The Error Norm of Certain Gaussian Quadrature Formulae

By G. Akrivis*

Abstract

We consider Gauss quadrature formulae $Q_{n}, n \in \mathbf{N}$, approximating the integral $I(f):=\int_{-1}^{1} w(x) f(x) d x, w=W / p_{i}, i=1,2$, with $W(x)=(1-x)^{\alpha}(1+x)^{\beta}, \alpha, \beta= \pm 1 / 2$ and $p_{1}(x)=1+a^{2}+2 a x, p_{2}(x)=(2 b+1) x^{2}+b^{2}, b>0$. In certain spaces of analytic functions the error functional $R_{n}:=I-Q_{n}$ is continuous. In [1] and [2] estimates for $\left\|R_{n}\right\|$ are given for a wide class of weight functions. Here, for a restricted class of weight functions, we calculate the norm of R_{n} explicitly.

1. Introduction. Consider the integral I,

$$
I(f)=\int_{-1}^{1} w(x) f(x) d x, \quad w \geqslant 0,\|w\|_{1}>0
$$

approximated by the Gaussian quadrature formula Q_{n},

$$
Q_{n}(f)=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

Let $P_{k}, P_{k}(x)=\alpha_{k} x^{k}+\beta_{k} x^{k-1}+\cdots, \alpha_{k}>0, k \in \mathbf{N}_{0}$, be the orthonormal polynomials corresponding to the weight function w, i.e.,

$$
\int_{-1}^{1} w(x) P_{i}(x) P_{j}(x) d x=\delta_{i j}
$$

The following classical representation for the error term $R_{n}(f):=I(f)-Q_{n}(f)$ can be found, e.g., in [4, p. 75],

$$
\begin{equation*}
\bigwedge_{f \in C^{2 n}[-1,1]} \bigvee_{\xi \in(-1,1)} R_{n}(f)=\frac{1}{(2 n)!\alpha_{n}^{2}} f^{(2 n)}(\xi) \tag{1.1}
\end{equation*}
$$

The estimate

$$
\begin{equation*}
\left|R_{n}(f)\right| \leqslant \frac{1}{(2 n)!\alpha_{n}^{2}}\left\|f^{(2 n)}\right\|_{\infty} \tag{1.2}
\end{equation*}
$$

following immediately from (1.1), is often unsatisfactory, since bounds for higher derivatives are required, and, in addition, the calculation usually has to be repeated for different values of n.

For analytic functions Hämmerlin [8] suggested the following method for obtaining derivative-free error estimates: Let $q_{\kappa}(x):=x^{\kappa}, \kappa \in \mathbf{N}_{0}, r>1$ and $C_{r}:=\{z \in \mathbf{C}$: $|z|<r\}$. For a function f holomorphic in C_{r},

$$
\begin{equation*}
f(z)=\sum_{\kappa=0}^{\infty} \alpha_{\kappa}^{f} z^{\kappa}, \quad z \in C_{r} \tag{1.3}
\end{equation*}
$$

[^0]define
\[

$$
\begin{equation*}
|f|_{r}:=\sup \left\{\left|\alpha_{\kappa}^{f}\right| r^{\kappa}: \kappa \in \mathbf{N}_{0} \text { and } R_{n}\left(q_{\kappa}\right) \neq 0\right\} . \tag{1.4}
\end{equation*}
$$

\]

In the space

$$
X_{r}:=\left\{f: f \text { holomorphic in } C_{r} \text { and }|f|_{r}<\infty\right\}
$$

$|\cdot|_{r}$ is a seminorm. The error functional R_{n} is continuous in ($X_{r},|\cdot|_{r}$), and for the error norm

$$
\left\|R_{n}\right\|:=\sup \left\{\frac{\left|R_{n}(f)\right|}{|f|_{r}}: f \in X_{r},|f|_{r} \neq 0\right\}
$$

the relation

$$
\begin{equation*}
\left\|R_{n}\right\|=\sum_{\kappa=0}^{\infty} \frac{\left|R_{n}\left(q_{\kappa}\right)\right|}{r^{\kappa}} \tag{1.5}
\end{equation*}
$$

holds (see [8], [1], [2]).
For the weight functions considered here, either the condition

$$
\begin{equation*}
w(\cdot) / w(-\cdot) \text { is nondecreasing } \tag{1.6}
\end{equation*}
$$

or the condition

$$
\begin{equation*}
w(\cdot) / w(-\cdot) \text { is nonincreasing } \tag{1.7}
\end{equation*}
$$

is valid.
Condition (1.6) implies

$$
\begin{equation*}
R_{n}\left(q_{\kappa}\right) \geqslant 0, \quad \kappa \in \mathbf{N}_{0} \tag{1.8}
\end{equation*}
$$

(see [5]). Thus, from (1.5) there follows

$$
\left\|R_{n}\right\|=\sum_{\kappa=0}^{\infty} \frac{R_{n}\left(q_{\kappa}\right)}{r^{\kappa}}=R_{n}\left(\sum_{\kappa=0}^{\infty} \frac{q_{\kappa}}{r^{\kappa}}\right),
$$

i.e.,

$$
\begin{equation*}
\left\|R_{n}\right\|=r R_{n}(\varphi) \quad \text { with } \varphi(x):=1 /(r-x) . \tag{1.9}
\end{equation*}
$$

Let the polynomial π_{n-1} of degree less than n interpolate the function φ at the abscissae x_{1}, \ldots, x_{n} of Q_{n}. Since Q_{n} integrates π_{n-1} exactly, $R_{n}(\varphi)=R_{n}\left(\varphi-\pi_{n-1}\right)$ holds. Setting $\Pi_{n}(x):=\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)$, we obtain

$$
\varphi(x)-\pi_{n-1}(x)=\gamma_{n} \Pi_{n}(x) /(r-x),
$$

where γ_{n} is a constant, because the function on the left-hand side vanishes at x_{1}, \ldots, x_{n}. Multiplying by $r-x$ and taking the limit as $x \rightarrow r$ we obtain $\gamma_{n}=$ $1 / \Pi_{n}(r)$ (see [3, pp. 71-72]). Thus, from (1.9) we get the representation

$$
\begin{equation*}
\left\|R_{n}\right\|=\frac{r}{\Pi_{n}(r)} \int_{-1}^{1} w(x) \frac{\Pi_{n}(x)}{r-x} d x \quad \text { with } \Pi_{n}(x)=\prod_{i=1}^{n}\left(x-x_{i}\right) \tag{1.10}
\end{equation*}
$$

for weight functions satisfying (1.6).
If w satisfies (1.7),

$$
\begin{equation*}
(-1)^{\kappa} R_{n}\left(q_{\kappa}\right) \geqslant 0 \tag{1.11}
\end{equation*}
$$

holds (see [5]), and we obtain similarly

$$
\begin{equation*}
\left\|R_{n}\right\|=r R_{n}(\psi), \quad \psi(x):=1 /(r+x) \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|R_{n}\right\|=\frac{r}{\Pi_{n}(-r)} \int_{-1}^{1} w(x) \frac{\Pi_{n}(x)}{r+x} d x \quad \text { with } \Pi_{n}(x)=\prod_{i=1}^{n}\left(x-x_{i}\right) \tag{1.13}
\end{equation*}
$$

In [1] and [2], estimates for $\left\|R_{n}\right\|$ were derived for weight functions satisfying (1.6) or (1.7), and $\left\|R_{n}\right\|$ was given for $w=W$. Starting from (1.10) or (1.13) respectively, in the next section we calculate the norm of R_{n} for weight functions w with

$$
\begin{aligned}
& w=W / p_{i}, \quad i=1,2, \\
& W(x)=(1-x)^{\alpha}(1+x)^{\beta}, \quad \alpha, \beta= \pm 1 / 2, \\
& p_{1}(x)=1+a^{2}+2 a x, \\
& p_{2}(x)=(2 b+1) x^{2}+b^{2}, \quad b>0 .
\end{aligned}
$$

Two numerical examples conclude the paper.
Remark. For even weight functions, (1.4) can be written as $|f|_{r}=\sup _{\kappa \geqslant n}\left\{\left|\alpha_{2 \kappa}^{f}\right| r^{2 \kappa}\right\}$ (cf. [1]). If $w(\cdot) / w(-\cdot)$ is strictly monotonic, then $R_{n}\left(q_{\kappa}\right) \neq 0$ for $\kappa \geqslant 2 n$ (see [5]), and $|\cdot|_{r}$ can be equivalently defined by $|f|_{r}:=\sup _{\kappa \geqslant 2 n}\left\{\left|\alpha_{\kappa}^{f}\right| r^{\kappa}\right\}$.

2. The Norm of the Error Functional.

a. $p_{1}(x)=1+a^{2}+2 a x$. The case $a=0, \pm 1$ is treated in [1], [2] if w remains integrable. For $|a|<1, a \neq 0$, put $d:=1 / a$ to obtain $p_{1}(x)=a^{2}\left(1+d^{2}+2 d x\right)$, $|d|>1$. Therefore we only consider the case $|a|>1$.

We first summarize some results of Kumar [9] which are important for the subsequent development.

Lemma 1. Let $p_{1}(x)=1+a^{2}+2 a x,|a|>1 ; W(x)=(1-x)^{\alpha}(1+x)^{\beta}$ and $w=W / p_{1}$. Let T_{i} and U_{i} be the Chebyshev polynomials of the first and second kind, respectively. Then the abscissae x_{1}, \ldots, x_{n} of the Gauss quadrature formula Q_{n} corresponding to w are the zeros of
(i) $a T_{n}+T_{n-1}$ if $\alpha=\beta=-1 / 2$,
(ii) $a U_{n}+U_{n-1}$ if $\alpha=\beta=1 / 2$,
(iii) $a U_{n}+(1+a) U_{n-1}+U_{n-2}$ if $\alpha=-\beta=1 / 2$ and $n>1$.

Remark. For $\alpha=\beta= \pm 1 / 2$ the condition (1.6) is satisfied if $a<-1$, the condition (1.7) if $a>1$. For $\alpha=-\beta=-1 / 2$, (1.6) holds, for $\alpha=-\beta=1 / 2$ we have (1.7).

We now establish the first of our results.
Theorem 1. Consider $p_{1}(x)=1+a^{2}+2 a x,|a|>1, W(x)=(1-x)^{\alpha}(1+x)^{\beta}$, $w=W / p_{1}$. Let $\tau:=r-\sqrt{r^{2}-1}$. For the norm of the error functional R_{n} the following is true:

$$
\begin{equation*}
\left\|R_{n}\right\|=\frac{2 \pi r \tau^{2 n}}{(\tau+a)\left[\tau\left(1+\tau^{2 n-2}\right)+a\left(1+\tau^{2 n}\right)\right] \sqrt{r^{2}-1}} \tag{2.1}
\end{equation*}
$$

for $\alpha=\beta=-1 / 2$ and $a<-1$,

$$
\begin{equation*}
\left\|R_{n}\right\|=\frac{2 \pi r \tau^{2 n+2} \sqrt{r^{2}-1}}{(\tau+a)\left[\tau\left(1-\tau^{2 n}\right)+a\left(1-\tau^{2 n+2}\right)\right]} \tag{2.2}
\end{equation*}
$$

for $\alpha=\beta=1 / 2$ and $a<-1$,

$$
\begin{equation*}
\left\|R_{n}\right\|=\frac{2 \pi r \tau^{2 n+1}}{(\tau-a)\left[\tau\left(1+\tau^{2 n-1}\right)-a\left(1+\tau^{2 n+1}\right)\right]}\left(\frac{r+1}{r-1}\right)^{1 / 2} \tag{2.3}
\end{equation*}
$$

for $\alpha=-\beta=1 / 2$ and $n>1$.
Proof. First, let us verify the identity (2.1). The weight function w satisfies condition (1.6) for $\alpha=\beta=-1 / 2$ and $a<-1$. Thus, by Lemma 1 (i) and (1.10),

$$
\begin{equation*}
\left\|R_{n}\right\|=\frac{r}{a T_{n}(r)+T_{n-1}(r)} \int_{-1}^{1}\left(1-x^{2}\right)^{-1 / 2} \frac{a T_{n}(x)+T_{n-1}(x)}{(r-x)\left(1+a^{2}+2 a x\right)} d x \tag{2.4}
\end{equation*}
$$

holds. Let the integral on the right-hand side of (2.4) be denoted by $I_{n}(a, r)$. Substituting $x=\cos y$ we obtain

$$
I_{n}(a, r)=\int_{0}^{\pi} \frac{a \cos (n y)+\cos [(n-1) y]}{(r-\cos y)\left(1+a^{2}+2 a \cos y\right)} d y
$$

Set

$$
C_{n}(a):=2 a \int_{0}^{\pi} \frac{a \cos (n y)+\cos [(n-1) y]}{1+a^{2}+2 a \cos y} d y
$$

to obtain

$$
I_{n}(a, r)=\frac{1}{1+a^{2}+2 a r}\left\{\int_{0}^{\pi} \frac{a \cos (n y)+\cos [(n-1) y]}{r-\cos y} d y+C_{n}(a)\right\}
$$

Since

$$
\int_{0}^{\pi} \frac{\cos (m y)}{r-\cos y} d y=\frac{\pi \tau^{m}}{\sqrt{r^{2}-1}}
$$

(cf., e.g., [7, p. 112]), we have

$$
I_{n}(a, r)=\frac{1}{1+a^{2}+2 a r}\left\{\frac{\pi \tau^{n-1}(a \tau+1)}{\sqrt{r^{2}-1}}+C_{n}(a)\right\} .
$$

By (1.5), $\left\|R_{n}\right\|=O\left(r^{-2 n}\right)$ holds for $r \rightarrow \infty$, and (2.4) yields $I_{n}(a, r)=O\left(r^{-n-1}\right)$ for $r \rightarrow \infty$. Therefore $C_{n}(a)=0$, which can also be established by straightforward calculation. Thus,

$$
I_{n}(a, r)=\frac{\pi \tau^{n}}{(\tau+a) \sqrt{r^{2}-1}}
$$

Combining this with $T_{m}(r)=\left[\left(r-\sqrt{r^{2}-1}\right)^{m}+\left(r+\sqrt{r^{2}-1}\right)^{m}\right] / 2$ (see [11, p. 5]), the relation (2.1) follows from (2.4).
(2.2) can be proved in a similar way. To prove (2.3), use the relation

$$
(1-x)\left[U_{m}(x)+U_{m-1}(x)\right]=T_{m}(x)-T_{m+1}(x)
$$

which immediately follows from well-known identities for Chebyshev polynomials (cf., e.g., [11, p. 9]).

Remark. $I_{n}(a, r)$ is also calculated by Kumar [9] by means of the generating function for the polynomials $a T_{n}+T_{n-1}$.

Corollary 1. Let $p_{1}(x)=1+a^{2}+2 a x,|a|>1, W(x)=(1-x)^{\alpha}(1+x)^{\beta}$ and $w=W / p_{1}$. Then the norm of R_{n} can be expressed as

$$
\begin{equation*}
\left\|R_{n}\right\|=\frac{2 \pi r \tau^{2 n}}{(\tau-a)\left[\tau\left(1+\tau^{2 n-2}\right)-a\left(1+\tau^{2 n}\right)\right] \sqrt{r^{2}-1}} \tag{2.5}
\end{equation*}
$$

if $\alpha=\beta=-1 / 2$ and $a>1$, and as

$$
\begin{equation*}
\left\|R_{n}\right\|=\frac{2 \pi r \tau^{2 n+2} \sqrt{r^{2}-1}}{(\tau-a)\left[\tau\left(1-\tau^{2 n}\right)-a\left(1-\tau^{2 n+2}\right)\right]} \tag{2.6}
\end{equation*}
$$

if $\alpha=\beta=1 / 2$ and $a>1$, and as

$$
\begin{equation*}
\left\|R_{n}\right\|=\frac{2 \pi r \tau^{2 n+1}}{(\tau+a)\left[\tau\left(1+\tau^{2 n-1}\right)+a\left(1+\tau^{2 n+1}\right)\right]}\left(\frac{r+1}{r-1}\right)^{1 / 2} \tag{2.7}
\end{equation*}
$$

if $\alpha=-\beta=-1 / 2$ and $n>1$.
Proof. Let R_{n} and R_{n}^{*} be the error functionals corresponding to the weight functions w and $w(-\cdot)$, respectively. Then obviously $R_{n}\left(q_{\kappa}\right)=(-1)^{\kappa} R_{n}^{*}\left(q_{\kappa}\right)$ holds, and thus $\left\|R_{n}\right\|=\left\|R_{n}^{*}\right\|$. Hence, the corollary immediately follows from Theorem 1.
b. $p_{2}(x)=(2 b+1) x^{2}+b^{2}, b>0$. We first summarize some results of Kumar [10] which are neeted in the sequel.

Lemma 2. Let $p_{2}(x)=(2 b+1) x^{2}+b^{2}, b>0, W(x)=(1-x)^{\alpha}(1+x)^{\beta}$ and $w=W / p_{2}$. The abscissae x_{1}, \ldots, x_{n} of the Gauss quadrature formula Q_{n} corresponding to w are the zeros of
(i) $(2 b+1) T_{n}+T_{n-2}$ if $\alpha=\beta=-1 / 2$ and $n>1$,
(ii) $(2 b+1) U_{n}+U_{n-2}$ if $\alpha=\beta=1 / 2$ and $n>1$,
(iii) $(2 b+1)\left(U_{n}+U_{n-1}\right)+U_{n-2}+U_{n-3}$ if $\alpha=-\beta=1 / 2$ and $n>2$.

Our second result is presented in the following theorem.
Theorem 2. Let $p_{2}(x)=(2 b+1) x^{2}+b^{2}, b>0, W(x)=(1-x)^{\alpha}(1+x)^{\beta}$ and $w=W / p_{2}$. For the norm of the error functional we have:

$$
\begin{equation*}
\left\|R_{n}\right\|=\frac{4 \pi r \tau^{2 n}}{(b+r \tau)\left[(2 b+1)\left(1+\tau^{2 n}\right)+\tau^{2}\left(1+\tau^{2 n-4}\right)\right] \sqrt{r^{2}-1}} \tag{2.8}
\end{equation*}
$$

for $\alpha=\beta=-1 / 2, n>1$,

$$
\begin{equation*}
\left\|R_{n}\right\|=\frac{4 \pi r \tau^{2 n+2} \sqrt{r^{2}-1}}{(b+r \tau)\left[(2 b+1)\left(1-\tau^{2 n+2}\right)+\tau^{2}\left(1-\tau^{2 n-2}\right)\right]} \tag{2.9}
\end{equation*}
$$

for $\alpha=\beta=1 / 2, n>1$, and

$$
\begin{equation*}
\left\|R_{n}\right\|=\frac{4 \pi r \tau^{2 n+1}}{(b+r \tau)\left[(2 b+1)\left(1+\tau^{2 n+1}\right)+\tau^{2}\left(1+\tau^{2 n-1}\right)\right]}\left(\frac{r+1}{r-1}\right)^{1 / 2} \tag{2.10}
\end{equation*}
$$

for $\alpha=-\beta=1 / 2, n>2$.
Proof. In this case (1.7) holds, and the results follow from (1.13) using Lemma 2.
Symmetry arguments yield the following corollary.
Corollary 2. Let $w(x)=((1+x) /(1-x))^{1 / 2} /\left[(2 b+1) x^{2}+b^{2}\right], b>0$. The norm of the error functional corresponding to w is then given by (2.10) also.

Remark. Let $K_{n}(z):=R_{n}\left(\varphi_{z}\right), \varphi_{z}(x):=1 /(z-x),|z|=r$. If f is holomorphic in a region B including C_{r} the representation

$$
R_{n}(f)=\frac{1}{2 \pi i} \int_{C_{r}} K_{n}(z) f(z) d z
$$

holds. Gautschi and Varga [6] showed that for weight functions satisfying either (1.6) or (1.7)

$$
\max _{|z|=r}\left|K_{n}(z)\right|=\max \left\{K_{n}(r),\left|K_{n}(-r)\right|\right\}=\sum_{\kappa=0}^{\infty} \frac{\left|R_{n}\left(q_{\kappa}\right)\right|}{r^{\kappa+1}}
$$

holds. Therefore, we have $\max _{|z|=r}\left|K_{n}(z)\right|=\left\|R_{n}\right\| / r$, and for the weight functions considered here $\max _{|z|=r}\left|K_{n}(z)\right|$ has also been determined.
3. Numerical Results. For $f \in X_{\rho},\left|R_{n}(f)\right|$ is bounded by $\left\|R_{n}\right\||f|_{r}, r \in(1, \rho]$. Therefore,

$$
\begin{equation*}
\left|R_{n}(f)\right| \leqslant \inf _{1<r \leqslant \rho}\left(\left\|R_{n}\right\||f|_{r}\right) \tag{3.1}
\end{equation*}
$$

holds. (Although not explicitly noted, $\left\|R_{n}\right\|$ is obviously a function of r.) Estimating $|f|_{r}$ by $\|f\|_{2, r}$,

$$
\|f\|_{2, r}:=\frac{1}{\sqrt{2 \pi r}}\left(\int_{|z|=r}|f(z)|^{2}|d z|\right)^{1 / 2}
$$

or by $\max _{|z|=r}|f(z)|$, which exist at least for $r<\rho$, we obtain

$$
\begin{equation*}
\left|R_{n}(f)\right| \leqslant \inf _{1<r<\rho}\left(\left\|R_{n}\right\|\|f\|_{2, r}\right) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|R_{n}(f)\right| \leqslant \inf _{1<r<\rho}\left(\left\|R_{n}\right\| \max _{|z|=r}|f(z)|\right) \tag{3.3}
\end{equation*}
$$

respectively (see [8]). The sharpness of these estimates is demonstrated by two numerical examples.

Example 1. Let $f(z):=\exp (z), f \in X_{r}, r>1(\rho=\infty)$. Approximate the integral

$$
\int_{-1}^{1} \frac{1}{(3+2 \sqrt{2})\left(1+x^{2}\right) \sqrt{1-x^{2}}} f(x) d x
$$

by the Gaussian quadrature formula Q_{2} corresponding to

$$
w(x)=\frac{1}{(3+2 \sqrt{2})\left(1+x^{2}\right) \sqrt{1-x^{2}}} .
$$

The abscissae and the weights of Q_{2} are given in [10]. The remainder term is $R_{2}(f)=2.016 \cdot 10^{-3}$. Setting $b=1+\sqrt{2}$ and $n=2$ in (2.8), we obtain the norm of the error functional R_{2}. With $|f|_{r}=r^{4} / 24$ for $1<r \leqslant \sqrt{30},|f|_{r}=r^{6} / 720$ for $\sqrt{30}<r \leqslant \sqrt{56}$, and so on, and $\max _{|z|=r \mid}|f(z)|=\exp (r)$, (3.1) and (3.3) yield for $\left|R_{2}(f)\right|$ the bounds $2.019 \cdot 10^{-3}(r=5.45)$ and $1.073 \cdot 10^{-2}(r=4.15)$, respectively.

Example 2. Let

$$
f(z)=\sum_{\kappa=4}^{\infty}\left(\frac{z}{2}\right)^{\kappa}=\frac{1}{8} \frac{z^{4}}{2-z}, \quad f \in X_{r} \text { for } r \in(1,2](\rho=2) .
$$

The remainder term $R_{2}(f)$ for the approximation of

$$
\int_{-1}^{1} \frac{1}{(5+4 x) \sqrt{1-x^{2}}} f(x) d x
$$

by the Gaussian quadrature formula Q_{2} corresponding to

$$
w(x)=\frac{1}{(5+4 x) \sqrt{1-x^{2}}}
$$

is $7.18 \cdot 10^{-3}$. The abscissae of Q_{2} are the zeros of $2 T_{2}+T_{1}$ (Lemma $\left.1(\mathrm{i}), a=2\right)$. We have

$$
|f|_{r}=\frac{r^{4}}{16}, \quad\|f\|_{2, r}=\left[\sum_{\kappa=4}^{\infty}\left(\frac{r}{2}\right)^{2 \kappa}\right]^{1 / 2}=\frac{r^{4}}{8 \sqrt{4-r^{2}}}
$$

(cf. [8]) and $\max _{|z|=r}|f(z)|=r^{4} /(16-8 r)$. Setting $a=2$ and $n=2$ in (2.5), we obtain the norm of R_{2}. Now, from (3.1), (3.2) and (3.3), we get for $\left|R_{2}(f)\right|$ the bounds $1.25 \cdot 10^{-2}(r=2), 3.06 \cdot 10^{-2}(r=1.65)$ and $8.75 \cdot 10^{-2}(r=1.50)$, respectively.

Acknowledgment. The author would like to thank Professor G. Hämmerlin for his encouragement during this work.

Mathematisches Institut der Universität
Theresienstrasse 39
D-8000 München 2, West Germany

1. G. Akrivis, "Fehlerabschätzungen für Gauss-Quadraturformeln," Numer. Math., v. 44, 1984, pp. 261-278.
2. G. Akrivis \& A. Burgstaller, "Fehlerabschätzungen für nichtsymmetrische Gauss-Quadraturformeln," Numer. Math. (To appear.)
3. H. Brass, Quadraturverfahren, Vandenhoeck and Ruprecht, Göttingen, Zürich, 1977.
4. P. J. Davis \& P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York, 1975.
5. W. Gautschi, "On Padé approximants associated with Hamburger series," Calcolo, v. 20, 1983, pp. 111-127.
6. W. Gautschi \& R. S. Varga, "Error bounds for Gaussian quadrature of analytic functions," SIAM J. Numer. Anal., v. 20, 1983, pp. 1170-1186.
7. W. Grobner \& N. Hofreiter (editors), Integraltafel, II Teil, Springer-Verlag, Wien, 1961.
8. G. Hämmerlin, "Fehlerabschätzungen bei numerischer Integration nach Gauss," Methoden und Verfahren der mathematischen Physik, Vol. 6 (B. Brosowski and E. Martensen, eds.), Bibliographisches Institut, Mannheim, Wien, Zürich, 1972, pp. 153-163.
9. R. Kumar, "A class of quadrature formulas," Math. Comp., v. 28, 1974, pp. 769-778.
10. R. Kumar, "Certain Gaussian quadratures," J. Inst. Math. Appl., v. 14, 1974, pp. 175-182.
11. T. J. Rivlin, The Chebyshev Polynomials, Wiley, New York, 1974.

[^0]: Received August 6, 1984; revised December 5, 1984.
 1980 Mathematics Subject Classification. Primary 65D30.
 *Current address: Department of Mathematics, University of Crete, Iraklion, Crete, Greece.

