hypothesis

this is equal to q2       xj(<b,<p?)2. This completes the induction step.

The identity (9.23) is a special case of the Hasse-Davenport relations, and it can

be proved directly as follows [5, Section 20.4]. We have

q-I q- I

/(x.x) = E xU)xO - x) = E x(x - x2)
v=0 x=0

=     E    X(y)m(y),
yeZ/qZ

where m(y) is the number of x g Z/qZ for which y - x - x2; this is 0, 1 or 2

according as the discriminant 1 - Ay of X2 - X + y is a nonsquare, zero, or a

nonzero square in Z/qZ, soin all cases m(y) = 1 + ((1 - Ay)/q) = 1 + ^(1 - Ay).

Therefore

j(x-x)=   E   x(y)- (1++0 -4j0)

=   E   xW+   E  x(V4)*(i-z)
yeZ/qZ z<aZ/qZ

= o + x(4)~'   E   x(^)^(i -^) = x(4)"1y(x^)-
jgZ/í/Z

By (8.2) this is the same as

t(x)2A(x2) = x(4)_'t(x)t(^)A(x^).

and this implies (9.23). This completes the proof of (9.19).

(9.24) Remarks, (a) From the proofs of the theorems in this section we see that if

(9.2), (9.4), (9.6), (9.11) or (9.20) holds for some fe í72a, then (7.9) is true with f

replaced by ± f. Notice that, for k > 2, the 2* th root of unity ± £ is primitive if and

only if f is primitive. This is important for (7.26).

(b) The number x( — 1) G {1,-1} that appears in many formulae in this section is

equal to — 1 if and only if k = v2(q — 1), which is often the case in the applications.
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10. Choice of the Ideal. In this section p denotes a prime number, k a positive

integer, Çpk a primitive pk th root of unity in C and n an integer for which « > 1 and

« & 0 modp. By/we denote the order of («modp*) in the group (Z/p*Z)*, and we

let a„ be the automorphism of the ring Z[Çpk] for which on(Çpk ) = £V

In Section 11 we shall see that in our primality algorithm we have to test (8.8),

(9.2), (9.4), (9.6), (9.11) and (9.20) for several choices of p. A:, q. Each time this

requires a calculation modulo an ideal m of Z[Çpk] satisfying

(10.1) m n Z = «Z,       a„[m] = m.

This calculation is easier to do if the ring Zf^/l/m is smaller, so if ,n is larger. In

this section we shall see how to choose m as large as possible. The methods that we

shall describe are usually successful if « is prime, even if we do not yet have a proof

that « is prime. However, if « is composite, then the methods are not likely to work.

It is therefore advisable to use them only if « is probably prime in the sense that it

passed several tests as in (1.2).

(10.2) The first method is taken from [1, Section 4, A.5]. We apply Berlekamp's

algorithm [8, Section 4.6.2] to find an/th degree polynomial « g Z[T] with leading

coefficient 1 such that («mod«) divides ¿ZpJ0xT'p in (Z/«Z)[7"]. If « is prime,

then such an « exists, and («mod«) is irreducible; cf. [25, Chapter 2]. We now let m

be the ideal of Z[Çpk] generated by « and h(Çpk). Then Z^aJ/íti may be identified

with the set of all expressions

/-i

£*,£"'.       fl,GZ/«Z (0 </</),
,=o

where f = (J^modm) is a zero of («mod«). This ring has n1 elements, and if « is

prime, it is the field F„/. We have m C\ Z = «Z, since this is the kernel of the natural

map Z -» Z[$y]/m. The condition a„[m] = m can be shown to be automatically

satisfied if « has been obtained by means of Berlekamp's algorithm; but it can in any

case easily be tested by checking if f is a zero of (« mod«). We remark that if « is

prime, the condition a„[m] = m is satisfied for all ideals m of Z\lpi\ containing «. To

see this, one uses (1.3) to show that on(a) = a" mod m for all a G Z[f a]; then

0„[m] c m, and equality holds because a„ has finite order.

If/= ( p - l)p*"', then the above method leads to in = «Z[f/;»], and from (10.5)

it follows that this is in fact the only ideal of Z[Í/;a] satisfying (10.1). The methods

described in this section are therefore only useful if/< (p - l)pA '. This occurs

for example if p = 2 and k > 3, since in that case (Z/pkZ)* is not cyclic.

If/ < (p - l)p*~ ', then the coefficients of h are usually rather large. This makes

Euclidean division by « into a complicated operation in practice, and the same thing

is therefore true for multiplication in the ring Z[f A]/m, at least for/* 1. The

second method to construct m does not have this disadvantage. It is as follows.

(10.3) First one constructs a ring F with nf elements that contains Z/«Z as a

subring, such that F is a field if « is prime. For example, one can take F =

(Z/nZ)[T]/g • (Z/nZ)[T), where g is an/th degree polynomial in (Z/nZ)[T] with

leading coefficient 1 that is irreducible if « is prime; the latter property can be

checked by an irreducibility test as described in [8, Exercise 4.6.2.16]. Writing £ for

the image of T in F we have F = &r¿ a,£': a, g Z/«Z (0 < i < /)), with g(£) = 0.
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To facilitate the multiplication in F one should choose g such that its coefficients are

"small", and this can usually be done in practice.

It is important that F be constructed in such a way that we can recognize whether

a given element of F belongs to the unit group F*. In the example given we can do

this by calculating the gcd with g in (Z/«Z)[r], using the Euclidean algorithm; this

can only fail if at some stage a nontrivial common divisor of « and some leading

coefficient is found, in which case « is factored [1, Section 5].

Once F has been made one constructs a ring homomorphism p: F -» F such that if

« is prime, we have p(a) = a" for all a g F. For F as above this is done by checking

that gU") = 0 and putting p(ZUa^) = L{Z¿a,t"; if g(í") * 0, then n is com-

posite.

Next one chooses an element ß g F, ß * 0, such that ß{" ~X)/p * 1. Such an

element ß should not be hard to find, since if « is prime, then a random ß G F — (0)

has this property with probability (p - l)/p.

If « is prime, then we must have

(10.4) 0"'-' = l,       ß("'-»/p- 1 e F*, p(ß) = ß".

One now checks that ß does indeed have these properties, and one calculates

f = /Í("/-|)/'\ThenñsazeroofE,C01XV ' - (Xpk - l)/(Xpk ' - 1), so we can

define a ring homomorphism X: Z[f/,»] -» F by X(Çpk) = f. We have p(f) = f", and

therefore X ° on = p°\.

Finally we let m be the kernel of À. Since Z/«Z c F, we have m n Z = «Z. We

prove that o„[m] = m. For a G m we have X(on(a)) = p(X(a)) = p(0) = 0, so

an(a) g m. Hence a„[m] c m, and equality follows as before. We conclude that m

satisfies (10.1). From (10.5) below it follows that X is surjective, so that Z[f *]/m = F.

This finishes the description of the second method to construct m. Some addi-

tional work would be needed to find explicit generators for m, but these are in fact

not needed: to check a congruence modulo nt it suffices to apply X and to check the

corresponding equality in F.

If/ = 1, then in the second method we can simply take F = Z/«Z and p equal to

the identity map. Notice that / = 1 if and only if « = 1 modp*. This is not a rare

event, since in practice p* is small.

If one of our two methods successfully constructs an ideal m satisfying (10.1), then

m is indeed largest possible, even if « is not prime. This is an immediate consequence

of the following proposition.

(10.5) Proposition. Let m be an ideal ofZ[Çpk] satisfying (10.1). Then the number

of elements of Z[Çpk]/m is at least n1.

Proof.   From   m n Z = «Z   it   follows   that   Z//iZ c Z[f;l]/m.   Write  f =

(fpAmodm). It suffices to show that the map (Z/nZ)f -» Z[£ »]/m sending (a,){Z¿,

to Eflüu,Í' is injective. Suppose therefore that £(_da;£' = 0. From o„[m] = m we

see that a„ induces an automorphism of Z[Çpk]/m that maps f to j". Repeatedly

applying this automorphism we find that

/-i

(10.6) Ea,f'"' = 0   for0«/</.
/ = 0
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From the identity Fifi, '(1 - fy) = pk in the proof of (7.17) and gcd(p,«) = 1 it

follows that I - T GfZfJyl/m)* for all x g Z, x m Omodp*. Therefore the

Vandermonde determinant det(f '"')(U, l<f = n()i,<j<f(t - f' ) is a unit in

Z[Spk]/m, and (10.6) implies that a, = 0for0< / </. This proves (10.5).

It is an attractive feature of our second method to construct m that it gives us an

easy way to check condition (6.4).

(10.7) Proposition. Let F be a ring with n1 elements that contains Z/«Z as a

subring. Suppose that F contains an element ß satisfying (10.4) for some ring homomor-

phism p: F -» F. If p = 2 and « = 3 mod4, suppose that k > 2. Then p satisfies

condition (6.4).

Proof. Put £ = ß{"'   X)/pk. From the proof of (10.5) we see that det(py(f'))0</v/</

g F* and hence that 1. f.f2.f '   ' is a basis of F over Z/«Z. Hence Fis, in the

terminology of [16. Section 8], a Galois extension of rank/of Z/«Z with group (p).

We can now apply [16. Theorem (8.4)] with ,v equal to the largest power of p dividing

«' - 1, and a = /3("' X)/\ Then we find that for each r|« there exists i G Z such that

r = «'mod.?; then m ' g 1 4- sZp = («' )z'\ by (5.1), and (6.4) follows immediately.

This proves (10.7).

For the final result of this section we assume that « = 3mod4. Let u g Z/«Z be

chosen such that u1 + A g (Z/«Z)*. and let F be the ring

(Z/nZ)[T}/ (T2 - uT - 1).

Denote by £ the residue class of T. and let p be the automorphism of F with

p(£) = «- f Notice that p(£) = -£  '.

If « is prime and ((u2 + 4)/«) = - 1. then F is a field in which £ and p(£) are

conjugate, so p(£) = |" by the theory of finite fields, and £"" ' = - 1. The following

proposition tells us what can. conversely, be said if £"+l = — 1. The reader inter-

ested in Lucas functions [26] should notice that £"+ ' = - 1 is equivalent to £("+ l)/2

+ P(l)("' "/2 = 0. since « = 3mod4.

(10.8) Proposition. Suppose that n = 3mod4, and that, with the above notation,

we have £" + l = — 1. Then p = 2 satisfies condition (6.4).

Proof. This is an immediate consequence of (10.7), with k = 2, / = 2 and ß = £.

This proves (10.8).

We leave it to the reader to deduce (10.8) directly from properties of the Lucas

function, and to prove that the assumptions of (10.8) also imply that ((u2 + 4)/«) =
- 1.

11. The Central Stage of the Algorithm. In this section we give a more detailed

description of the second stage of our primality test than was given in Section 2.

(11.1) Let « be the integer to be tested for primality, « > 1, and let / and i be

integers satisfying (2.1), (2.2). (2.3), (2.4) and gcd(iC«) = 1. We describe an algo-

rithm that leads either to a proof that « is composite or to a proof that (2.5) holds.

(a) First one selects, for every prime power p* dividing t, an ideal m = in k of

Z[Çpt] satisfying (10.1). This is done either by taking m = nZ[Çpk] or by using one of

the methods described in Section 10.

(b) Next one lets Ys be as in (6.3), and checks that every x = xP q G Ys satisfies

(7.9). If p is odd, this is done by selecting a, b as in (8.6), calculating the Jacobi sum
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j(x"<Xh)< an(l checking that (8.8) is satisfied; if (8.8) is not satisfied for some pair p,

q, then « is composite by (8.5), and the algorithm halts. If p = 2, then one proceeds

in a similar way, replacing (8.8) by (9.2), (9.4), (9.6), (9.11) or (9.20), whichever is

applicable.

(c) Finally one checks that every prime p dividing / satisfies condition (6.4). The

procedure by which this is done is described in (11.2) for odd p and in (11.5) for

p = 2. If this has been done then from (7.8) it follows that every x e Ys satisfies

(6.5). From Theorem (6.3) one can now draw the desired conclusion that (2.5) holds.

This is the end of the second stage.

(11.2) Let «, í, i be as in (11.1), and let p be an odd prime dividing t. We describe

a procedure that leads either to a proof that « is composite or to a proof that p

satisfies condition (6.4). If in (1 l.l)(a) algorithm (10.3) has been used to construct m,

it suffices to apply (10.7). Otherwise we can proceed as follows.

(a) First one tests whether np' ' * 1 modp2. If this holds, then (6.4) is satisfied, by

(7.18), and the procedure halts.

(b) Secondly, one checks whether there exists a prime q dividing s, with q - 1

divisible by p, such that x - XP.q satisfies (7.9) with a primitive pk th root of unity f;

here k = v (q - I). The calculations that are needed to check this have already been

carried out in stage (b) of algorithm (11.1), cf. Remark (8.9)(b). If such a prime q

indeed exists, then (6.4) is satisfied by (7.19), and one stops.

(c) Suppose now that both (a) and (b) have failed to establish (6.4). Then one first

tests whether « is the pth power of an integer. If this is the case, then clearly « is

composite, and the procedure halts.

(d) Next one determines a prime number q (not necessarily dividing s ) for which

(11.3) q=lmodp,       ntqX)/p * Imodq.

Such a prime q can be found by trying all primes in succession; cf. Remark (11.4)(a)

below.

(e) Now if q divides s, we claim that n is composite (see (11.4)(b)), and the

procedure halts. Suppose finally that q does not divide s. Then one first checks that q

does not divide «. Next one lets x be a character modulo q of order p, and one tests,

using (8.5), whether (7.9) is satisfied with fe (/ primitive. If this is the case, then

(6.4) is satisfied, by (7.19), and if this is not the case, then we claim that « is

composite (see (11.4)(b)). In all cases the procedure halts.

( 11.4) Remarks, (a) If « is not a pth power, then the density of the set of primes q

satisfying (11.3) is 1/p. To see this, note that for a prime q not dividing « condition

(11.3) is equivalent to the condition that q splits completely in Q(Çp), but not in

Q(L,nx/p); next one can apply the well-known theorem that the density of the set of

primes splitting completely in a normal number field of degree d over Q equals \/d;

see [11, Chapter VIII].

It follows that a prime q = 1 modp satisfies (11.3) with probability (p - l)/p.

Therefore the desired q should not be hard to find. If the truth of the generalized

Riemann hypothesis is assumed, then it can be proved that the least prime q

satisfying (11.3) is < c • p2 • (logp + log«)2 for some absolute, effectively computa-

ble constant c, by [9, Corollary 1.3). Without unproved hypotheses no satisfactory

upper bound for q is known. Consequently we can give no satisfactory upper bound

for the running time of part (d) of procedure (11.2).
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(b) To justify the claims made in (11.2)(e), suppose that « is prime and that q is a

prime satisfying (11.3) with q not dividing «. Let x be as in (11.2)(e) if q does not

divide i, and x = XP q if <7 does divide i. Write order(x) = p*. Then from (11.3) it

follows that x(«) is a primitive p*th root of unity, so (7.5) implies that x satisfies

(7.9) with f G U k primitive.

Hence if one finds that (7.9) is not true with f primitive, one can conclude that n is

composite. This applies in particular if q divides s, since in this case it was

discovered in (U.2)(b) that x~ Xpq does not satisfy (7.9) with f primitive. This

proves the claims in ( 11.2)(e).

(c) Procedure (11.2) is quite efficient in practice, despite the theoretical difficulties

mentioned in (11.4)(a). In fact, it only rarely happens that parts (c), (d) and (e) of the

procedure are needed. This occurs, for example, if « is a prime number that is

congruent to a pth power modulo p2 • s. If « is very likely to be prime the procedure

can be speeded up by omitting part (c) and by restricting the search in (d) to the

primes q not dividing i.

(11.5) Let «, t, s be as in (11.1), and assume that t is even. We describe a

procedure that either proves that p = 2 satisfies (6.4) or proves that « is composite.

First suppose that « = 1 mod4. In this case one determines an integer a satisfying

(i) = -1, by trying all primes 2,3,5_  in succession, and one tests whether

fl<»-i)/2 = _ imod«; if this is the case, then p = 2 satisfies (6.4), by (7.24), and

otherwise « is composite, by (1.2). If it is difficult to find an integer a with (if) = - 1,

one tests whether « is a square.

Secondly, suppose that « = 3mod4. In this case one determines an integer u

satisfying ((u2 + A)/n) = - I, by trying u = 1,2,3_; cf. (11.6)(a). Next, one lets

£ = (TmodT2 - uT - 1) g (Z/nZ)[T)/(T2 - uT - 1) be as defined before (10.8),

and one tests whether £"+1 = - 1; if this is the case, then p = 2 satisfies (6.4), by

(10.8), and otherwise « is composite, by the remark preceding (10.8).

This finishes the description of the procedure. Alternatively, one might make use

of (7.25) or (7.26).

(11.6) Remarks, (a) The remarks made in ( 11.4)(a) about the existence and the size

of q also apply to the number a that appears in the above procedure for « = 1 mod 4.

Suppose that « = 3mod4. We prove that there exists u G Z with ((u2 + A)/n) =

- 1. Let r be a prime divisor of « with vr(n) odd, and let a be the least positive

integer for which (7) = - 1. By the minimality of a there exists v with v2 = a - 1

modr, and then ((v2 + \)/r)= - 1. Now let u g Z be such that u = 2 u modr, and

such that u is divisible by all other primes that divide «. Then one easily checks that

((u2 + A)/n) = — I, as required.

If the generalized Riemann hypothesis is true then there is an absolute effectively

computable constant c with the following property: if « is a positive odd integer that

is not a square, and « has no prime factor ^ c2(log«)'\ then the least positive

integer u with ((u2 + A)/n) = - 1 satisfies u ^ c(log«)2. This is proved by combin-

ing [9, Corollary 1.3] with [3, Lemma 1]. We are indebted to A. M. Odlyzko for this

observation.

(b) The search for q in (11.2)(d) and the search for a and m in (11.5) are the only

points in our primality testing algorithm that prevent us from proving a worst case

running time estimate of the form (log«)1 loglo6log ". From (11.4)(a) and (11.6)(a) it
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follows that the truth of the generalized Riemann hypothesis would imply such a

bound for the algorithm; we should then choose m = nZ[Çpk] in (11.1 )(a). If we wish

the result of Pomerance and Odlyzko quoted in Section 1 to be valid for our

algorithm, we should use algorithm (10.3) in (ll.l)(a), and apply (10.7) to check

(6.4). The condition k ^ 2 in (10.7), for p = 2 and « = 3mod4, is not a serious

restriction; cf. (7.28).

12. Detailed Description of the Algorithm.

(12.1) Let N be some large integer. We describe, from a computational point of

view, an algorithm to determine whether an integer «, 1 < n < N, is prime.

Step 1. Preparation of Tables. These tables depend only on N, and can be made

once and for all.

(a) Select a positive integer t with e(t) > Nx/2 (cf. Section 4, Table 1).

(b) Perform steps (bl) and (b2) for each odd prime q\e(t).

(bl) Find by trial and error a primitive root g modulo q, i.e. an integer g * Omod

q such that g{q~X)/p * 1 mod«? for every primep\q - 1. Make a table of the function

/: (1,2,..., q - 2) - (1,2,..., q - 2) defined by 1 - gx = g/(x) mod?.

(b2) Perform steps (b2a), (b2b), (b2c), (b2d), (b2e), (b2f) for each primep\q - 1.

(b2a) Put k = v (q ■- 1), the number of factorsp in q - 1.

(b2b) If p* * 2, compute

^.XeV'^zM-
x=\

Here an element ¿Z0<,<(p- X)pi-iaiSpk of Z^a], with ai G Z, is to be represented as a

vector (a,)0<l<ip.X)pk-r, cf. Section 7. (Notice thaty^ =j(x,X) for x = Xp,q\ see

(8.1).)
(b2c) If p =*= 2, do the following. Let

M = {x G Z: 1 < x < p*, x * Omodp),

6=   E xa;'GZ[G],
xeM

r VX

7*«(»)= E
xeM

oxx G Z[G]    fort; G M,

where [y] denotes the greatest integer ^y and ox and G are as in Section 7.

Calculate

, = ;'* i = i°<°)
JO.p.q       Jp.q' Jv,p,q       Jp,q

for each v g M, as elements of Z[$pk\ (see Section 7 for the definition of the action

of Z[G]). The numbers7U   q, for v g (0) U M, should be tabulated.

(b2d)Ifp = 2,A:= 1, let

J0.2,q = 9> 7l,2,<7 =     '

and tabulate these values.

(b2e) If p = 2, k = 2, do the following. Calculate

.Á>A«"¿L"Í6ZU4].
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and let

j\.2.q =   '• J3.2. q = J2.q

The numbers jv 2  , for t> = 0,1,3, should be tabulated.

(b2f) If p = 2, k > 3, do the following. Calculate

q-2
i*  = ;    .y f2v+/(ï)

72.q      J2.q      í-,  S2'

v-l

as elements of Z[£2a], where fx = Jfî"'. (Notice that /£, =j(x<X<x) and j\q =

/(<f>,<f>3)\ with <í> = x2* '. as in Section 9.) Put

L = {x e Z: 1 < x < 2*. x is odd),

Af = (x g L: x = 1 or 3 mod8).

0 =   E «£"' eZ[G],
M

r 15X

«(»)= E
L2

G Z[G]    foruei,

and calculate

Jo.2.q ~  \Jl.q)   •

J,i.q=(jtXV)    for, G M,

J,.2.q=(jtXV)-Jlq   forveL-M.

The numbers7,,-2, for v G (0) U L, should be tabulated.

Step 2. Preliminary Tests. Let now an integer « be given, 1 < « ^ N, to be tested

for primality.

(c) Depending on the information that one may already have about «, it may be

wise to test « for small divisors, or to subject « to the test of Miller and Rabin [8. p.

379].

(d) Test whether gcd(/e(/),«) = 1, using Euclid's algorithm. If not, then a prime

divisor of « is obtained, since te(t) is completely factored, and we stop.

(e) Select a divisor s of e(t) with i > «l/2 (cf. Section 4). Replace / by the smallest

/' for which i divides e(t'). (Note that the new / is the exponent of the group

(Z/iZ)* and therefore divides the old /.)

Step 3. Pseudoprime Tests with Jacobi Sums. Perform steps (f). (g). (h) for each

prime p dividing t.

(0 Declare a boolean variable Xp (telling us whether (6.4) has been checked). Put

Xp ="true" if p is odd and np~ ' * 1 modp2, and Xp ="false" otherwise.

(g) For each integer k > 1 with pk\t, determine integers uk, vk such that « = ukpk

+ vk and 0 < vk < p*.

(h) Perform steps (hi), (h2), (h3) for each prime t7|i withp|o - 1.

(hi) Put k = vp(q - 1), and u = uk, v = vk as in (g). Calculate

Jo.p.q-Jv.p.qmodnZ[Spk]

by means of repeated squarings and multiplications modulo nZ[Çpk]; here a residue

class (£o<i<(p- n/ ' a£'pk mod«Z[fpA]), with a, g Z, is to be represented as a vector
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(o,)0<,<(/, Upi. i, where 6, g (0,1,..., « - 1), 6, = a,mod«. If there does not exist

« G{0,l,...,p* - l)with

Jo.p.q -Jv.p.q - &™odnZ[$pk],

then « is composite and the algorithm halts. (This is test (8.8) with a = b = 1 if p is

odd; test (9.2) if p* = 2; test (9.4) or (9.6) if p* = 4; and test (9.11) or (9.20) if

p = 2, k 3î 3.) Suppose now that h exists.

(h2) If « * Omodp, and either p* = 2, n = 1 mod4 or p is odd, put X^ ="true".

(This combines (7.24) and (7.19).)

(h3)If« * 0mod2, p = 2, k > 2 and A2 ="false", do the following. Test whether

q{n-\)/z _ _ i mo(jw ¡f this does not hold, « is composite, and the algorithm halts.

If it does hold, put X 2 = " true". (This is (7.26).)

Step A. Additional Tests. Perform steps (i) and (j) for every prime p dividing t for

which Xp =" false".

(i) Select a small prime number q not dividing s such that

q = 1 modp,

q = 1 mod4   if p = 2 and « = 3mod4,

„<?-!>//> a imodfl.

If such a prime q cannot be found below a reasonable limit, do the following. Test

whether « is a pth power. If so, declare « composite and halt. Otherwise, halt with

the message that the algorithm is unable to prove that n is prime. Suppose now that

q has been found. Halt if « = Omodo:

(j) Put k = 2 if p = 2 and « = 3 mod4, and k = 1 else. Determine integers uk, vk

as in (g). Calculate^ pq as in (bl), (b2b), (b2c), (b2d), (b2e), but only for v g (0,«*}.

Test whether j^p q • jVkPq = $£ mod«Z[fpA] for some « g Z, 0 < « < p*, « * 0

modp. If this is not the case, « is composite, and the algorithm halts. (To justify this,

cf. ( 11.4)(b).) Otherwise, perform steps (h2) and (h3).

Step 5. Final Trial Divisions. (It is not likely that in this step it will be found that «

is composite, cf. the remark at the end of Section 2.)

(k)Putr0= 1.

(I) Perform steps (11), (12), (13) for . = 1,2,..., /.

(II) Determine r¡ by r¡ = nr¡_, modi, 0 < r¡ < s.

(12) If r¡= 1, declare that « is prime and halt.

(13) If r¡\n, and>, < «, declare that n is composite and halt.

(Notice that one of (12) and (13) applies for some i < t, since «' = 1 modi.)

This finishes the description of the algorithm.

(12.2) Remarks, (a) Since we used a = b = 1 in (8.8) (see step (hi)), the correct-

ness of the test is only guaranteed if 2P * 2modp2 for all primes p\t, cf. (8.6). This

condition is satisfied for all p < 1093, see (8.9)(c). In practice we usually have

p < 20, see Section 4, Table 1.

(b) Several improvements have not been incorporated in the above description.

First of all, the results of Section 10 have not been used. Secondly, the algorithm of

(3.1) has not been included. Finally, the possibility to combine the test with the older

tests described in [26] has been neglected; see [16, Section 8].
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13. The Implementation. The algorithm described in Section 12 has been imple-

mented by H. Cohen and A. K. Lenstra on the CDC Cyber computer system at the

SARA computer center in Amsterdam. In this section we discuss the main features

of this implementation, referring to a forthcoming publication by H. Cohen and A.

K. Lenstra for more details.

Two programs have been written, one in Pascal and the other in Fortran. Both

programs make use of multiprecision routines that were written in the assembly

language Compass by D. T Winter and made available by the Mathematisch

Centrum in Amsterdam.

The auxiliary number t was chosen to be 5040 for the Pascal program, and 55440

for the Fortran program. We have e(5040) > 1.5 • 1052 and e(55440) > 4.9 • 10106,

so the Pascal program can deal with numbers of up to 104 decimal digits and the

Fortran program with numbers of up to 213 decimal digits.

The programs incorporate the following improvements that are not included in the

algorithm in Section 12. Use has been made of the results of Section 10, but only in

those cases where the integer / defined at the beginning of that section equals 1. We

also construct a ring F of «2 elements that is a field if « is prime. This ring enabled

us to combine our algorithm with the test that is based on known prime factors of

m2 - 1; see [16, Section 8].

The Fortran program does not make use of prepared tables as described in Step 1

of the algorithm in Section 12, since such tables would have required too much

memory space. Instead, the entries of the tables that are needed are recomputed for

every «.

For each prime power p* dividing t special routines were written to do multiplica-

tions in Z[Çpk]/nZ[Çpk]; or, equivalently, to multiply polynomials of degree less than

m = (p — l)p*~\ with coefficients in Z/«Z, modulo the p*th cyclotomic poly-

nomial HfZo X'p . In addition to the necessary m reductions modulo «, the

straightforward way to do one such multiplication takes «j2 integer multiplications.

It is important to reduce this number. Theoretically, 2m — I integer multiplications

suffice, by a theorem of Winograd [8, p. 495]; but Winograd's method is completely

impractical because it involves a great number of additions and multiplications by

small constants. We made use of special formulae for each p*. For example, for

p* = 16 we use 27 instead of 64 integer multiplications to do one multiplication in

Z[f16]/«Z[f,6], and only 18 to do one squaring. It may be that along these lines

further improvements are possible.

Tables 3 and 4 contain data on the running time of the Pascal program and the

Fortran program, respectively. For each number d in the first column we tested 20

prime numbers of d decimal digits. Each prime was selected by drawing a random

number of d digits and using the program to determine the least prime exceeding the

number drawn. The second column gives the average running time t = (£,2£, r,)/20,

the third one the sample standard deviation ((2Z2°x(t¡ - /)2)/19)l/2, the fourth the

maximal running time, and the fifth the minimal running time. All times are in

seconds. The time spent on the composite numbers is not counted.

The two programs tested the same set of 20 primes of 100 digits. The tables show

that for these numbers the Fortran program is slower than the Pascal program. This

is mainly caused by the fact that each program works in a fixed precision, which is
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twice as large for the Fortran program as it is for the Pascal program. Only a minor

part of the difference is due to the use of prepared tables in the Pascal program.

We indicate the speed of the multiprecision routines that are used. Denote by am,

bm numbers consisting of m words, each word containing 47 bits. Then the calcula-

tion of a8 ■ o8, aX6 ■ oI6, (a,6mod¿>8) = aI6 - [a16/og]o8 and (a32modo16) = a32 -

[a32/bX6]bX6 takes on the average less than 7 • 10~5, 2.1 • 10~4, 2 • 10"4 and

4.7 • 10"4 seconds, respectively.

Table 3. Running times of the Pascal program in seconds (see text)

number average standard maximum minimum

of digits deviation

50 6.437 1.687 10.030 4.525

60 8.634 2.554 15.168 5.009

70 12.074 2.289 15.214 7.032

80 16.224 3.897 23.800 8.006

90 25.572 5.870 35.752 15.810

100 32.349 9.103 47.689 17.891

Table 4. Running times of the Fortran program in seconds ( see text )

number average standard maximum minimum

of digits deviation

100 50.442             15.203 75.416 26.031

120 97.797             28.274 147.259 51.077

140 156.429             43.122 210.756 77.316

160 246.204             44.144 298.144 111.888

180 359.728             55.833 436.039 259.021

200 495.748             80.025 614.254 258.859

Acknowledgements are due to D. T. Winter for writing the Compass multipreci-

sion routines, and to A. K. Lenstra for his great help in implementing the algorithm

and for performing all tests reported in this section.
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