
mathematics of computation
volume 43, number 168
october 1984, pages 501-528

Accurate Computation of Divided Differences

of the Exponential Function

By A. McCurdy, K. C. Ng and B. N. Parle«1

Abstract. The traditional recurrence for the computation of exponential divided differences,

along with a new method based on the properties of the exponential function, are studied in

detail in this paper. Our results show that it is possible to combine these two methods to

compute exponential divided differences accurately. A hybrid algorithm is presented for

which our error bound grows quite slowly with the order of the divided difference.

Introduction. We need accurate divided differences for computing certain func-

tions of matrices f(A) by means of the Newton interpolating polynomial (cf. Section

6): n_x k

f(A)-A\f-I+nt*\f-Tl(A-Xjl),
k=\ 7=1

where A* stand for the divided differences of/ on the eigenvalues of A. One can

evaluate f(A) by computing first the divided differences and then accumulating the

polynomial. The divided differences must be of high relative accuracy because they

are the coefficients of products of matrices which, in some cases, have very large

norms. What makes such accuracy possible is that the divided differences are not for

arbitrary smooth functions / but for well-known analytic functions such as exp, sin

and cos. Thus we can exploit their properties in the computation.

In this paper we restrict our attention to exponential divided differences. A new

technique, namely argument reduction for matrix exponentials, makes it realistic to

consider data sets with imaginary parts bounded by ir in magnitude. Based on this

an algorithm is presented for which our error bound grows quite slowly with the

order of the divided difference.

We begin by collecting together a considerable amount of information on divided

differences and we hope that there will be other applications for accurate divided

differences of well-known functions.

1. Basic Notation and Theorems.

1.1. Definition of Divided Difference. Following McCurdy [7], we will use an

uncommon but compact notation for divided difference. For completeness and

simplicity we use the contour integral representation to define the divided dif-

ferences. Our attention will be on the basic properties (1.2.1), (1.2.2) and (1.2.3)

given in Subsection 1.2.

Received September 14, 1983; revised January 30, 1984.

1980 Mathematics Subject Classification. Primary 39-04; Secondary 33A10, 65D20.

1 The authors gratefully acknowledge support by the Office of Naval Research Contract N00014-76-C-

0013.
©1984 American Mathematical Society

0025-5718/84 $1.00 + $.25 per page

501

502 A. McCURDY, K. C. NG AND B. N. PARLETT

Let / be a holomorphic function defined inside and on a simple closed contour C

enclosing the sequence Z = [f,, f2,...,£„,...] of complex numbers. Z denotes the

abscissae (or, for those who do not like Latin, data points or nodes, or even knots).

We use Akf to denote the kth order divided difference of /on £¡, £I+1.£/+Jt. For

any integer /' > 0, the kth order divided difference Akf on Z is defined (following

Gel'fand) to be

(1.1.1) A*f/~A*,(z)/-^/ /(;\^
2tt; yc (ío - f,.)(w - fi+J • • • (u - í/+J

The superscript of A*/ denotes the order and the subscript denotes the starting

point in Z. Reference to the abscissae Z is usually suppressed.

Remark 1. An alternative, and more elementary definition (used in Conte and

de Boor [2, cf. p. 40] designates A*/ as the coefficient of xk in the unique

polynomial of minimal degree which interpolates/at f„ f/+1,.. .,Çi+k.

Remark 2. Milne-Thomson [13] writes A*/as [¡„ f,+i,...,f,+J, suppressing the

function while de Boor considers [£,, ¿h-i»* ••»£<+*] as a linear functional whose

value on / is written [f„ ¡,+1,... ,£,+*]/. Davis [3] uses/w(f,., ?i+1,... ,£,+*); some

others like Atkinson [1] use /[£,-, f/+1,. ••,?,- + *] while Kahan and Farkas [6] and

Gabel [4] use A/(f¿, ?<+1».• •,£,+*)> which suggested the compact notation used here.

Much of this introductory section is taken from the thesis of McCurdy [7].

1.2. Basic Properties of Divided Differences. Letf(k) denote the kth derivative of/.

From basic complex analysis one can deduce from (1.1.1) that

(1.2.1) A*/does not depend on the order of £,-, f,+1,... ,Çi+k in Z,

(1.2.2) if £,. # ri+fc, then A*/ = (Afo\f - A*"1/)/^* - U
(1.2.3) if S, = fi+1 = ••• = f|+4, then A*/=/<*>(£,.)/*!, in particular A°,/ =

/(£)•
Most definitions for divided difference are based on (1.2.1), (1.2.2) and (1.2.3).

Thus our definition agrees with them when the function is holomorphic. In this

paper/will be holomorphic.

1.3. Integral Representation.

Theorem (Hermite-Genocchi).

(1.3.1) Akf=fp ...f-
•'o •'o •'o

f(k% +(f,+i - £>, + ■■■ +tt+* - &+*->*] ¿"* • • • dv2dvx.

Proof. See Gel'fand [5].

Corollary.

(1.3-2) \A\f\^msx\f^k\t)\,

where ñ ¿s the convex hull of$¡,.. .,$i+k.

1.4. Mean Value Representation. For real abscissae, (1.3.1) implies that there exists

some tj e ß such that

(1.4.1) Akf=^fw(v).

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 503

One might hope to generalize this representation for complex abscissae by requiring

■q to he in the convex hull of the abscissae, but this will not suffice, as is easily seen

by the following example:

Example I. fx = 1, f2 = 2, /(f) = exp(2w/f),

(1.4.2) A\f =
e4"' — e2%

2- 1 -0*/«(n)

for any finite tj.

In the above example, if we require both abscissae to he in /' 's fundamental domain

{£: Re(0 e [^, |) } (note that/(f + n) = /(f) for any integer n), then the best we

can have is that there is some tj close to their convex hull for which (1.4.1) holds. The

next example illustrates this property.

Example II. f, = t, £2 = -i» í is a small nonzero real number,

(1.4.3) &\f .ajn(2>0#/(1)(i|)
2/ <

for any raz/17.

1.5. Matrix Representation. The traditional way of computing A*/uses the divided

difference table. Each divided difference is computed from its two immediate

neighbors in the column to its left (use (1.2.3) for coincident abscissae and (1.2.2) for

the rest).

fi /tti)

?2 /tt2)

AU

AU

Ar1/

AW

r. /a»)
For our purposes it is more helpful to arrange the table as an upper triangular

matrix, for example

(1.5.1) A/s

/(fi) aU

/(?2)

Ar1/

AT2/

The symbol A/= A(Z)f, without the superscript and subscript, is used here to

represent a matrix, not a scalar. Let Z„ be the special n X n bidiagonal matrix

associated with the ordered set Z

(1.5.2) Z„ =

fi 1

£2 1

1

504 A. McCURDY, k. c. ng and b. n. parlett

Theorem (Opitz). The divided difference table is a matrix function

(1.5.3) A/ = /(Z„).

Proof. See McCurdy [7] or Opitz [10].

Remark. Opitz [10] first obtained the result but his paper is little known in the

U.S.A. and is in German. McCurdy rediscovered it in 1979 when working on his

thesis.

1.6. Our Objective. Given any Z = [£,, f2,.. . ,f„], can we compute A^expfor

k = 0,l,...,n — 1 with guaranteed high relative accuracy? Using the matrix repre-

sentation, it is equivalent to ask "Can we compute the first row of Aexp, or

exp(Z„), accurately?" The answer is affirmative if the abscissae are close to the real

line.

In the next two sections, we discuss some basic and hybrid methods for computing

A exp. In Section 4 we give the results of McCurdy [7] for real abscissae Z, which

show that one can compute Aexp accurately in all circumstances. We turn to the

complex case in Section 5 and show that in certain cases the problem is "difficult"

(to be precise, certain sets Z give unexpectedly small values for A* exp, and we call

them "difficult"). For difficult Z, we cannot expect high relative accuracy; the

situation is like approximating zero by some nonzero number. Finally, in Section 6,

we discuss the application of the divided differences to matrix exponentials.

2. Basic Methods for Computing Exponential Divided Differences.

2.1. Standard Recurrence. When all f's in Z are distinct, we can use the

well-known recurrence scheme (1.2.2) to compute the divided differences table A/:

AkJtor i > 0, k > 0 and k + i < n.

SR (Standard Recurrence scheme).2

(2.1.1) Kf^f-f'f

for each k = 1,2,...,« and i — 1,2,...,n — k, where A0,/ = /(£,). □

SR is probably the simplest algorithm. It takes only n2/2 + O(n) arithmetic

operations to fill up the whole of A/ when all data in Z are distinct. However, when

some /(£,-) are close together and given to limited precision, it may produce

enormous relative error. For example, consider the exponential function on data

[1,1.0001]. Assume function values given to 8 decimal digits, then

, 2.7185537-2.7182818 ,„„„.-. --,„«.«« \
A1!exp =-Tnnivnn-= 2.719OOOO (Ans. 2.718417747...).

Four digits have been lost during the subtraction (which is performed exactly!).

Notice that the loss does not depend on the number of digits carried by the function

values. The first four digits of the function values agree, therefore four digits will be

lost no matter how many digits are given. Since the higher order differences of exp

behave like exp (because the derivative of exp is exp), we would expect A" exp to

2Parlett's Recurrence for computing f(Z„) (Parlett [11]) is identical to the standard iterative scheme for

computing A/. The technique is based on the commutativity of Z„ and/(Z„): Z„ /(Z„) =/(Z„) • Z„,

cf. Parlett [11].

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 505

lose 4m digits if the data are as close together as in the example. Consequently, when

only 12 or 16 decimals are available it is quite possible to lose them all for higher

divided differences!

If the tabular values are the only data then there is no simple escape from this loss

of information. That is why divided differences have a bad name in practice.

However, in a number of applications the functional form of / is known (e.g. exp)

and can be exploited to obtain accurate values in this situation. This is the essential

point of our paper.

We shall suppress the reference to exp or Z in the exponential divided differences

when it can be done without ambiguity. Thus A*, Ak(Z) and A* exp may all mean

A*(Z)exp.

2.2. Special Formula for The First Divided Difference. If the sine function for

complex arguments is available and fully accurate then we have a reliable formula

for the first divided difference. Let w = (f,+1 + f,)/2 and \p = (f,+1 - f,)/2, then

,, ef'+' - es> _ a e*-e~* _ a sinh(^) _ w sin(ñfr)

' fm-r, " + -(-*) e ' * i* '

If \p = 0, we set A1, = ef/.

Function FDD(x, v) (First Divided Difference). Given complex data x, y, FDD

will return the value of A\([x, y]).

1. « = (y + x)/2,

2.\p = u — x,

3. if^/= 0 then FDD = ex,

4. if tp * 0 then FDD = ew • sin(/tf0/(/if0.
5. Return. D

2.3. Taylor Series. Another simple way to compute A is by its Taylor series

A = Aexp = exp(Z„) = I + Z„ + Z2/2! + • ■ • .

Because of the special structure of Zn, there is an extremely elegant algorithm for the

first row of the matrix A. Explanation is given in Appendix A of [8]. This approach

does not apply when/is known only by its values on Z.

Algorithm TS (Taylor Series). Given Z as in Subsection 2.1, this algorithm

computes [d(l), d(2),... ,d(n)] := [A°x,... ,A"~M by Taylor series. In what follows,

k indicates the current loop number, and s(i) stores the (1, z')th element of matrix

(Zn)*+i-V(* + i - 1)!
TS 1. [Initialize]. Set d(i) = s(i) = l/(i - 1)! for i = \,2,...,n.

TS 2. [Loop.] For k = 1,2,... until convergence do

TS 2.1 s(l) ^ fx • 5(1)/*
TS2.2 For/ = 2,3,...,« do

s(i) - [f, • s(i) + S(i - l)]/(* + i - 1),

d(i) - d(i) + s(i).

TS 3. Set d(l) = exp(f,) and the algorithm terminates. D

Algorithm TS computes only the first row of A. If one wants the whole divided

differences table, one has to use the following TS(II), which essentially computes the

whole A by repeating TS on the submatrices in Z .

506 A. MCCURDY, K. C. NG AND B. N. PARLETT

Algorithm TS(II) (Taylor Series Algorithm (II)). Given Z and a matrix array F,

this algorithm computes F = A by Taylor series. In what follows, k indicates the

current loop number, and F(i, m), i > m, stores the (;', m)th element of matrix

(Zn)k+'-m/(k + i - m)\.

TS (II) 1. [Initialize.] Set F(i, m) = F(m, i) = \/(i - m)\ for 1 < m < i < n.

TS (II) 2.[Loop.] For k = 1,2,... until convergence do

TS(II)2.1.For«i = 1,2,...,« -Ido

F(m, m) «- tm ■ F(m, m)/k,

for i = m + \,...,n do

F(i, m) <- [f, • F(i, m) + F(i - 1, m)]/(k + i - m),

F(m, i) <- F(m, i) + F(i, m).

TS (II) 3. For m = 1,2,...,« set F(m, m) = exp(fm) and restore zero to the

lower parts of F, i.e., F(i, m) «- 0 for 0 < m < i, and the algorithm terminates. D

Accuracy. TS method is fast and accurate only when all f, are close to zero. Let

y — maxf eZ|f(.| and call it the "radius" of Z. Numerical examples show that when

the radius is bigger than 2 or 3, TS may not be reliable. The situation is like

computing e~y by its Taylor series, i.e., by 1 - y + y2/2! + • • •. In finite precision

arithmetic, when y is large, e'y is small and the roundoff error from the intermediate

term yk/k\ (which is large) could impair the accuracy of the series. If one wants the

roundoff of the intermediate terms to have no serious effect one"T, say, confined to

the last binary digit of e~y, then y must be small enough so that e~y>2~ •

maxk(yk/k\), which implies y < In 2 ~ 0.7. It seems reasonable to require y < 0.7 if

one wants TS to yield accurate answers.

Criterion. Use TS when y is less than 0.7. This criterion will be used throughout

our paper, for we need TS to yield accurate answers in the Scaling and Squaring

method in Subsection 2.4. One may relax the constant 0.7 a little bit but we will stick

to this value. Our examples (cf. Table 2.3.3) show that the error grows rapidly with y

and it becomes unbearable when y is bigger than 2 or 3.

Remark. The number of terms / needed in the series depends on the radius y and

the machine precison e. In Appendix A of [8] we show that in the presence of

roundoff it is sufficient to choose / such that

(2.3.1) £ ^<e.
j-l+i J'

For example, if y = 0.7, then for e = 2'24, / = 9 and for e = 2~56,l= 16.

Operation Count and Storage. The operation count is 2/« for TS and /«2 for

TS(II), where / is the number of terms needed. Two working «-vectors are required

for storing d and í in TS while a whole matrix is needed in TS(II).

Numerical Example. Let u = cos(O.l) + isin(O.l). We ran TS on a Vaxll/7803

using single precision (e = 2~24) on the set

(2.3.2) Z =4 [-yu,-yu,...,-yu, yu,...,yu]

3 Vax is a trademark of the Digital Equipment Corporation.

4To be precise, if Z has n points, then the first \(n + l)/2] are -yu and the others are yu.

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 507

Table (2.3.3)

Max relative error coefficient in Z (cf. 2.3.2) with different n andy.

H = 11 n = 17 « = 23 n = 29

y = 0.7
y = 1.2
7 = 1.7

7 = 2.2

7 = 2.7

7 = 3.2
7 = 3.7

y = 4.2

7 = 4.7

7 = 5.2

1.3
1.9

3.8

38.7
39.0
26.7

291.0

704.0
2250.0

2980.0

2.3
4.9

7.9

38.7

59.7
96.1

321.0

1820.0
2250.0

5530.0

1.9
8.8

14.5

38.7
122.0
133.0
321.0

1820.0
2300.0

8240.0

4.0
8.8

10.6
38.7

122.0
159.0
484.0

1970.0
2300.0
8240.0

2.7

8.8

30.7

38.7
122.0
159.0
484.0

1970.0

2980.0

8240.0

with different values of y and «, where « is the number of points in Z. Here y is also

the radius of the data because \u\ — 1. Our results are summarized in the above

table. Each entry in Table (2.3.3) is the maximum magnitude of the relative errors in

A(Z) as a multiple of e.5 Note the rapid growth of the error as y increases.

2.4. Scaling and Squaring. Scaling and squaring is a general technique for

computing the matrix exponential (see Ward [12]). It makes use of the functional

properties of the exponential function. Since the divided difference table can be

regarded as the exponential of Z„, we can apply this technique to Z„ in order to

compute A.

2.4.1. SS (Scaling and Squaring) Method. When the abscissae are not close enough

for TS, we can shift and scale down the size of Zn by, for example, setting

Yn = j-k(Zn-vI),

where k and tj are chosen so that Yn has small diagonal elements. Since exp has the

following properties:

(i) exp(A + xl) = ex ■ cxp(A),

(Ü) exp(A/2k)2k = exp(A),

we can recover exp(Z„) from F = exp(Y„) by exp(Z„) = ev ■ [exp(y„)]2. The matrix

power F2 can be computed by repeated squaring of F (i.e., F «- F2) k times.

Four Major Steps for SS:

Step 1. Determine6 tj and k so that Y„ = (Z„ - tj/)/2* has radius < O.7.7

Step 2. Compute F = exp(y„) by Taylor series.

Step 3. (F<- F2) k times.

Step 4. Shift back F: F «- e" ■ F.

The squaring in Step 3 normally requires kn3/6 + «2/2 + n/3 operations (F is

triangular) and a matrix storage for F; this is quite expensive when n is large.

5 Thus the number 8240 corresponding to n = 29 and 7 = 5.2 means that the maximum relative error in

A(Z) is 8240e.

6 We usually use the arithmetic mean of the data as the shift.

7The number 0.7 comes from the criterion in Subsection 2.3. It is proved to be almost the best for SS in

McCurdy [7] when Z is real.

508 A. McCURDY, K. C. NG AND B. N. PARLETT

However, there is an alternative method which requires only kn2 + 0(1) operations:

with some modification of Steps 2 and 3, one can replace every "intermediate" F by

some divided differences table. (Notice that in Step 2

Y =

2-% »-*

2~k

2~k
ïn

and does not generate a divided differences table.) Consequently with the backfilling

technique in Subsection 2.4.2, one can generate the whole matrix F from its first row

and therefore only the first row is needed in the squaring, thus reducing the

operations and storage required. This method does sacrifice some accuracy, however.

Before presenting the algorithms (in Subsection 2.4.4), we describe the backfilling

technique and discuss a subtle modification of Steps 2 and 3. In general we cannot

avoid using a 2-dimensional array to form F2 unless F has some special structure.

2.4.2. Backfilling the Divided Difference Table. Consider again the divided

difference table A/

A/ =

/tti) AU

/(fa)

Ar1/

AT2/

f(U

Algorithm SR shows that A/ can be generated from its diagonal elements. However,

it is also true that A/can be generated from its first row by the formula (1.2.2): given

A0!, A\,...,Anr

(2.4.2.1) AU=a,+*-f,-i)-A*ií11/+A*/_1/

for / = 2,3,...,« and k = 0,1,2,... ,n — i.

The only worry in using formula (2.4.2.1) is the propagation of the error in Akf,

which may be serious, especially when the f 's are far apart. When / = exp and Z is

real and in natural order (f, < fy for /' </), (2.4.2.1) is reliable because all A* exp

and (S¡+k ~ ?<-i) are positive, and summing positive numbers is quite stable. Thus

bad situations occur only when Z has large variation in the imaginary parts. In this

case the backfilling step frequently exhibits instability. The following is a typical

example.

Numerical Example. Let Z = [-24/, -21/', -18/,..., 18/, 21/', 24/']. We compute the

last column of A(Z): A"kk for k = 1,2,... ,18 by backfilling and compare it with

the correct answer (in Table 2.4.2.2). The last column of the table denotes the

magnitude of the relative errors in the corresponding divided difference Ar*-

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 509

Table (2.4.2.2)

Backfilling yields enormous error for Z with

a large variation in the imaginary parts.

Correct values

to six digits
Backfilling rel. error

(.699024e - 16
(.118971e - 15

(-.375574e - 13
(-.168358e - 12

(.149915e - 10

(.976633e - 10
(-.424631e - 08

(-.333270e - 07

(.800392e - 06

(.678836e - 05

(-.912472e - 04

(-.761200e - 03

(.538045e - 02
(.390049e - 01

(-.121109

(-580745

.000000e

.167766e

.535368e
-.780734e

-,436262e

.264278e
192067e

-.616516e

-.508937e

.917160e

00)
14)

14)
12)
H)

09)
08)

07)
06)
05)

.781070e - 04)

-,771374e - 03)

.611926e - 02)

.296790e - 01)

.184993)

.323969)

(.699024e - 16
(.118971e - 15

-.375574e - 13
-.168358e - 12

(.149915e - 10

(.976634e - 10
-.424635e - 08

-.333270e - 07

(.800473e - 06
(,678798e - 05

(-.913509e - 04
(-.760814e - 03

(.544411e - 02
(.389112e - 01

(-.135378
(-.584346

.000000e + 00)

.167766e - 14)

.535368e - 14)
-780734e - 12)

-.436262e - 11)

.264279e - 09)

.192068e - 08)

-.616534e - 07)

-.508930e - 06)

.917475e - 05)

.780928e - 04)
-.774224e - 03)

-.611179e - 02)
.307910e - 01)

.184486)
-.443728)

.21e

.lie

.21e

.15e

.52e

,20e

.72e

.26e

.86e

,28e

07

07

07
06

06

05

05

04

04

03

.87e - 03

.27e - 02

.79e - 02

.23e - 01

.65e - 01

.18

2.4.3. Modification of Step 2 and Step 3. We may assume the data have been

shifted to have mean 0. For 0 < /' < k, define the bidiagonal matrix Z¿° to be

Z(0 =

2-% 1

2-%
'1

2-%n

Also let the diagonal matrix R be

R

1

Our objective here is to replace every intermediate "F" in Steps 2 and 3 by

exp(Z(n')), so that we can apply the backfilling technique and avoid the storage for a

whole matrix.

Modified Step 2. Compute F0 = exp(Z(nk)) by TS.

Modified Step 3. Compute F¡ = RF^R-1 for i = 1,2,... ,k.

Lemma. F¡ = exp(Z}lk~'))for0 </'<£, in particular, Fk = exp(Z^0)) = exp(Z„).

Proof. Assume Ft = exp(Z^_/)) for some / > 0, then

Fl+l = RF2Rl = Rlexpizy-'^R-1 = R ■ exp(2Z</[-/)) • R1

= exp{2RZ(nk^l)R-x).

510 A. McCURDY, K. C. NG AND B. N. PARLETT

From the definition, it may be verified that Zj¡j) = 2RZJ,J+1)R~1 tor j > 0. Hence,

Fl+1 = exp(Z^"/_1)). The lemma holds when / = 0. By induction, we have Fi =

expiZj*-0) for i > 0. D

Since every intermediate "F" is of form exp(Z^l)), each of them is a divided

difference table (with different scaled abscissae). By the previous section, F can be

generated from its first row. Hence it is possible to do the squaring (for the first row)

without keeping the whole matrix.

2.4.4. Algorithm for SS.

Algorithm SS (Scaling and Squaring). Given Z as in Subsection 2.2, this algorithm

computes [d(l),...,d(n)]:= [A°,AV-'-.A"-1] by scaling and squaring. In what

follows, vector s stores the current column of F and vector r stores the first row of

the current F.

SSL [n = 1?] If « = 1, return d(\) = e^ and the algorithm terminates.

552. [Shifting.] Set tj = (££,)/« and replace f, by f, - tj.

553. [Scaling.] Determine the least integer k > 0 such that 2_/cmax,|f,| < 0.7, then

replace f, by 2~k£¡ for all /'.

554. [TS.] Call TS with Z equal to the current f,'s, result goes to d.

555. [Squaring.] For kk = 1,2,... ,k do

SS5.1 Set s(l) = d(l), tor i = 2,3,...,n do

555.1.1 [Backfill the / th column of F in s.]

x = s(l)

5(1) - d(i)

For/ = 2,...,/ - 1 do

y = s(j)

soi = x + a,,- Sj-O'U -1)
X = V

next/

s(i) = exp(f,).

555.1.2 [form the (1, z)th element of RF2R-1.]

r(i) = 2-<i-1>E}_1rfOX/).

SS5.2. [Update ¿and f,'s.]
d(i) *- r(i) for /' = 2,...,«,

f, «- 2f, for/' = 1,2,...,«,
d(l) = exp(£x).

556. [Backfill the last column of F.] Set j(1) = d(\), for / = 2,3,...,« do

x - s(\)

s(\) = d(i)

For/ = 2,...,i - 1 do
y = s(j)

s(j) = x + (f, - Sj-i)s(j - 1)
x =j

next/

next/'.

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 511

SS7. [Shift back and stop.]

tt *- St + tj, d(i) *- e" • d(i), s(i - 1) *- e" • s(i - 1) for /' =

2,...,«, set d(\) = exp(fj) and s(n) = exp(f„) and the algorithm

terminates. D

Remarks. (1) If the function FDD (cf. Subsection 2.2) for the first divided

difference is available, one can improve the accuracy of SS by using FDD whenever

the first divided difference is wanted.

(2) SS6 is necessary for the Simple Hybrid Algorithm in the next section,

ortherwise it is not needed.

The backfilling step may not always be reliable: when Z has a large variation in its

imaginary parts it is likely that formula (2.4.2.1) will magnify inherited errors. In

that case straightforward squaring is needed. Here is the algorithm.

Algorithm SS(II) (Scaling and Squaring Algorithm (II)). Given Z and matrix F,

this algorithm computes F = A by scaling and squaring. For the R in step 5.1, cf.

Subsection 2.4.3.

SS(II) 1. [« = 1?] If « = 1, return F(l, 1) = <?fl and the algorithm terminates.

SS(II) 2. [Shifting.] Set tj = (E ?,)/« and replace Z by Z - tj.

SS(II) 3. [Scaling.] Determine the least integer k > 0 such that 2"*max,|f;| < 0.7,

then replace Z by 2"*Z.

SS(II) 4. [TS(II).] Call TS(II) with data Z, result goes to F.

SS(II) 5. [Squaring.] For kk = 1,2,... ,k do
SS(II) 5.1. [Update F.] F = R ■ F2 ■ R'1.

SS(II) 5.2. [Update ?,'s.] Z <- 2 • Z.

SS(II) 5.3. [Update F(i, /').] F(i, i) = exp(f,) for /' = 1,2,...,«.

SS(II)6. [Shift back and stop.] Z <- Z 4- tj, F <- e" • F and the algorithm

terminates. D

Operation Count and Storage. The major part of this computation is the squaring

step, which is repeated k times. The operation count for each squaring is «2 + 0(1)

in SS5 and «3/6 — «2/2 + O(n) in SS(II) 5 (with « function call on exp). Hence the

total operations needed are « kn2 in SS and = kn3/6 in SS(II), where k is the least

nonnegative integer such that 2~*y < 0.7.8 Therefore when y > 0.7, k =

[log2(y/0.7) 4- 1] « log2 y + 1.5.9 Four «-vectors are needed for storing d, s, r and

Z in SS while a whole matrix is needed in SS(II).

Accuracy. Both SS and SS(II) may be viewed as extensions of TS (Taylor Series).

They can accept moderately spread data without suffering as much as TS (cf.

Subsection 4.3). The choice between SS and SS(II) is discussed in Subsection 5.4.

The following example illustrates the big difference between TS and SS.

Numerical Example. Let Z = [-16, -12, -8, -4,0,4,8,12,16]. We compare TS and

SS in the computation of A*(Z) for k = 1,2,...,8. Results are summarized in Table

(2.4.4.1). The values in the last two columns are the magnitude of the relative error

in the corresponding divided differences; notice the enormous error in the first few

A\(Z)forTS.

"Here 7 = 7(Z) = max,|f,-(£. t.)/„\ is the "radius" of Z (after it has been shifted).

9Here [x] denotes the greatest integer less tnan x.

512 A. McCURDY, K. C. NG AND B. N. PARLETT

Table (2.4.4.1)

Divided differences on Z, TS vs SS.

correct values

to 6 digits

TS
op: 645 (-s- or*)

SS
op: 1018

relative

error (SS)

relative

error (TS)

A\
A\
A\
A\

A\
A\
A\
K

.150792e - 05

.101027e - 04

.451239e - 04

.151160e - 03

.405094e - 03

,904679e - 03

.173175e - 02

,290059e - 02

.281912e - 01

.281155e - 03

.242131e - 03

.154376e - 03

.405302e - 03

.904669e - 03

.173175e - 02

.290059e - 02

150792e - 05

.101027e - 04

.451239e - 04

151160e - 03

.405095e - 03

,904680e - 03

173176e - 02

.290059e - 02

12e - 06

.20e - 06

.36e - 06

.60e - 06

.88e - 06

12e - 05

14e - 05

17e - 05

.4

.83

.37

.21e - 01

.51e - 03

lie - 04

,48e - 05

.73e - 06

3. Hybrid Methods.

3.1. Example. Our discussion so far suggests that it may be possible to compute A

accurately by combining the two methods (SR and SS) of Section 2. Let us consider

the following task:

"Given Z= [50/, 10"5 4- 50/',-10"5 - 50/,-50/'], compute A = Aexp."

In addition to SR and SS, we can compute A by the following "mixed" method.

Decompose A into a 2 X 2 block matrix and name the blocks I, II and III,

A

A1 A\

A°

A\

A\

A-<

A2

Au A'3

A°

III

II

Since f, and f2 are close together (also f3 and f4), SS is right for them and we use SS

to compute I and II. Then we use SR to fill up III.

In order to compare this mixed approach with SS and SR, we ran these three

algorithms in 24-binary digit (~ 7 decimal) arithmetic. The results are summarized

in the following table. For simplicity we only compare A2 and A\. The symbol ¡u, in

the last column stands for the multiplication or division; thus 6/¿, 4 exp means six

multiplication/divisions and four calls to exp are needed.

Method A\ Op. count

SR

SS
Mixed

Exact

(-.262260e - 02

(-.262376e - 02
(-.262376e - 02

(-.262376d - 02

-.970843e - 02)

-,970219e - 02)
-.970218e - 02)

-.970218d - 02)

(-193573e - 03 -.558794e - 10)

(-194077e - 03 -.295204e - 07)

(-194043e - 03 .207219e - 09)
(-194043d - 03 .204162d - 09)

6/i, 4 exp

196ji, 10 exp

26(i, 10 exp

The following should be noticed:

(1) SR gives poor results on A2 and A\.

(2) The answers of SS are not bad. This shows that SS can indeed accept

moderately spread data, but the price is high.

(3) The mixed method gives the most accurate answer.

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 513

3.2. Simple Hybrid Method. The example in Subsection 3.1 shows that when one

can group the data into clusters (allow overlap)

z = [Ç i, ç 2,..., ç ¡:, ç k,..., ç i, ç /+ j,..., ç n J ,
v-v-^-^-' V-v,-'

I II III

then one can compute A(Z) by

Figure 3.2.1

This clustering should satisfy

(1) within each diagonal block of Z„ the data are close enough together so that SS

may be used for the corresponding block in A,

(2) data belonging to different blocks should be sufficiently separated so that SR

can be used to fill up the rest of A.

This mixed approach, which we call the simple hybrid method (SH), demands a

suitable ordering on the data Z. Such an ordering brings together all close abscissae

and we may call it a nested ordering (to be defined precisely in Subsection 3.3).

Under a nested ordering, the radius10 of each [?¿, £/+i,...,£(+fc] is close to the

distance between the endpoints. In other words, if f, and £i+k are close together, then

all f;, Hi+!,...,£,+k are close together. In that case, we can group the abscissae as

follows. The data f,, £m,...,Si+k will be in the same cluster if |f/+ft - fj is less than

some value g. This g depends on k (the number of points in the data set) only and

we will discuss the value of g = gk for each k in Subsection 4.4. For the time being,

assume gk is given; we are ready to describe the simple hybrid method.

Method SH.

[1] Determine the clustering.

[2] Compute the clustered block (shaded area of Figure 3.2.1) by SS. Notice that

we only need SS to return the first row and the last column of each block.

[3] Fill up the rest to the first row by SR.

10The radius of Z is defined to be 7(Z) = maxlslJ.„|f, - r\\ where i) = (£i Í¡)/n.

514 A. McCURDY, K. C. NG AND B. N. PARLETT

In practice, [1], [2], and [3] are always combined for each cluster. Here is an

implementation.

Algorithm SH (Simple Hybrid Algorithm). Given Z and the decision function G,

this algorithm computes [d(l),...,d(n)]:= [A0,,A1^....A"-1] by the simple hy-

brid method. In what follows, vector s will store the last column of the current

cluster; vector d will store the first row of the current cluster; ¡i will be the currently

computed row number (of A); and v, j will be the first and last index of the next

cluster.

SHI. [« = 1?] If yes, set d(\) = exp(f,) and the algorithm terminates.

SH2. [Initialize.] Set ¡x = min,<„(/': |f, - f„| < g„_,} and compute the jtith row of

A by calling SS; result goes in d(n),.. .,d(n). Set/ = «.

SH3. [ju. = 1?] If yes, the algorithm terminates.

SH4. [Loop.]

SH4.1. [Find the next cluster.] Find cluster [v, j], v </.

(a)/=7-1

(b) v = min(/': ft - fy < gj_l with /' </}
(c) if n < v then go back to (a) else SH4.2.

SH4.2. [Update d from v to/.]

SH4.2.1. [call SS on [£„...,?,].]

Results go to d(v),...,d(j) and s(l),...,s(j - v + 1)

s is the last column of the cluster.

SH4.2.2. [Fill up d(j + 1),... ,d(n) by SR]

For ri = u-c,/i-f- l,...,ldo

d(j) = s(k)

tor i = j + 1,/ + 2,...,« do

d(i)=[d(i)-d(i-\)]/[Si-$v+k_x),

next /

next &

SH5. [Update ¡x.] Set /x = v and/ -j - 1. Go back to SH3. D

Operation Count and Storage. The total number of operations depends on the

clustering. The worst case might take 0(n3) but it would be very rare, e.g., if

Z = [1,2,3,... ,2«] and gj = « for any /, then there will be exactly n clusters and

each cluster has n data points, which means n ■ 0(n2) = 0(n3) operations are

needed (cf. Figure 3.2.2). Such a situation is very unlikely to happen for a realistic

set of gk, k = 1,2,_For our decision constants (which will be discussed later), the

operator count is usually 0(«2). Storage requirements will be the same as SS.

3.3. Ordering Problem. When Z is not nested, one may not be able to group the

data to have properties (1) and (2) in Subsection 3.2. In that case, a much more

sophisticated combination of SS and SR, a recursive hybrid method, may be needed.

Let us consider a different example Z = [-50,50,50, -50]. Since the first and the last

elements are equal, we cannot use SR for A\ and hence the whole of Z should be

treated as one block. But then SS is not that suitable because the radius of Z is large.

However, instead of the whole Z, we consider the subset [-50,50,50] (which can be

grouped into two clusters) and obtain the first three divided differences A0,, A1,, A2,.

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 515

Figure 3.2.2

As for the last one, we make use of the fact that it does not depend on the ordering

of Z, and thus compute A3, by considering the reordered data set [-50, -50,50,50].

Notice that both [-50,50,50] and [-50, -50,50,50] can be clustered for SH.

The disadvantage of the above method is that in some sense the first three divided

differences have been computed twice. Had we known in advance that the reordering

would be necessary, we could have avoided the repetition; for in our application the

abscissae f, can be arranged in any order to give a Z but then it is A(Z) which must be

computed. It thus raises the question:

Does there exist a nested ordering for any given Z?

The answer is yes when Z is real (the natural increasing ordering) but not always in

general, e.g., consider data that form a circle in the complex plane.

Data that form a circle in the complex plane

cannot be nested.

Before we discuss the details of the recursive hybrid methods, we mention the

decision function G and the decision constants gk, k = 1,2,_Given any abscissae

W with k points, G(W) yields a pair of points («,, Uj), «,, Uj e W such that

\o¡(— Uj\ is an approximation of the radius of W. As in Subsection 3.2, the decision

whether we should apply SS on the whole of W becomes the test |w, - w.| < gk,

where gk depends on k. Examples for G(W) = (u^, «„), u^, w„ e Ware

(3.3.1)|W/i-<oJ = diam(WO.

(3.3.2) Re («„ - w„) = diam(Re(IF)).

(3.3.3) |«„ - w„| = maxu.eA;^eH/|w,. - W/|, A = (<o, e W: Re(w,) =

maxyRe(w/)}.

We will discuss G in Sections 4 and 5. Now assume that G is given and use it to

define a nested ordering:

Definition 3.3.4. Z is nested (with respect to G) if

G(to,fl+1,...,£,+*]) = (£,+*,£,) for any 1 < /', 1 < *, i + k < n. D

516 A. McCURDY, K. C. NG AND B. N. PARLETT

It is easy to verify that if G is one of (3.3.1)-(3.3.3), and if Z is real, then an

arrangement of f, in increasing order gives a nested ordering.

3.4. Recursive Hybrid Method. Every divided difference can be computed by

A* = RH([f,,... ,Çk+i]), where the function RH is defined below.

Recursive Function RH(Z). This function computes the highest order divided

difference on the given data Z. Let k denote the number of points in Z, then RH

return Akf1(Z) exp.

[1] If Â: = 1 return (exp(f,)).

[2] Compute G(Z) = (?„, £,).

[3] If |fM - f„| < gk call SS and return (d(k)) else return the following

RH(ZW)-RH(ZW)
(3.4.1)

where Z(/) ■ [fc, f2,.. .,Çi_x, f,+1,...,£„]. D
We leave the details of the proof that RH does return the highest divided

difference to the reader. Notice that when Z is nested, G([f,,...,f,+J) = (Çi+k, f¿)

and the above decision (step [3]) means that A\[$¡,... ,Sk+i\ should be computed by

SS if \Çi+lc — f,| < gk, which is exactly what SH did. Thus

RH reduces to SH if the abscissae are nested. D

Since the operation count of RH could be enormous, like 0(2"), one would hope

to find a nested ordering for the f/s to determine Z and then apply SH on it. A

practical modification is to attempt to nest the abscissae (according to G) before

steps [2] and [3]. If it can be done, then SH can be applied to the rearranged Z

(recall that the divided difference does not depend on the ordering of the data).

Later on we will see that the abscissae can always be taken close to real (cf.

Subsection 5.3) and consequently ordering according to the real part gives an almost

nested ordering, see Subsection 5.4.

Our purpose in introducing RH is to show that, in principle, A*(Z)exp can be

computed accurately using fixed precision arithmetic.

4. Real Exponential Divided Differences. Exponential divided differences for real

abscissae are positive and increasing functions of their abscissae. These properties

permit derivation of bounds on the error growth in SR (Standard Recurrence) and

SS (Scaling and Squaring). For future use, we consider the more general function

expT with scaling parameter t, that is expT(£) = eTf. For simplicity, we write

exp<">U) = ^(expT)U).

In the rest of this section, we consider exclusively divided differences on real

abscissae X = [£,, £2,...,£„], even if some of the properties hold for general

complex abscissae.

4.1. Basic Theorems and Properties.

Translation and Scaling Invariance Property. Let U be the constant vector

[1,1,..., 1]. Then for any constants t, a,

(4.1.1) Arx(*+ «t/)expT = eTa ■ A"l-1(X)expT,

and

(4.1.2) Anf1(X)expT = T^ArK^exp.

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 517

Proof. (4.1.1) follows easily from the matrix equation exp(A + ai) = ea ■ exp(^4)

(using (1.5.3)), and (4.1.2) follows from (1.3.1) directly.

Recursive Integral Formula. For given X and any t > 0, /' = 1,2,...,«, we have

(4.1.3) Ar'exp, = eTi' f e""«' • A"7)2exp0ú?a,
•'o

where

(4.1.4) An(7)7=A"-2(X(l))/, X{i)=X\{i,}.

Proof. From the Hermite-Genocchi integral representation formula (1.3.1), we

have

. /-l /•"! f"--2

Ar1exPr=i / ••• /
•'o •'o Jo

expi""1^! +({2 - QPi + ■•■+(«.- L-i)"n-i] dvn_x ■■■ dvx

r\ rv\ rvn~i

A) Iq Jq

r"~ïexp[rèx + U2 - Íx)tvx + ■■■ +(£„ - èn^x)rvn_x] dvn_x ■ ■ ■ dvx

by the definition of expT. The change of variables a¡ — tv¡ for/ = 1,2,...,« - 1

yields the alternative expression

(4.1.5) A-f^xp^/ / •••/

exp[rèx +(í2 - €i)*i + • • ■ +Un - è„-i)°n-i] d°„-! •do.

We recognize that this is a recurrence for A"~: exPT> namely

A"f1expT = eTil (e'a(l ■ A"2"2exp0da

where a = a,. By the symmetry property (1.2.1), the ordering of the abscissae is

arbitrary; we may replace £, by any £,, 1 < /' < «, hence establishing the formula. D

Theorem 1. For all t > 0 and k > 0, A* expT is

(i) positive.

(ii) strictly increasing in each abscissa £„ for i = 1,...,«.

Proof, (i) follows from the mean value representation (1.4.1). For (ii),

^-A"flexpT - f (t - o-)e<T-o)i' • A"(7)2expa<ia > 0,

since the integrand is positive.

Theorem 2. Suppose /3 < £, < y for each abscissa £,, 1 < /' < n. Then for each i

there exists a £ e [ß,y] such that

(4.1.6) A"(7)2expT - (í - ¿, + ^-i) • A"fx expT.

/»roo/. By (4.1.1) and (4.1.2),

A"1~1(t(X- ¿L7))exp = t-«"-1^-'* • A"f1(^)expT

= T-<»-«e»(t,-t) (T e-< . &\-2(X)expado
Jn

518 A. McCURDY, K. C. NG AND B. N. PARLETT

for any /' = 1,2,...,« and £. Differentiating with respect to t yields

d

(4.1.7)
dr

AY'iHX-CU^exp

_ T-<»-l)e-Tt (i, - S - ^j • ArH^)expT + A"(7)2(^)expT

Every element of the vector X - ßU is nonnegative, and so A\~1(t(X — ßU))exp

is increasing in t. Similarly, every element of X — yU is nonpositive and

A"~ 1(T(^ — yU))exp is decreasing in t. Hence

4-A\-Hr(X - ßU))exp > 0 > 4-A"x-l(r(X - yU))exp
AT Í/T

so for some £ g [ß, y], the derivative is zero. The result then follows from (4.1.7). D

Corollary 1. Lower bound on A" l expT. //£„ ^ i ¡for each i = 1,2,...,«, then

(4.1.8) A"f expT >
1

A", 2expT.

Proof. Choose /' = «, y = £„ in (4.1.6), and note that £ - |„ < 0. D

Corollary 2. Upper bound on A"x~1expT. If ^ < ¡-¡foreachi = 1,2,...,«, i«e«

(4.1.9) A"fx expT < —^y • A"22 expT. D

4.2. Error Growth in Standard Recurrence. We now examine the error growth of

one step of SR when X is in increasing order. Equation (4.1.8) leads directly to a

bound on the relative error growth in one step of SR. Let ek be the relative error in

A* = A*exp, i.e., fl(Ak) = (1 + ef) • A*-, where fl(Ak¡) is computed by SR. For

simplicity, let us first assume that the recurrence step (2.1.1) is done exactly, in

which case ek may be regarded as the inherited uncertainty of Ak¡. We have

/.(An) -fl(Ak~i) (i + ef+rHr+ï -(i + «f-pAT1

%i + k ~~ £,
fl(*,)

%i + k %i

After some algebraic manipulation, one obtains

2

%i + k ~ $i

By (4.1.8), since èi+k> £, for i <y < i + k.

|/7(A*) - A*| A*. + A*,*-i

Irfl"_ |/7(A*.) - A*|

A*
1 +

2k

S/ + ÍC %l

maxdef^Hef-1!}.

maxllef^Uef-1!}.

Therefore, we have

Uncertainty growth11 of one step of SR (with X an increasing order)

2k
(4.2.1) 1er 1 +

£, + * Ç,
•maxde^Uef-^.D

This bound is quite realistic. Take the example in Subsection 2.1: Z = [1,1.0001].

Both A0, = e1 and A°2 = e10001 can be computed accurately with |e?|, |e^| < e, so Eq.

"This is the growth of the uncertainties in the data. As long as there are uncertainties in the input, SR

will propagate them even if the arithmetic of each step is done exactly.

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 519

(4.2.1) predicts \e\\ < 20001e. In Subsection 2.1, with e = 5 • 10~8, we have e\ =

(2.719 - 2.7184 ■ • ■)/(2.718 • • •) « 0.0002142 - 4284e.
In finite arithmetic, the execution of SR may introduce some roundoff error to

A*. An error analysis in Appendix B of [8] shows that only a small modification of

(4.2.1) is needed to incorporate the effects of roundoff into the propagation of

uncertainty.

Error Growth of One Step ofSR. Provided that ef _1 and ef'1 are small,12 we have

(4.2.2) |ef | < 4e +

Proof. See Appendix B of [8]. D

4.3. Error Bounds on SS. Based on the positivity of A* (Theorem 1 in 4.1), we can

apply standard error analysis to obtain relative error bounds on SS. For example, in

the squaring step, each entry of the matrix is positive and therefore no cancellation

occurs and we have for each F

\fl(F2)-F2\^ne-(F2),

where |£| denotes the matrix all of whose elements are the absolute values of the

elements of E and our notation A < B means that ai, ■ < b¡ , for every /' and/.

A detailed error analysis of Algorithm SS(II) is presented in Appendix B of [8]. As

a direct corollary of Eq. (B.6) in [8], we have the following bound:

Scaling and Squaring Error Bounds. Given real abscissae X in increasing order,

denote the relative error of A/¡(X) by e{ as in the previous section, and recall

y = max,|£(- tj| where tj is the arithmetic mean of £,. For convenience set y' —

max(y, 0.7). We have

(4.3.1) |ef| < (C0k + Cxklny' + C2y' - 2) ■ e,

where C0 = 13.68 and Cx = 1.4427. C2 depends on e; in particular, C2 = 134.4 when

e = 2"24, and C2 = 215.426 when e = 2"56.

Proof. See Appendix B of [8]. D

Remark. The bound on ef is quite pessimistic. Numerical results show that most of

the time the constants C, should be reduced to 0.01 times their values given above

(cf. the remark in Appendix B of [8]).

4.4. Decision Criteria for the Hybrid Methods. Using the bounds in the previous

section we demonstrate that one can determine G and gi so that the recursive

function RH (for the highest divided difference) always yields a result with bounded

error. For convenience, we write X(n) = X to indicate that X has « abscissae. The

function RH(Z(n)) is:

(l)RH(Z<1)) = exp(¿1).

(2) Compute G(X(n)) = (£„, £„), where ^ = max,£, and ¿„ = min,£,,

(3) If |É„ - {J < g„_, call SSÍII) and RH(X<">) := (d(l, «)) else

(4.4.1) RH(*<">):= -V °° /_ V W ',

where Aj,"« ■ [£,-, €2,... ,£,_,, Éí+1,... ,£„]■

12 See Appendix B of [8] for details. In general, it suffices to require them =S j • (1 + 2k/\ti + k - f,|) '.

1 +
2k

±i + k ~ S,

msx{\tk;}\,\ek-l\}.U

520 A. McCURDY, k. c ng AND B. N. PARLETT

Based on the bounds (4.3.1) and (4.2.2), we are going to show by induction that

Theorem. For a given precision e, there exist some constants gj and e<7\ where

j = 1,2,... such that for any « and X(-") the relative error

fl(RH(X(n))) - ArH*00)
< e*""1'.

ArV5)
// can be shown that e(,:) = 0(k2) ■ e as k -> oo (see Remark 1).

Proof. Step 0. When « = 1, A°X(X) = RH(JT) = exp(|,). Therefore e<0) can be set

equal to e (we assume function exp can be evaluated accurately, i.e., |e°| < e).

Step 1. When n = 2, assume |x < £2, then (/(X) = (|2, £,). Let d = £2 - £v To

compute RH(A^), SR yields (cf. 4.2.2)

(4.4.2) |4| < 4e +(1 + 4/0) ■ e(0) < (5 + 4/0)e

and SS yields (cf. 4.3.1)

(4.4.3) |ej| < [2C0 + 2CX log y' + C2y' - 2] • e.

Since y' = max(y, 0.7) < max(0,0.7) (4.4.3) becomes

(4.4.4) |ei| < [2C0 + 2C1log(max(0,0.7)) + C2(max(0,0.7)) - 2] • e.

Notice that the bound in (4.4.2) is monotonie decreasing in 0 and the one in (4.4.4)

is monotonie nondecreasing so they have only one intersection. Let it occur at

0 = gv It means that e\ will always be bounded by e(1) = (5 + 4/g,)e if one

computes RH(X) by SS when G(X) < gx and SR (i.e., by (4.4.1)) otherwise.

Step 2. Assume that for 1 < n the assertion is true, i.e., e""1 in RH(Ar<n)) is

bounded by some constant e*""1» for any X= X(n). Consider X = X(n + 1\ Let 0

denote ||„ - £„|, where G(*(n+1)) = Up, Q. To compute RR(X), SR, or Eq. (4.4.1)

yields

(4.4.5) |e1|<4e+(l + 2«/d)-e("^1)

and SS yields

(4.4.6) |ef| < [nC0 + «C1log(max(d,0.7)) + C2(max(0,0.7)) - 2] • e.

Again the bound in (4.4.5) is monotonie decreasing on 0 and (4.4.6) is monotonie

nondecreasing on 0, so they have only one intersection and let it occur at 0 = gn.

Therefore e" will always be bounded by e(n) — 4e + (1 4- 2«/g„_,) • e("_1) if one

computes RH(X) by SS when ||„ - £ | < gn, and by (4.4.1) otherwise.

By induction, our assertion is true for all n. □

One can generate those gj, e<7) recursively by equating the bounds in (4.4.5) and

(4.4.6) and solve it for/ = 1,2,... with the initial value e<0) = e:

(4.4.7a) 4e + (1 + 2//0) ■ e^"1»

= [/C0 +/C1log(max(0,0.7)) + C2(max(0,O.7)) - 2] • e

with

(4.4.7b) eU) = [jC0 + /C1log(max(0,0.7)) + C2(max(0,O.7)) - 2] • e.

For e = 2"24, we compute some of the g. and e0) according to (4.4.7) and hst them

in Table (4.4.8). Therefore, we have shown

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 521

Corollary. When e = 2 24, we have

fl(KH(Xin)))- ArWO o("-l)

<4A8) AV(X<»)

where the values ofgjfor RH and the values of(e<-i)/e) are given in Table (4.4.8). D

Table (4.4.8)

Single precision decision criteria (e = 2"24) and

error bounds for the hybrid algorithm.

l

2

3
4

5

6

7

X

9

10

20

40

60

80

100

gj

0.02
2.100
4.846

9.227
15.41

23.48

33.50
45.48

59.46

75.42

345.4
1487.

3430.

6173.
9716.

Error bound

jj) A

0.105e

0.310e

0.697e
0.131e

0.216e

0.326e
0.463e

0.626e

0.816e

0.103e

0.469e
0.201e

0.462e

0.832e
0131e

+ 03
+ 03
+ 03
+ 04
+ 04

+ 04
+ 04
+ 04
+ 04
+ 05

+ 05
+ 06

+ 06
+ 06
+ 07

digits lost

(log10(eo)A))

2.02

2.49

2.84
3.12

3.33

3.51

3.67
3.80
3.91
4.01

4.67

5.30

5.67

5.92
6.12

Remark 1. The asymptotic value of g, is i2 + O(i), as can be seen from the

equation ew = C2gk ■ e and C2gk + X = (1 + 2k/gk+x) ■ C2gk obtained by omitting

the lower order terms in (4.4.7). One can verify by induction that k2 — 3k < gk < k2

and consequently the error bound e(k) = (C2k2 + 0(k))e.

Remark 2. Although the error bounds in Table (4.4.8) are not ridiculous, they are

quite pessimistic. Also, the value of gj in the above table is too large to be useful.

For example, when « = 20, g20 = 345.4 and it means that A2!0 is computed by

(A1! - A\9)/(£21 - £,) only if |21 - £L > 345.4! Experience shows that as long as

¿n +, - ix > 25 or 26, SR always yields satisfactory answers. Since SR is much faster

than SS, one prefers SR to SS whenever SR yields satisfactory results. So we would

like a set of values for g and e(y) which is more realistic. After numerous numerical

experiments we obtained the following experimental formula for gy and eU) (for any

precision e).

Experimental Formula.

(4.4.9) gJm(1 + lé)'j' £(;) = 5Ve-

The practical value for gj is much smaller than the one in Table (4.4.8)—it is like

/ + 0.1/ In j versus/2. For comparison, take/ = 40, (4.4.9) yields 54.76 while (4.4.8)

yields 1487! We ran our SH (with gy in (4.4.9)) on a Z that has 20 data points

distributed irregularly from -27 to 25. The results are summarized in Table (4.4.10).

The last column "digit lost" is log10 (relative error). It is most satisfactory.

522 A. McCURDY, k. c. ng and b. n. PARLETT

Table (4.4.10)

Test example for Simple Hybrid Method.

r. Correct A""1

to 7 digits
SHA"r

digits

lost

1

2

3
4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20

-27.0

-26.0
-15.0

-14.0
-12.0

-10.0
-8.0
-7.9

-7.8

-2.7

1.0

1.1

1.2

1.3
3.0

7.0

9.0

13.0

24.0
25.0

01879529e - 11

0.3229560e - 11
0.2317134e - 08

0.3012897e - 08
0.2983682e - 08

0.2246401e - 08

01353474e - 08

0.4257157e - 09

0.9465834e - 10
0.4272183e - 10

0.2364207e - 10

0.6378568e - 11

01208801e - 11
01806541e - 12

0.2706591e - 13

0.5415335e - 14

01022545e - 14
0.2453144e - 15

0.3804000e - 15
01456325e - 15

01879529e
0.3229560e
0.2317134e

0.3012897e
0.2983682e

0.2246401e

01353474e
0.4257158e

0.9465836e
0.4272186e

0.2364209e

0.6378574e

01208802e

01806544e
0.2706596e

0.5415346e

01022547e
0.2453151e

0.3803999e
01456325e

11

11

08

08

08

08

08

09

10
10

10

11

11

12

13

14

14

15

15

15

0.

0.
0.09
0.

0.

0.

0.50

0.56

0.61
0.96

1.10

1.22
1.33
1.45
1.49

1.53

1.58
1.65

0.72

0.54

5. Complex Exponential Divided Differences.

5.1. Can we Have High Relative Accuracy"! As we have seen in Section 4, the real

exponential divided differences can be computed with high relative accuracy. What

makes it possible is that A*-(A") =• Akj(X)expi& positive for real X. This property

fails for complex data Z, for A*(Z) can take on any complex value. However, one

can still say something about the error in A*-(Z). In order to do that some extra

notation is needed. Let X and Y be the real and imaginary part of Z, i.e., if

Z = [?i,£2>-■•»?„]. then X = [Éx, £2>-••>£»] and 7 = [i¡v tj2,...,tj„] so that ^ = ^

+ ir¡k for k = 1,2,...,«. Also let Akj(W) denote the exponential divided differences

on the abscissae W. Our treatment of error in the complex case is based on the

following inequality.

Lemma. With the notation given above

(5.1.1) |A*(Z)| < A\(X).

Proof. Use the Hermite-Genocchi expression (1.3.1) for Ak(Z) and note that

|«p[f,+(f,+i -?,)"i+ •••]|=exp[¿/+(£/+1-¿/K+ •••].D

Inequality (5.1.1) enables us to bound the error in the computed A*j(Z) in terms of

Ak(X). The bounds are similar to those in Section 4. We summarize the results

below, and leave the details to Appendix B in [8]. Let e be the unit roundoff and ef

be the absolute error of Ak(Z), i.e., fl(Aki(Z)) = Ak(Z) + ek. Define ef, the pseudo

relative error in A*(Z), to be ef = ek/Ak,(X).

(1) Error Growth of SR (Standard Recurrence). Suppose that Ak(Z) is computed

by SR, and also Re(f,+¿) 3* Re(^) for /</</' + k. Then, to first order in e, the

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 523

pseudo relative error ef satisfies:

(5.1.2) |ef|<4e +

Proof. See Appendix B of [8]. D

(2) Error Bounds of S S (Scaling and Squaring). Let the radius y be defined as in

Subsection 2.4. Suppose that A(Z) is computed by SS(II). Then to first order in e we

have

Error bound

(5.1.3) |ef| < [C0* + C,A:ln(max(y,0.7)) + C2 • max(y,0.7) - 2] • e,

where C,, /' = 0,1,2 take the same values as in (4.3.2).

Proof. See Appendix B (Corollary (B.6)) of [8]. D

The above bounds for complex abscissae Z are similar to those for the real ones in

Section 4, except that the meaning of the error ef is different: here ef is the error in

A*-(Z) relative to Ak(X). The same analysis as in Subsection 4.4 shows that the

hybrid methods yield small ef like 0(*2)e, i.e., yields A*-(Z) with small absolute

error compared to Ak(X), provided that the decision function G satisfies:

(l)G(Z) = «-,Oand|¿;-a = y,
(2) Re(^) > Re(£) for any ¡t g Z.

It leads to the definition (3.3.4) for G, i.e., G(Z) = (^, f„) such that

(5.1.4) \H - U = max|f, - fy| where A = (f,. g Z: Re(f,) = max Re(f,)).
f,eA v j)

For this G, we always have 2G(Z) > y(Z) (usually G(Z) > y(Z) except in some

rare situations). Therefore, with the above G, we have

(3) Error Bound of RH(X). There exist constants gy for the RH and constants e(7),

/ = 1,2,... such that for any X = X(k\

|ef| < e^-1».

Proof. The proof is similar to the one in Subsection 4.4. D

If one assumes G(Z) > y, then when e = 2"24, the values of g, are the same as

those in Table (4.4.8).

Remark. In the implementation of the hybrid methods, one can avoid using RH in

the real case because one can always order the data so as to be nested. In the

complex case there may not exist such an ordering and RH seems unavoidable in

order to secure good relative accuracy in the most general case (e.g., 500 points on a

circle of radius 500 in the complex plane). However, in Subsection 5.3 we will show

how to salvage SH when the data are complex.

5.2. Computational Difficulty. Let X, Y and Z be as defined in 5.1. The error bound

for RH(X) in Subsection 5.1 implies that if we compute Anx1(Z) in RH in finite

precision arithmetic (with precision e) then the relative error infl(A"{~1(Z)) will be

bounded by

A!-1**) .e(»-D

A-fHZ)

1 +
2k

maxdef^Uef^lj.D

(5.2.1)
fl(A\-1(Z))-Ar1(Z)

Arx(z)

524 A. McCURDY, k. c. ng and b. N. PARLETT

where e(k) < C2k2e (see Remark 1 of Subsection 4.4). Let p denote the coefficient of

e*""1', i.e., p = p(Z) = A\-\X)/\A»fl(Z)\. When p » 1, (5.2.1) implies that it is

difficult to obtain Ak(Z) with high relative accuracy. This difficulty is intrinsic to

the RH method. One way to overcome it is to increase the precision of the arithmetic

operations and of the variables. Another possible approach is to find special

formulae which build up Ak¡(Z) from even tinier quantities, e.g., FDD, the formula

for A\ exp given in Subsection 2.2. Unfortunately for « > 2, we do not know if any

such formulae exist.

We call p(Z) the difficulty of Z for computing the exponential divided difference

A\~1(Z). It indicates whether A"_1(Z) can be computed with high relative accu-

racy. If p(Z) is large then we call the data Z difficult for the computation of

ArKz)-
We have used the word difficulty instead of the common term condition number

for several good reasons. By tradition, a condition number should measure the

sensitivity of an output to small perturbations in the input. Our quantity p is merely

a bound on the most accurate method we have for computing A"x~1(Z)exp. More

important is the fact that we want to compute these numbers with a small relative

error, not absolute. Z is difficult precisely when the number we wish to compute is

close to zero. Indeed this number may not be sensitive (absolutely) to small changes

in Z.

From (5.1.1), we always have p > 1. In general, p does not have an upper bound13

(e.g., p([0, 2tt/]) = oo). However, when Z is real, p = 1. Also Z is not difficult if all

its elements are close to the real axis.

Theorem. Given Z = ([£,,... ,f„] , let tj7 = Im $}, / = 1,...,«. If maxy|Tj7| < y <

tr/2, then

p(Z) < sec(y).

Proof. Our proof follows from the following mean value representation of A* (Z):

there exist real ¡i, v with miaj<t<j+k tj, < u-, v < maxya,/<y + A: tj,, such that

(5.2.2) A*,(Z) = Akj(Z)(cos(i>) + isin(ix)).

From the identity exp(£ + iij) = exp(|)(cos(Tj) + /'sin(Tj)) and the Hermite-Genoc-

chi representation (1.3.1), we have

AkJ(Z) = f p ■■■ fklexp[èJ+ ■■■+(iJ+k-tJ+k-l)rk]
Jo Jo Jo

Xcos[tj,.+ ••• +(rtj+k-Vj+k-i)"k] dvk-- dv2dvx

+ i •fP ' • ■ f ' exP[^ + ■ • ■ +(*;+* - É7+*-iK]Jq Jq Jq l j J

Xsin[ij7+ •■■ +(rij+k-nJ+k_1)vk\ dvk-- dv2dvx.

Since exp is positive on real values, Eq. (5.2.2) follows from the integral mean value

theorem applied to each part. Now with the condition maxy|Tjy| < y < tt/2, (5.2.2)

13 We conjecture that if the imaginary parts of the data are restricted in (0,2w), then any divided

difference A * never vanishes (and hence p * oo). It can be proved for k = 1; but we do not know any

proof when k is bigger than 1.

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 525

gives a lower bound for |A*-(Z)|:

(5.2.3) ^*,(Z)|>cos(y)-A*,(*)>0.

The theorem follows from the definition of p. D

Note that when |Im(f,)| < 0.45tt, / = 1,...,«, then p < 6.41. Examples of

difficult Z are: those abscissae close to [0,2-ni, Ami,... ,2kmi\ (any divided difference

on these abscissae vanishes, i.e., p = oo). A surprising example is Z = [0, /', 2.04254

+ 7.97730/']. For this Z, we computed A(Z) with approximately 7 decimal precision

and give the corresponding p in the table below. Notice that SS lost 6 digits in the

last divided difference, which has p = 106.

Table 5.2.3

Divided differences onZ= [0, /', 2.04254 + 7.97730/].

Correct values

to 3 digits
SS

A\ (0.841 0.460) (0.841 0.460) 1.05

A^ (-0T44e - 06 -0.731e - 07) (-0161e - 06 -0.800e - 07) 714e06

Remark 1. In application to the matrix exponential the need for high relative

accuracy in A*(Z) decreases with |A*(Z)|. When it is satisfactory to compare the

error in |A*(Z)| with Akt(X) then the difficulty evaporates.

Remark 2. In general p(Z) increases with the spread of the imaginary parts. For

example,

A11([Re(^1),Re(f2)]) fc - f2|
p(Ki.y)

uRetti) _ eRe(f2),

<C

Mfi-fz)! Ah) - p(h)

\MU - Si)\
So the bigger the difference of the imaginary parts the larger is the difficulty. As a

point of interest we also compute the difficulties on circles with various radii and

number of points. The results are summarized in the following table. Each entry is

the difficulty of abscissae distributed uniformly on a circle with radius y.

Table 5.2.4

Difficulty of circles for the highest divided difference.

n = 5

n = 10

n = 15

n = 20

2.2

1.7
1.5

1.3

7 = 10

3.1
7.9

4.5

3.2

y =15

3.2
28.9

25.0

12.6

20

3.2

35.9
173.6

77.5

25

3.2

45.1

301.7

651.8

5.3. Ordering and Matrix Argument Reduction. A nested ordering may not exist for

general complex data Z. However, if the imaginary parts of the data are bounded by

77, then one can order the data according to their real parts and get an almost nested

ordering. In this section, which is based on the period 2 777 of exp, we indicate briefly

a way to transform the data to values that have bounded imaginary parts. We refer

the reader to Ng [9] for details.

526 A. McCURDY, k. c. ng AND B. N. PARLETT

Definition of The Reduction Function Mod(v4). Since exp has period 2 77/ the strip

-77 < Im(f) < 77 is representative. Let us define the argument reduction function

for exp as follows:

Mod(0 -Í- 2kiri if (2k - l)ir < Im(f) < (2k + \)m.

We have exp(f) = exp(Mod(f))- Now we are going to extend the function Mod to

matrices. Let J be the Jordan normal form of A, i.e., A = P^JP, and J =

diag(./ ,..., Ji) where Jm is the Jordan block with diagonal equal to eigenvalue \m of

A. Let km be the integer such that

(2km - 1)77 <lm(\J<(2km+ 1)77.

Define

(1) Mod(/J = Jm - 2kmml;

(2) Mod(/) » diag(Mod(./,),... ,Mod(/,,));

(3) Mod(^) = P-1 Uod(J)P.

It is not difficult to prove that exp(A) = exp(Mod(^4)) according to (1), (2), and

(3). Thus Mod generalizes argument reduction to matrices and yields a matrix that

has eigenvalues with bounded imaginary parts.

As we have mentioned in the introduction, the application behind the computa-

tion of A*- exp is matrix exponentials. If one applies the matrix argument reduction

before computing the exponential, then all the eigenvalues of the matrix would have

bounded imaginary parts, thus solving the ordering problem in the computation of

the divided differences.

Remark 1. There is another way to reduce the imaginary parts of the data: since

A exp = exp(Z„), we may apply argument reduction directly on Zn and compute

exp(Mod(Z„)). However, the bidiagonal structure of Zn will be destroyed by the

reduction and therefore some modifications of the algorithm TS are needed. The

work for the whole compuatation increases significantly.

Remark 2. For the computation of Mod(A), there is a stable method which avoids

using the Jordan decomposition of a matrix. When A is triangular the work needed

is approximately «3/3 operations which is quite practical. An algorithm for argu-

ment reduction can be found in Ng [9].

5.4. Conclusion: SH for Data With Restricted Imaginary Parts. Although RH gives

the divided differences with guaranteed accuracy, it is impractical to implement it

unless the order of the divided differences is very small like 3 or 4, because the

number of operations grows like 2". Subsection 5.3 shows that (assuming one has the

matrix function Mod(A)) one can consider matrices with eigenvalues close to the

real line, so there is no loss of generality in considering Z with imaginary parts

bounded by 77. There are two advantages to small imaginary parts. The first is that

we can order the abscissae according to their real parts and obtain an almost nested

ordering (according to the G defined in Subsection 5.1). Thus one can apply SH

(Simple Hybrid method) instead of RH (Recursive Hybrid function). The second is

that the backfilling step in SS is stable, which implies that one can replace SS(II) by

SS with very slight sacrifice in accuracy. But the trade-off is significant, since SS

takes 0(n2) operations and requires only a few vectors for storage while SS(II) take

0(n3) and requires a matrix storage. We conclude this section by proposing the

following.

DIVIDED DIFFERENCES OF THE EXPONENTIAL FUNCTION 527

Computation of A(Z). Given Z with Re(Z) in increasing order and |Im(Z)| < 77.

Use algorithm SH with the following G to compute A(Z).

Decision Function G for SH on Z. The function G on Z = [fx,... ,fn] is defined to

be G(Z) = (f„, Çx),14 and the decision is, for /' < /,

f;, ¡¡j belong to the same cluster if Re(^ - J,) < gy_,

where the values of g„ / = 1,2,..., can be those in (4.4.9). D

Numerical Results. We ran the SH algorithm on Z that has the same real parts as

in (4.4.10) but with the imaginary parts = +77. The results are summarized in the

following table.

Table (5.4.1)

Test example for S H on complex data, A"fl(Z) exp.

Un
Correct values

to 7 digits
SH

digits

lost

9

10

11

12

13

14

15

16

17

18

19
20

-27.0 + 77

-26.0 - 17

-15.0 + 17

-14.0 - 17

-12.0 + 17

-10 -ir
-8.0 + 77

-7.9 - 77

-7.8 + 77

-2.7 - 17

1.0 + 77

1.1 -17

1.2 + 77

1.3 - 77

3.0 + 77

7.0 - 77

9.0 + 77

13.0 - 17

24.0 + 17

25.0 - 77

(-01879529d - 11
(-0.7978484d - 13

(-01747305d - 08
(0.4155101d - 09
(01814275d - 09

(0.7591439d - 09

(0.4204520d - 09
(0.2091884d - 09

(0.4721783d - 10

(0.2229288d - 10
(01147709d - 10

(0.3820952d - 11
(0.7360573d - 12
(01204098d - 12

(01798853d

(0.3734263d
(0.7041432d

(01705491d
(01783471d
(0.9540051d

13

14

15

15

15
16

-01643136d
-0.5013023d
0.9981036d

-0.4757347d

01323147d
-0.5204460d

0.5119519d
-0.3885102d

0.2416627d

-0.1255209d
0.8703504d

-0.7453152d
0.2693091d

-01441720d

0.5672050d
-0.8906243d

0.2104887d

-0.525 5464d

0.2243819d
-01855942d

18)
12)
09)
09)
08)
09)

09)
10)
10)
10)

11)
12)
12)
13)
14)
15)
15)

16)

15)
16)

-01879529e - 11
-0.7978483e - 13

-01747305e - 08
(0.4155102e - 09

(01814274e - 09

(0.7591440e - 09

(0.4204520e - 09

(0.2091884e - 09

(0.4721784e - 10

(0.2229289e - 10

(01147709e - 10

(0.3820956e - 11
(0.7360580e - 12
(01204099e - 12
(01798856e - 13
(0.3734269e - 14
(0.7041446e - 15

(01705495e - 15
(01783471e - 15
(0.9540053e - 16

-01643136e - 18)

-0.5013023e - 12)

0.9981036e - 09)

-0.4757347e - 09)

01323147e - 08)
-0.5204460e - 09)

0.5119519e - 09)
-0.3885013e - 10)

0.2416627e - 10)

-01255209e - 10)
0.8703510e - 11)

-0.7453158e - 12)
0.2693094e - 12)

-01441722e - 13)

0.5672058e - 14)
-0.8906257e - 15)
0.2104891e - 15)

-0.5255475e - 16)

0.2243819e - 15)
-01855942e - 16)

0.

0.

0.
0.

0.43
0.32

0.

0.20
0.48

0.90
0.99
1.18

1.25
1.29

1.42
1.43

1.51
1.51
0.27
0.60

6. Application to Computing Matrix Exponentials.

6.1. Repesentation off(A) by the Newton Interpolating Polynomial. Let Abe n X n

and let / be any scalar function with at least « continuous derivatives at the

eigenvalues ?!,...,£„ of A. Associated with / is the unique polynomial of degree

« — 1 which interpolates / at the £,-. A convenient representation of this polynomial

was given by Newton,

A-i(o-/(fi) + zW-n(í-fy).
k = l 7=1

Here A^./denotes the kth order divided difference of /at the abscissae fx,.. .,$k+1.

A fundamental result in matrix theory is that

(6.1.1) f(A)-pn_l(A).

14For such Z and G, one can show that 2(C7(Z) + it) > y(Z).

528 A. McCURDY, K. C. NG AND B. N. PARLETT

That is,

Newton Interpolating Polynomial off(A).

(6.1.2) f(A) = A\f-I + £ A\f- U(A- SjJ).
A=i 7=1

In our applications, A is in triangular form. Therefore the eigenvalues are just the

diagonal elements of the matrix and the matrix products can be formed efficiently.

6.2. Matrix Exponentials. Let A be triangular. Since exp is periodic on the

imaginary axis with period 277, we can use argument reduction in marix form (cf.

Subsection 5.4) on^4, replaced by another triangular^' such that exp(yl) = exp(^')

and |Im((2j()| < 77. There is no loss of generality in assuming that argument

reduction has been done and therefore the imaginary parts of the eigenvalues of A

are bounded. Now we can apply SH on the eigenvalues to obtain the divided

differences and compute exp(A) by (6.1.2).

Department of Mathematics

University of California

Berkeley, California 94720

1. K. E. Atkinson, An Introduction to Numerical Analysis, Wiley, New York, 1978.

2. S. D. CoNTE AND C. DE Boor, Elementary Numerical Analysis, 3rd ed., McGraw-Hill, New York,

1980.

3. C. Davis, "Explicit functional calculus," Linear Algebra Appl., v. 6,1973, pp. 193-199.

4. G. F. Gabel, A Predictor-Corrector Method Using Divided Differences, Technical Report No. 5,

Dept. of Computer Science, Univ. of Toronto, Oct. 1968.

5. A. O. Gel'fand, Calculus of Finite Differences, Hindustan, India, 1971.

6. W. Kahan & I. Farkas, "Algorithm 167—Calculation of confluent divided differences," Comm.

ACM, v. 6,1963, pp. 164-165.

7. A. C. McCurdy, Accurate Computation of Divided Differences, UCB/ERL M80/28, Univ. of

California, Berkeley, 1980.
8. A. McCurdy, K. C. Ng & B. N. Parlett, Accurate Computation of Divided Differences of the

Exponential Function, CPAM-160, Univ. of California, Berkeley, June 1983.

9. K. C. Ng, The Computation of the Matrix Exponential, Thesis, Univ. of California, Berkeley,

December 1983.
10. G. Opitz, "Steigungsmatrizen," Z. Angew. Math. Mech., v. 44, 1964, pp. T52-T54.

11. B. N. Parlett, "A recurrence among the elements of functions of triangular matrices," Linear

Algebra Appl., v. 14, 1976, pp. 117-121.
12. R. C. Ward, "Numerical computation of the matrix exponential with accuracy estimate," SI A M J.

Numer. Anal., v. 14,1977, pp. 600-610.
13. L. M. Milne-Thomson, The Calculus of Finite Differences, Macmillan, London, 1933.

