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Divisors in Residue Classes

By H. W. Lenstra, Jr.

Abstract. In this paper the following result is proved. Let r, s and n be integers satisfying

0 < r < s < n, s > hi/\ gcd(r, s) — I. Then there exist at most 11 positive divisors of n that

are congruent to r modulo v. Moreover, there exists an efficient algorithm for determining all

these divisors. The bound 11 is obtained by means of a combinatorial model related to coding

theory. It is not known whether 11 is best possible; in any case it cannot be replaced by 5. Nor

is it known whether similar results arc true for significantly smaller values of log s/\og n. The

algorithm treated in the paper has applications in computational number theory.

In this paper we prove the following theorem.

Theorem. Let r, s and n be integers satisfying

0^r<s<n,   s > nx/\    gcd(r,s)=l.

Then there exist at most 11 positive divisors of n that are congruent to r modulo s, and

there is a polynomial algorithm for determining all these divisors.

The algorithm referred to in the theorem is described in Section 1. It is polynomial

in the sense that the number of bit operations required by the algorithm is bounded

by a polynomial function of the binary length of n. More precisely, we shall see that

this number of bit operations is 0((log«)3). Employing fast multiplication tech-

niques we can improve this bound to 0((log «)2 + e) for every e > 0.

We mention two applications of the algorithm. In several primality testing

algorithms (see [3], [7]), the number n to be tested is subjected to a collection of

"pseudo-prime" tests. If n does not pass all these tests it is composite. If n does pass

all these tests, one knows that each divisor of n lies in one of a small and explicitly

known set of residue classes modulo an auxiliary number s. In the latter case, all

divisors of n can easily be found if s satisfies the condition s > nx/2. Our algorithm

shows that the same can be done if s satisfies the weaker condition s > nx/3. In

special cases this observation was already made in [2, Theorems 5 and 17].

The second application is to the related problem of factoring n. Choosing 5 to be a

suitable integer exceeding nx/i and applying our algorithm to all residue classes

rmod s, we obtain an algorithm that factors n in time 0(/i(,/3)+e) for every e > 0.

The same bound was achieved by Lehman [6] and, conjecturally, by Pinter [9], by

methods that are similar in spirit. There exist better factoring methods, both in

theory and in practice (see [7]), but this application indicates at least that it may be

difficult to extend the algorithm to significantly smaller values of 5.
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For the purposes of these two applications, the restrictive condition gcd(r, ,v) = 1

is clearly not an essential limitation. In the theorem, however, this condition cannot

be omitted. To see this, we remark that for odd n the divisors of n2 that are

congruent to n modulo 2n are in one-to-one correspondence with the divisors of n.

Their number is not bounded by 11, and not even by a polynomial function of

log(n2), by [4, Theorem 317]; so they cannot be determined by a polynomial

algorithm.

In Section 2 we discuss a combinatorial problem that is related to coding theory.

Using the results of Section 2 we complete the proof of the theorem in Section 3.

More generally, it is proved that for every real number a > { there exists a number

c(a) with the following property: if r, s, n are positive integers satisfying

gcd(r, s) = 1,       s > na,

then the number of positive divisors of n that are rmod s is at most c(a). I do not

know whether the same result holds for any positive a.

The value 11 in the theorem is the best that can be obtained by our method of

proof, but it is not clear whether it is best possible. All we know is that it cannot be

replaced by 5, as is shown in Section 3 by means of examples.

Acknowledgements are due to H. Cohen, P. Erdös, B. J. Lageweg, A. K. Lenstra,

A. M. Odlyzko, C. Pomerance, D.B. Zagier and H. Zantema, who all contributed in

one way or another to the contents of this paper.

1. The Algorithm. Let r, s and n be as in the theorem. Before we describe the

algorithm referred to in the theorem we briefly sketch the underlying idea. We look

for divisors of n of the form xs + r, so we have to solve the equation

(1.1) (xs + r)(ys + r') = n

in nonnegative integers x, y; here r' is such that rr' = nmods. Viewing (1.1)

modulo s2, we obtain a congruence for xr' + yr modulo s. This congruence can be

used to obtain a series of congruences of the form

jca, + yb, = c,mod s.

Using that s > /i1/3, one proves that for some i the number xa, + ybt is so small that

this leaves only a few possible values for xat + yb,. For each fixed value, x or y can

be eliminated from (1.1), and the resulting quadratic equation can be solved.

(1.2) Algorithm. Given r, s and « as in the theorem, this algorithm determines all

positive divisors of n that are congruent to r modulo s.

First apply the Euclidean algorithm to calculate an integer r* satisfying r*r =

1 mod s, see [5, p. 325], and determine the integer r' by

r' s r*n mod s,       0 4 r' < s.

Secondly, for / = 0,1,2_do the following. Calculate a,, />,, c, from the formulae

a0 = j,    bQ = 0,    c„ = 0,

a, = r'r* mod s,       0 < a, < s.

¿>,= 1,

_ n - rr'
c. =-• r* mod s,

s
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and if / s* 2

ai = a,-2 ~ 9/0,-1.

b, = b,-2 - ?A-|.

c, = c,_2 - qici_xmods,

where 17, is the unique integer for which

0 < a,- < a, _,     if 1 is even,

0 < a, < a,,,     if/is odd.

Next, for each integer c satisfying

c = c,mod s,

\c\ < s   if/is even,

2a,/), < c < — + a,6,   if /' is odd,
í

solve the pair of equations

(14) (xa¡+yb, = c,

\ (xs + r)(ys + r') = n

(see (1.5)), and if x and y are found to be nonnegative integers add xs + r to the list

of divisors of n that are rmodi. If a, = 0, then the algorithm stops at this point;

otherwise, proceed with the next value of i.

This finishes the description of Algorithm (1.2). The correctness will be proved

below, see ( 1.7).

(1.5) It is easily seen that the system (1.4) can be reduced to a single quadratic

equation in one variable. Explicitly, if we put

u = at(xs + r),       v = b¿(ys + r'),

then

uv = a,6,7j,       u + v = cs + a¡r + b¡r',

so u, v are the zeros of the polynomial

T2 - (es + a¡r + b¡r')T+ afrn.

We remark that the numbers a,, b¡ appearing in the algorithm are computed by

means of the extended Euclidean algorithm (see [5, p. 325]) applied to s,ax.

Therefore the termination condition a, = 0 is satisfied for some value of i, and,

denoting this value by t, we have t = 0(logs), by [5, p. 343]. Since a, > 0 for odd i,

the number / is even.

The following properties of a¡, bi are easily verified by induction:

(a,, b¡) e Z>0 x Z>0   for /' odd, 0 < / < t,

(a„ b¡) e (Z>0 x Z<0) - ((0,0))   for / even, 0 « i « /,

¿>,+ ,a, - a, + 1¿>, = (-l)'s   forO ^ / < r.

(1.3)

Before we prove the correctness of the algorithm we treat a lemma.
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(1.6) Lemma. Let a¡, b,, / be as above, and let x, y g Rj,(), y g R>o- Then there

exists / G {0,1./) such that

-ys < xa, + yb, < ys   if i is even,

2yaibi < xa¡ + yb¡ < y'xxy + ya,/»,   ///' m odd.

Proof. First we consider the numbers xa, + yb, for even values of /. From />„ = 0,

a, = 0, it follows that

xa0 + yb0 ^ 0,       xa, + yb, < 0.

Therefore there is an even index / such that

xa, + yb¡ > 0,       xa¡+ 2 + y/>, + 2 < 0.

If one of these numbers is less than ys in absolute value we are done. Assume

therefore that the first is 5= ys and that the second is < -ys. Then

(xa, +yb,)/y > s = b,,xa,- a,, ,/>, > b,+ xa,,

so x > yb,+ |, and

(xa, + 2 +ybi+2)/y ^   s = b,i2a,+ ] - ai¥2bH , < bi+2ai+l,

so y > ya, +,. Therefore we have

xa,,\ + yb, f, >2yai+xbii.x,

and from(jc - y/>,+ 1)( V - ya,+,) > 0 it follows that

xaH i + ybi+x < y'jfv + yai+xbl + x.

Since / + 1 is odd this concludes the proof of the lemma.

(1.7) Proposition. Given r, s and n as in the theorem. Algorithm (1.2) correctly

determines all positive divisors of n that are congruent to r modulo s. The number of bit

operations required by the algorithm is 0((log //)3), and <9((log n)2 *') for any e > 0 if

fast multiplication techniques are used.

Proof. First we prove the correctness of the algorithm. Let xs + r be a positive

divisor of n that is r modulo s. Then x e Z>0, and (xs + r)d = n for some

d G Z>0. Multiplying by r*, we see that d = r*n = r'mods, so we can write

d = ys + r' with y G Z>0. Viewing (xs + r)(ys + r') = n modulo s2, we obtain

xr' + yr = (n - rr')/s mod s; notice that the right-hand side is an integer. Multiply-

ing by r*, we find that

/ * n — rr'
xr r* + y =-• r* mod s.

s

This is exactly the case / = 1 of the series of congruences

( 1.8) xa, + yb, = c, mod s       (0 < / < /).

For / = 0 this congruence is trivially satisfied, and  for / > 2 it  follows by a

straightforward inductive argument from the definition of a,, b,, c¡.

Applying Lemma (1.6) with y = 1, we find that there exists / g {0,1./) such

that

\xa¡ + yb,\ < s   if / is even,

2ajbi < xa, + yb, ^ xy + a,b,    if / is odd.



DIVISORS IN RESIDUE CLASSES 335

Fix such a value of /', and put c = xa, + yb,. From (1.8), the inequalities just stated

and

xy < (xs + r)(ys + r')/s2 = n/s2

it then follows that c satisfies (1.3). Since x, y satisfy (1.4), this implies that the

divisor xs + r is indeed discovered by the algorithm. This proves the correctness.

Next we estimate the number of bit operations. The determination of r* can be

done in 0((logn)2) bit operations, see [5, Exercise 4.5.2.30]. From n/s2 < s and

a,b, > 0, for odd i, it follows that for each ie(0,l,,..,f) there are at most two

values of c that satisfy (1.3). Hence for each / the algorithm requires only a bounded

number of additions, subtractions, multiplications, divisions and square root extrac-

tions. These operations are performed on integers whose binary length is 0(log n ),

so each of them can be done in 0((logn)2) bit operations, or 0((log «)'+F) with fast

multiplication techniques; see [1]. Since the number of values for / is t + 1 =

0(logn), this proves the proposition.

(1.9) Remarks, (a) The proof shows that the algorithm is also polynomial if s/nx/^

is bounded from below.

(b) We applied Lemma (1.6) only with y = 1. It may be that another choice of y

gives rise to a faster algorithm in practice.

(c) If s is much larger than wl/3, then the number of quadratic equations to be

solved can be greatly reduced. For example, if s > nx/2, then xy ^ n/s2 < 1. so we

need only consider the cases x = 0 and y = 0. If s > n2/s, one may use the fact that

a2 + bf =$ (4/3)'/25 for some i (see [5, Exercises 3.3.4.5 and 9]); for ihat value of /',

the number xa, + yb, is in an interval of length at most a constant multiple of s,

unless xy = 0, so only a bounded number of quadratic equations need be solved.

More generally, if s > n", with a > \, then the algorithm can be modified in such a

way that the number of quadratic equations to be solved is bounded by a constant

only depending on a. This observation is due to H. Zantema.

2. A Combinatorial Model. We denote by - and a set-theoretic difference and

symmetric difference, respectively: Xa Y = (X - Y)U (Y - X). The cardinality of

a set X is denoted by #X.

A weight function on a finite set V is a function w that assigns a nonnegative real

number to every subset of V, in such a way that w(X U Y) = w(X) + w(Y) for any

two disjoint subsets X, Y of V.

(2.1) Proposition. Let V be a finite set, w a weight function on V with w(V) > 0,

and a e R, a > \. Let further ÓD be a system of subsets of V such that

max{w(D - D'),w(D' -£>)}> a • w(V)

for all D, D' G ¿D with D * D'. Then #cl) < c(a), where c(a) is a constant that only

depends on a.

(2.2) Remark. The conclusion of (2.1) does not hold for a < |. To see this, let Vbe

a vector space over the two element field F2, and let 6D be the collection of

hyperplanes in V. Put w( X) = #X, for X c V. Then w(D - D') = ±#V> a • w(V)

for any two D, D' e °\) with D * D', but #6D = #V tends to infinity with the

dimension of the vector space.
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Proof of (2.1). Choose e fixed with 0 < e < 2a - \, and let ij = 4a - 1 - 2e; so

t) > 0. We write

%= (£>G^:/?- w(K)< w(D) <(ß + e)-w(V)}

for ß g R, 0 < ß < 1. Below we shall prove that

(2.3) #^<1+Tf'

for all ß. Since we have

H Al
"D = U %,

i-O

this implies that

#-D<([l/e]+l)(l +TT1),

as required.

We prove (2.3). Let D, D' e lfy, D * £>'. Then w(D) and w(£>') differ by less

than e ■ w( V) in absolute value. Subtracting w(D n £)'), we see that also w( £> - £)')

and w(D' - D) differ by less than e • w(V). Moreover, the largest of w(D - £>'),

w(D' — D) is at least a ■ w(V), by hypothesis. Hence the smallest is at least

(a - e) ■ w(V), and

w(Da D') = w(D - D') + w(D' - D)

> (2a - e)-w(V) = \(l +r¡)-w(V).

Write üDß = {£>,, D2,..., Dm) with m = #t'D/3. The inequality just proved implies

that

E     ».(D.ADj^if^jd+TjMK).
I « / < / ^ m

On the other hand, we have

I     vv(Z>,aZ>,)
1 < / <y < m

=  L #{(«'. y): ' </<y'<mand*e D,a£>,} • w((x))
ve |/

=  L #{('.;): UUm.Ui^mje £>,, jt € D¡) ■ w({x))
(6 K

=    £   mx ■ (m - mx) ■ w({x)).

ve V

where mx = #(/': Ui^m,x£ D,). From mv • (m - wv) ^ ¿m2 we now see that

I     w(Z>,a D,) < \m2 £ *«*}) = ^2w(K).
1 c / <j * m x e C

Combined with the earlier inequality this gives

l(^)(l+r,)w(F)<im2w(K),

(m- 1)(1 +tj)< w,

W <   1   + if',

as required. This proves (2.3) and (2.1).
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Remark. Notice the resemblance of the above proposition to Plotkin's bound in

coding theory, see [8, Chapter 2, Section 2].

(2.4) Proposition. Let V, w, 6D, a satisfy all hypotheses of Proposition (2.1), and

suppose moreover that a > 1/3. Then #<5D < 11.

(2.5) Remark. This proposition is best possible in the sense that for a < 1/3 we

may have #"D > 12. To see this, let #V = 6 and let ty be the system of subsets

whose characteristic functions are given by the columns of the following matrix:

0 1

0 1
1 1

1 1

1 1

1 1.

\t(t+ l).w( U^|+     I     w(K-n^-)>/-Lw(K).
\'-l / l<l</</ 1-1

Proof. For every yeZwe clearly have {(y - t)(y - (t + \))> 0, which is the

same as

{■t(t+l) + {-y(y-\)>ty.

We apply this to

y = nx= #(/: 1 < / « /,xe V¡)

for x g U (_, Vr Multiplying the resulting inequality by w((x)) and summing over

x e U '_, V,, we obtain precisely the inequality stated in the lemma. This proves

(2.6).

(2.7) Lemma. Let the hypotheses be as in (2.1), and let VX,V2,..., V, e <*D satisfy

w(Vx)*w(V2)* • •• «w(K,),       Vi*Vj   (l<i<y<i).

Then the numbers yi = w(^)/w(K) satisfy for every I e Z f/ie inequality

-tyx + (-t + l)y2 + • • • + (-i + / - \)y, + $t(t + 1) > {1(1 - \)a.

Proof. This follows in a straightforward way from the previous lemma, if we use

that

Hu v,\<w(v),

w(V¡ n Vj) < w(Vj) - a ■ w(V)   for 1 < i <j < /,

the last inequality coming from the hypothesis on ^ in (2.1). This proves (2.7).

Proof of(2.A). Suppose that #6D > 12, and choose £>,, D2,..., DX2 e <$ such that

w(Z>,)< w(D2)< ••• <w(/>12),  A*0, (KKy<12).

0 10  0  110  0  11

0 1  0  0  0  0  1  1  1  I

0 0  10  10  10  10

0 0  10  0  10  1  10

0 0  0  1  10  0  10  1

0 0  0  10  1  10  0  1

In this example, we take w( X) = #X for all X c V.

Before we prove (2.4) we treat two lemmas.

(2.6) Lemma. Let Vx,V2,..., V,<z Vandt e Z. Then

i /   '
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Write x, = w(D,)/w(V). Applying (2.7) to(K,, V2) = (£>,, D2),, = 0 and to(K,, V2)

= (£>,,, D,,). / = 1 we find that

x2 3* a,       Xu < 1 — a.

With(K,, K2.V,) = {£>,, D3, D4, D5, Db, Dn), t = 2 we obtain

-2jc2 - xi + xs + 2x6 + 3xj + 3 > 15a,

and{K,,K2.V,) = {D6. £>7, DK, A,, Dl(), D,,),/ = 3 leads to

-3x6 - 2x7 - as + jcI() + 2X|, + 6 ^ 15a.

Adding the last two inequalities and using that x3 > x2 > a, xw < jch < 1 - a, we

find that

-3a + x5 - x6 + x7 - Xlt + 3(1 - a) + 9 > 30a.

Since *j < xb and x7 < jc„, this yields

12 ;s 36a,

a contradiction. This proves (2.4).

(2.8) For an integer k > 2, let a(/c) be the largest value of a for which the

hypotheses of (2.1) can be satisfied with #l'D = k. It is not difficult to see that a(k)

exists and that, for given »V, it can be computed by solving a linear programming

problem with 2k + 1 variables.

From (2.4) and (2.5) we see that a(12) = {. Table 1 shows the values of a(k) for

2 «s k < 12. The table was obtained as follows. The fact that the tabulated values

are upper bounds for a(k ) was shown with linear programming techniques; the help

of B. J. Lageweg is gratefully acknowledged. In all cases except k = 9 the inequali-

ties from (2.7) were sufficient to obtain these upper bounds. The fact that the

tabulated values are lower bounds for a(k) was next shown by H. Zantema, who

exhibited examples as in (2.5).

If a > a(k), then in (2.1) we can take c(a) = k - 1. From (2.1) and (2.2) it

follows that a(k) tends to \ for k tending to infinity. The proof of (2.1) shows that

we can take c(a) = 0((a - i)"2) for ¿ < a < 1, soa(#V) = ¿ + 0(/V",/2), but I do

not know whether this is the correct rate of convergence.

Table 1

k a(k)

2 1 = 1.000000

3 1/2 0.500000

4 1/2 = 0.500000
5 2/5 = 0.400000

6 2/5 = 0.400000

7 3/8 = 0.375000

8 4/11 =0.363636

9 13/37 = 0.351351

10 9/26    = 0.346154

11 31/92   =0.336957

12 1/3      = 0.333333
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3. Proof of the Theorem. For a positive integer k we put

V(k) = {p'\ p prime, / g Z, t > l,p' divides k),

e.g. V(\2) = (2,4,3). We define a weight w on each set V(k) by putting w({p'}) =

log p. An easy calculation shows that w(V(k)) = log k.

Proof of the Theorem. Since the last assertion of the theorem was proved in Section

1, see ( 1.7), it suffices to prove the first assertion.

We apply (2.4) to V = V(n), with w as above. We have w(V) > 0 if n > 1, which

may clearly be assumed. We take ty = (V(d): d divides n, d > 0, d = rmod s).

Let d, d' be two distinct positive divisors of n that are rmod s. Since s divides

d-d' and is coprime to d, the greatest common divisor of d and d' divides

(d - d')/s. Therefore we have

At a ja      \d-d'\       max{</,</'}
gcd(d, d') < x——-I <-,

SO

j log« < max{log(<//gcd(d, d')),log(d'/gcd(d, d'))).

Since K(gcd(¿, </')) = V(d) n F(</'), this leads to

XK) < max{ w(K(¿) - V(d')), w(V(d') - V(d))).

Hence we can choose a > j such that the right-hand side is > a ■ w(V) for all pairs

í/, </'. Then all hypotheses of (2.4) are satisfied, and therefore #ûî < 11.

This completes the proof of the theorem.

(3.1) Proposition. For every a g R with a > \ there exists a constant c(a) with

the following property. Ifr, s, n are integers satisfying

n > 0,    s > n",    gcd(r, s) = 1,

then the number of positive divisors of n that are congruent to r modulo s is at most

c(a).

Proof. The proof is similar to the proof just given, with (2.4) replaced by (2.1).

This proves (3.1).

If a > a(k), with a(k) as in (2.8), then we can take c(a) = k - 1 in Proposition

(3.1). I do not know whether the condition a > \ in (3.1) can be replaced by a > 0.

In the theorem, the value 11 cannot be replaced by 5. In fact, H. Cohen proved

that there exist infinitely many positive integers n that have at least six positive

divisors in the same coprime residue class modulo a number s > n1/3. The first ten

values of n are listed in Table 2, together with the residue classes r mod s that

contain six divisors of n. The table was computed by A. K. Lenstra with the help of

the VAX 11-780 computer at the Mathematical Centre in Amsterdam. No further

examples with n < 3 • 106 exist, and no example with seven divisors in the same

residue class was found.
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Table 2

245784

288288

320320

480480

911064

65

71

69

83

115

1,19

1,28

1,22

5,65

1,34

1755600

1796760

2066400

2511600

2841696

131

137

143

149

175

2,100

3,93

2,25

7,8

2,23
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