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A New Scalar Potential Formulation of

the Magnetostatic Field Problem*

By Joseph E. Pasciak

Abstract. A new method for approximating magnetostatic field problems is given in this

paper. The new method approximates the scalar potential for the magnetic intensity and is

based on a volume integral formulation. The derivation of the new computational method

uses the spectral properties of the relevant integral operator. The corresponding algorithm is

similar to that obtained from coupled differential and boundary integral approaches. Conver-

gence and stability theorems are proven. Finally, convergence results in actual computations

are compared with results for the usual volume integral method used in GFUN3D.

1. Introduction. In this paper we define a new numerical method for magnetostatic

field computation. We specifically consider the problem of calculating the nonlinear

static field effects produced by the presence of iron-type materials. Applications for

these problems occur in, for example, the design of accelerator and beam control

magnets, fusion devices, electric motor design, and magnetic tape head design.

A variety of numerical methods for the solution of magnetostatics problems have

been proposed and some general purpose codes have been produced [1], [2], [4], [5],

[8], [12], [13]. For examples of magnetic field calculations, see [4], and the references

therein. The magnetostatic field problem can be stated as an elliptic interface

problem and the analysis presented in [3], [8] is applicable. Integral formulations of

this problem have also been considered [6], [11].

In this paper, a new scalar potential integral formulation of the nonlinear

magnetostatic field problem is defined and analyzed. To motivate the new method,

we give an analysis for constant permeability problems which shows that the large

errors in the iron domain observed with the usual volume integral method lie in

subspaces perpendicular to gradient functions. The new method is designed to

eliminate errors of this type while generalizing to a method for nonlinear problems

which exhibits uniform convergence in the iron domain even as the permeability

becomes uniformly large.

The new method is derived as a volume integral formulation which approximates

the magnetic intensity H in terms of the gradient of a scalar potential. It is then
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observed that the method can be implemented with computational work similar to a

scalar potential-boundary integral formulation. In fact, if the iron domain is smooth

enough so that certain results from classical potential theory hold then the method

can be reformulated as a scalar potential-boundary integral method.

The new method seems particularly well suited for implementation as a general

three dimension algorithm. Like the usual integral method, the mesh need only be

described on the iron domain and hence the user input problem is simpler than that

for differential methods which require mesh generation on the entire space. Like

coupled differential and boundary integral approaches, only the evaluation of sparse

matrix systems in the interior and full matrix systems on the boundary nodes are

required. For implementation with piecewise linear functions on tetrahedra, the

method uses the same singular integrals already evaluated in GFUN3D [1] and some

easily evaluated gram or mass matrices associated with standard finite element

problems. Off iron calculations are also economical since unlike GFUN3D, only the

boundary nodes enter into the calculation.

The outline of the remainder of the paper is as follows. In Section 2, the

magnetostatic field problem is defined and it is shown that the integral method

exhibits high permeability errors (at least in constant permeability calculations). In

Section 3, the new method is described and its efficient implementation is discussed.

A nonlinear convergence and stability analysis is presented in Section 4. The

analysis used is similar to that given by Friedman. In Section 5 results of actual

computations are compared for the new approach and the usual volume integral

method.

2. High Permeability Errors in Volume Integral Approaches. The basic equations

for magnetostatics can be derived from Maxwell's equations and are given in terms

of the magnetic inductance B, the magnetic intensity H, and the current density /,

div£ = 0, cnx\H = J.

These equations are connected by a constitutive relation B = n(x, H)H where the

permeability ¡i is an experimentally determined nonlinear function of H and posi-

tion. In addition, the normal component of the B field and the tangential compo-

nents of the H field are continuous across the boundary of regions with different

permeability.

Typical magnetostatic field problems involve regions, which we shall denote ß/5

containing ferromagnetic material. We shall refer to the complement of the region S27

as the exterior even though it may have components which are surrounded by ñ,.

Throughout the exterior region we always have ¡x(x, H) = 1.

One way of solving the above problem is by the introduction of the volume

integral operator G defined by

(2.1) G(M) = ^1 M- v(t—^) dx'.
v    '      4ir JQ¡ \\x-x\)

The integral operator G maps vector functions defined on Q, into vector functions

defined on R}. Define the field due to sources Hs as the field observed without the

iron material present. Hs is given by the integral relation

(2-2) ^-¿//xv      1       &..
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We shall assume Hs is known since (2.2) can be calculated analytically or approxi-

mated numerically to within reasonable precision.

Define the magnetization M and the field due to magnetization HM by

(2.3) M = B - H   and   HM = H - Hs.

It then can be shown that

(2.4) HM = G(M).

By combining the above identities one can easily derive the nonlinear integral

equation

(2.5) x(*, H)-lM(x) - G(M)(x) = Hs(x),

where x(x, H) = p(x, H) - 1 and H s H{M) = Hs + G(M).

Before proceeding further, it is convenient to define some notation. Let the L2

vector inner product on the iron domain be denoted by ( •, • ), i.e.

(u,v)=l   u(x)-u(x)dx.

The corresponding norm is denoted by || • ||.

There are various techniques available for discretizing (2.5) which lead to similar

numerical algorithms. As a typical example consider the Galerkin discretization.

First assume that we have defined approximation subspaces {Sh} in L2(S2/)3.

Typical subspaces can be defined, for example, by breaking the iron domain into

subregions and considering subspaces of functions which are piecewise polynomial

on each subregion in each component. The approximate solution Mh is defined to be

the unique function in Sh satisfying

(2.6) {xlMh-GMh^h) = {Hs^h)   for all-in S,.

Here and in what follows we shall leave out the (x, H) in x(*> H) for notational

convenience.

The reason that (2.6) exhibits errors in high permeability calculations can be

illustrated by considering constant permeability problems. We shall need some

auxiliary subspaces of L2(ß7)3. Define

K= {t/# = V<f> for some<j> e Hl(Qr)},

Ko = {*/# = V<#> for some <f> e Hç)(Sir)},

KH = subspace in K perpendicular to K0,

N = subspace in L2(Q,) perpendicular to K.

The space Hl(ti,) is the Sobolev space of order one on Í2,. Hq(Q,,) is the subspace of

H1^,) whose boundary trace also vanishes (see [9], [10]).

The following results for the operator G are proven in [7].

(i) G is a nonpositive symmetric operator on L2(S2,)3.

(ii) The spaces K0, KH, N are invariant under G.

(iii) N is the null space of G.

(iv) G is minus the identity on KQ.

(v) The eigenvalues of G on KH lie in the interval [-1, -e] where 0 < e < 1 is a

positive constant which depends only upon the domain ß7.
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We consider the constant permeability problem

(2.7) —KrM-G(M) = Hs.
Mo     *■

For illustration, we shall assume that the integral operator G can be calculated

exactly, however small errors due to numerical quadrature or discretization are made

in the approximation Hs of Hs. Thus we consider the approximate problem

(2.8) —±-rM-G(M) = Hs.
Mo     l

The errors in Hs will in general produce small error components which lie in the

space N. Error components in N are then amplified by (¡u0 - 1) in the solution M.

Observe that from the spectral properties of G, the components of Hs in K are only

increased by a factor of at most e"1. Thus as ju0 gets large, the null space errors will

eventually dominate the true solution.

From the above discussion, it is clear that high permeability errors can be reduced

in constant permeability problems by projecting the approximate field due to

sources or the resultant magnetization into K. For nonconstant permeability, it is

not sufficient to project Hs or the resultant magnetization onto K. The method

described in the next section has convergence estimates which are independent of the

permeability as the permeability gets uniformly large and thus succeeds in reducing

these errors while generalizing to variable and nonlinear ju, problems.

3. The New Method. The new method is described in this section. Using the

properties of the operator G, an implementation of this method is given which only

requires sparse matrix operations in the interior of the iron domain and full matrix

calculation from boundary to boundary elements. The resulting discretization is

similar to a coupled scalar potential-boundary integral type formulation. We believe

that this approach is computationally competitive with any existing approach.

The arguments given at the end of Section 2 imply that with constant permeabil-

ity, a necessary and sufficient condition for the B field to be uniformly bounded as

the permeability becomes large is that the field due to sources Hs be in K. Thus we

shall assume throughout this paper that Hs is in K. Note that this condition is satisfied

when the average current enclosed by every loop in the iron domain is zero. From

Eqs. (2.3) and (2.4) we see that H is also in K. The new method is then defined to be

the H formulation of the usual volume integral method posed on subspaces of

gradient functions. Thus we seek the solution of the problem

(3.1) (I-Gx)H = Hs   where H is in K.

The reason that (3.1) is an improvement to (2.5) can now be stated. As long as the

ratio Xmax/Xmin is not large men me condition number of the operator (/ - Gx) is

bounded independent of the magnitude of x- Thus one expects that the correspond-

ing approximation method converges with rates that are also independent of the

magnitude of x-

Let P denote the L2(fi7)3 orthogonal projection onto K. Since K is the orthogonal

complement of the null space N, the above problem is equivalent to the problem

(3.2) (/- GPx)H = Hs   for H in K.

To discretize the above problem, we first introduce approximation subspaces {Kh}

of K. The natural way to define Kh is by first defining a standard scalar-valued
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approximation subspace {Sh} on Qr and then defining

Kh= {v<i>|<>in5A}.

An example of Sh is given by triangulating the domain ti, and letting Sh be the space

of functions which are continuous on il, and piecewise linear on the triangles. For

such subspaces, the functions in Kh are piecewise constant on the triangles and the

number of basis elements is the number of triangular vertices (nodes) minus one.

The new discrete method is then essentially the Galerkin method applied to (3.2).

Specifically, the approximate solution Hh is defined as the solution of the problem

(3.3) (Hh-GPhX(x,Hh)Hh,th) = (Hs,th)   forain*,.

The operator Ph is defined to be the L2(Q,)3 orthogonal projection onto Kh. We

shall see in the next section that problem (3.3) has a unique solution under

physically reasonable assumptions on the permeability function. In addition, error

and stability estimates for the solution in the iron domain will be given which are

independent of the permeability as the permeability gets large (Theorem 2).

We next consider implementation of (3.3). First observe that (3.3) can be written

(3-4) Hh-GhPh(XHh) = PhHs,

where the discrete operator Gh is defined by Gh\ph = $h and 6h satisfies

(3.5) (**,«») = (G*A,«A)   for allein AT,.

We shall solve problem (3.4) by matrix iterative techniques. Note that to solve (3.4)

with iterative techniques it is only necessary to evaluate the action of the operator on

the left-hand side on functions in Kh.** Thus we must be able to evaluate Ph and Gh.

To evaluate Ph it is only necessary to solve the standard sparse matrix problem

associated with the Neumann problem on the subspace Sh or equivalently solve the

L2(ß7)3 Gram matrix for the subspace Kh. The computation of Gh leads to the same

matrix problem as for Ph and the evaluation of the quantities

(3-6) (G**.**)" ^

as |, ranges over all of the finite element basis functions of Kh. A priori, it looks like

the evaluation of the quantities in (3.6) requires the multiplication of a full matrix

times a vector with dimension equal to the number of iron nodes. We shall

demonstrate that (3.6) can be evaluated in far fewer operations. The key observation

is that from the spectral results for the operator G we have

(3.7) (G +7)^ = 0   torx¡sinK0.

We shall assume that we have a finite element basis for the functions in Sh for which

functions can be represented

** = E c,t, + E 4-A-
i=i       i-i

Here the functions { t, } are zero on 3fi and the functions {/?,} are nonzero only near

the boundary. We also define S° and S¡¡ by

SA° = span{T,.},       i = \,...,N0

5jf = span{j8,.},       i = l,...,Nh.

**For a description of how this can be done with the similar problem (2.5) see [11].
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Note that the dimension of 5° is essentially the number of interior nodes while the

dimension of Sj¡ is essentially the number of boundary nodes. Let \ph and 6h be

functions in Kh; then \¡/h = V<¡>h and 0h= Vi?A for some functions <f>A and t\h in Sh.

Decompose <f>h and tja by

4>h = 4>°h + tí   and   i,h = 1,° + t,*,

where <f>°, i]° (resp. </>£, tj£) are in SA° (resp. S¿ ). Then (3.7) implies the identity

(3.8) (G^,öJ = ((G + 7)v^,Vr,*)-(^,^).

Thus for any given function \¡>h, the evaluation of (3.6) requires a sparse matrix

evaluation to compute

(,/,„,£,)    for. = 1,...,TV,

and a full Nb x Nh matrix evaluation to compute

((G + 7)vtô,VA)   fori-l,...,^.

We finally note that field approximation outside the iron is calculated from the

formula

Bh(x) = (Hs + GMh)(x)   where Mh = PhXHh.

Decomposing Mh = M° + M¡¡ and noting that G of functions in K0 is zero outside

of ñ; gives that

Bh(x) = (Hs+ GM¡¡)(x)    forxnotinß,.

Thus only the boundary nodes need be used to calculate fields outside of the iron

domain.

4. Analysis of the Discrete Method. The new method is analyzed in this section.

Convergence and stability results are given under certain monotonicity assumptions

for the susceptibility function x- We demonstrate that these monotonicity assump-

tions hold for the susceptibility functions of isotropic iron materials satisfying

physically reasonable assumptions.

For our existence theorems we shall require that x(*> 77)77 be strongly monotone

and Lipschitz continuous in L2(ß,)3, that is

(a.l)    (x(x, 77J77! - %(x, H2)H2, Hx - 772) > C0(77, - H2, 77, - 772)

and

(a.2) |x(x, 77J77, - %{x, H2)H2\\ < Cjfii - 772||

for constants C0 > 0 and C, > 0. Note that x(*, 77)77 is the magnetization corre-

sponding to the field 77. For many applications, H is a priori bounded and C0 may

be comparable to C,.

The following two theorems give stability and convergence results for the new

method and its discretization.

Theorem 1. If Assumptions (a.l) and (a.2) hold then (3.1) has a unique solution.

Theorem 2. If Assumptions (a.l) and (a.2) hold then (3.3) has a unique solution Hh.

Furthermore, if H solves (3.1) and 8 = inf^,e^ ||77 - <//|| then

(4.1) |*_tfJ<4|1 + __lj.
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From (4.1) we see that the discrete method gives quasi optimal convergence to 77

in L2(fi,)3. As we shall demonstrate, for many applications the ratio Cx/C§ is

bounded even though the permeability is large and thus the constant

/ ^        e~l/2 + a

is also bounded.

We shall prove only Theorem 2. The proof of Theorem 1 is similar to the existence

and uniqueness part of Theorem 2. The techniques used in these proofs are similar

to those given by Friedman in [5].

Proof of Theorem 2. We shall first set up some notation for the proof. Introduce

the additional inner products on K and Kh by

((u,v)) = -(G'xu, v)      toru,vinK,

((u,v))h = -(G'hlu,v)     toru,v'\nKh.

By (v) and (3.5) the corresponding norms [ • ] and [ • }h satisfy the estimates

(4.2) H2 < [u]2 < e-I«!2

and

(4.3) N|2 < [u]2h < e-l\\u\\2.

Also, for 77' e K and 77; e Kh let

M' = x(x,H')H'   and   M'h = *(*> »»')#*'

and finally

RhB = 8- GhPhx(x,6)6   and   Rd = 6 - Gx(x,0)6.

Our approximate problem (3.3) can then be written

RhHh = PhHs-

We obviously have for 7/;} and Hi in Kh

((RhHl-RhH2,Hl-H2))h

= ((Hi - Hi Hi - H2))h +(Ml - M2, Hi - H2).

By (a.l)

{Ml - M2, Hi - H2) > C0\Hl - H2( > C0e[77A2 - Hi]].

Combining this with (a.2) gives

(4.4) (1 + £C0)[77A1 - 77,2]¡ < ((RhHl - RhH2, H'h - H2))h

< (1 + Cx)\Hl - H2]\.

By the standard theory of monotone operators [14], (4.4) implies existence and

uniqueness of the solution of problem (3.3). An estimate analogous to (4.4) can be

proved for the operator R, the norm [•], and the inner product (( , >> hence proving

Theorem 1.

We next derive error estimates. Let 77 = P(H); then from the definition of ô we

obviously have

(4.5) ||77 - H\\ = Ô.
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By (4.4), (3.1) and (3.3)

(4.6) (1 + eC0)[77 - Hh\\ < ((RhH - RhHh,H - Hh))h

^((RhH-PhRH,H-Hh))h

< «77 - 77, H - 77,», - ((GhM - PhGM, H - 77,», = Tx - T2.

HereM = x(x,H)H.

By the Schwarz inequality and (4.5)

Irrl^e-^tf-T/,],.

From (3.5), PhG = G, and thus (a.2) and (4.3) imply

\T2\ = \(x(x, 77)77 - x(x, 77)77, 77 - 77,)| < C^ - 77,|| < C&H - 77,],.

Combining the above inequalities gives

(«,-1/2 + c )
(4.7) [Ä_ff,U<L_^)8.

Using (4.3), the triangle inequality and (4.5) gives estimate (4.1) and completes the

proof of the theorem.

We next consider isotropic materials where

(4.8) x(x,H) = x{\H(x)\).

We assume that x is a nonnegative scalar function satisfying

(a.3) C0(b - a)2 < {x(a)a - X(b)b}{a - b),

(a.4) \x(a)a-x(b)b\^Cl\a-b\

for nonnegative a and b. Note that (a.3) with C0 = 0 is satisfied if x is nondecreas-

ing.

Proposition 1. Let x be defined by (4.8) with a susceptibility function x satisfying

(a.3)-(a.4). Then (a.l) and {a.2) hold.

Proof. Let Q(x, y) be defined by

Q(x,y)= {x(\xÜx - x(\y\)y}{x - y)    torx,yinR\

From obvious properties of the integral, it is sufficient to show that

(4.9) Q(x,y)>C0\x-y\2

to verify (a.l) and that

(4.10) lx(W)*-x(LvlM<Cil*-v|
to verify (a.2). We may assume without loss of generality that |jc| > | v-| and that

|jc| > 0. Let

(4.11) e = x/\x\,

then

(4.12) y = \y\(Xe + w),

where w is perpendicular to e and |A| < 1. Let Fx = x(\x\)\x\ and Fy = x(\y\)\y\-

Using (4.11) and (4.12) it is straightforward to compute

(4.13) Q(x, y) = (Fx - Fy)(\x\ - |v|) +(1 - \)(Fx\y\ + Fy\x\).
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Thus (4.9) follows immediately from (4.13) and (a.3).

Let w = |x(W)* ~~ xdJ'D.yl- Using (4.11) and (4.12), we compute

(4.14) cc2 = \(Fx-Fy)2+(l-\){F2 + F2)

and

(4.15) \x - v|2 = \(\x\ - |v|)2 +(1 - A)(|x|2 + |v|2).

Thus (a.2) follows from (a.4) which completes the proof of the proposition.

5. Applications and Numerical Results. In this section, computational results are

given which show that the new approach produces noticeable improvements over the

usual integral method for high permeability calculation in the iron region. In

addition, we consider a typical B - H curve and see that the constants C0 and Cj of

(a.l) and (a.2) are comparable in low field calculations. Thus for this application, the

estimate of Theorem 2 is good even though the permeability is large.

Our computational examples use an annular iron region in two dimensions of

inner radius one and outer radius two. We shall consider constant permeability

calculations with source fields for which analytic results are easily obtained. We only

consider the errors in the iron domain; consequently, errors obtained may seem

unreasonably large. Results from these codes show substantial improvement off the

iron domain and hence do not contradict off iron convergence results for GFUN

quoted elsewhere.

For the usual integral calculation we employ the Galerkin type discretization

corresponding to (2.6). The annular domain is partitioned into Nr X Ne quadrilateral

elements and a system with 3 • Nr ■ Ne unknowns is solved. Unknown field quantities

are approximated by piecewise constant vector functions and hence the convergence

is asymptotically (as Nr and Ne tend to infinity) first order.

Figure 1
The first quadrant mesh used with the new method
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For the new method which we shall sometimes denote 77 - V, the annular

domain is first partitioned into Nr X Ne quadrilateral regions and then each quadri-

lateral region is split into four triangular elements (see Figure 1). The subspace 5, is

defined to be functions which are piecewise linear on the triangles and continuous

on the entire iron domain. Unknown field quantities are approximated by functions

which are piecewise constant on the elements and, consequently, the convergence is

asymptotically first order. The field approximation requires the solution of a system

with (2Nr + I) ■ Ne - 1 unknowns.

The first set of calculations are for an 77s field which is constant and points in the

x direction. Figure 2 compares the maximum norm difference of the computed and

the analytic B field on the iron domain for the usual integral method and the new

approach. This example is really rather special in that the numerical quadratures on

the right-hand side of (2.6) and (3.3) produce exact integration results. Thus the

argument in Section 2 is not valid and both the integral approach and the new

approach give convergence results which are independent of the permeability.

The errors of the two methods are compared in Figure 3 for a constant 77s

calculation with a numerical integration error of magnitude l/Ne added in the

computation of the quantities on the right-hand side of (2.6) and (3.3). Note that

both methods are stable with respect to these small quadrature errors in low

permeability calculation however a drastic difference in convergence is seen in high

permeability calculations with the integral method where these small quadrature

errors are blown way out of proportion. As theoretically predicted the new method

remains stable and convergent throughout the entire permeability region.

o
o
N.
H

O

20000

max

Figure 6

Bound for Cx/Cq a function ofBmaxfor the permeability of Figure 5
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For the third example (Figure 4), errors are considered for calculations with

conductor fields defined by the second harmonic. That is,

Hs={x2-y2,-2xy).

These calculations are more representative of the situation encountered in actual

applications since the quadrature rules give only an approximation to the data for

(2.6) and (3.3). Note that the error exhibited by the new method is independent of

the permeability. The errors observed with the usual integral method increase with

permeability. Note also that a 75% reduction in the mesh size leads to the predicted

75% error reduction with the new approach while a 75% reduction in mesh with the

integral method leads to only a 95% error reduction with large jti.

We next apply Proposition 1 to obtain bounds for the ratio C1/C0 as a function

of the maximum field value |5|max for a typical B - H curve. Figure 5 gives the

measured B - H curve for the iron used in the "Colliding Beam Accelerator" (CBA)

superconducting magnets developed at Brookhaven National Laboratory. Figure 6

gives the corresponding bound for C1/C0. Note that the ratio remains relatively

small so long as \B\mdX is less than about 15000 Gauss. Thus for low field

applications, Theorem 2 guarantees uniform (independent of the permeability)

convergence of the nonlinear magnetostatic field problem in the iron domain.
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