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Computing When Multiplications Cost Nothing

By D. J. Newman*

Abstract. A (rather strange) computer is considered which costs It to perform each addition

but costs nothing to perform a multiplication. It is shown that the addition chain from 1 to «

cost maximally (Logn)1/2 + i>|1> rather than the classical  - Log«.

Starting with the number 1, and performing additions of numbers we already

have, we find that we can reach any number we wish with exponential rapidity.

Thus, we can reach the number n in exactly Log«** such addition steps when « is a

power of 2, and only somewhat longer when n is not a power of 2. The obvious path

to other n is via binary digits and this takes perhaps 2 Log n steps. Less obvious is

Erdös' construction which gives n in  - Log n steps.

Just to be perverse, we asked how many of these addition steps were necessary if

our hypothetical machine could perform multiplications absolutely free (machines

are not like that but perversity is). Of course this time there is no asymptotic answer

as there was before. There are very cheap numbers! Thus, every power of 2 is

achieved with only 1 addition. These are the l<t numbers. The number 23, on the

other hand is a 4<t number, and so on. So now we must respect this difference and

define C(n) as the maximum cost of efficiently producing the number k, the

maximum taken over all k < n.

Another perverse fact about this paper is that this author had virtually nothing to

do with finding the answers! We did vaguely have the feeling that C(n) should be

"something like" /Log n , but it was Spencer*** and Rucza who separately supplied

the lower and upper bounds.

Since neither of these two clever mathematicians wanted to write up the results,

and since they both had such charming arguments, we decided to set them down.

Theorem. C(n) = (Log«)1/2+0<1>, more precisely i/Log «/Log Log2« < C(«) <

5/Log«.

Spencer: This was basically a bit of very incisive bookkeeping.

Let us form a picture of just what happens in an arbitrary procedure, call it P,

with j addition steps and any number of multiplications. So denote by a,, = a0(P)

the number which is produced at the tJth addition step of the procedure. After this

step there are a number of multiplications performed and numbers a^a*2 ■ ■ • a*°
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are produced. Thereby the next addition gives ap+x = a*1 • • • a*v + af1 • • • a£e and

there are 2v description parameters (the exponents X, and p¡). Finally, after all j

additions have been made, there are multiplications performed and this results in

a{lar22 • ■ • ay, and there are j more descriptive parameters.

The total number of parameters, then, is 2 + 4 + 6+ ••• +2(j - \) + j = j2,

and the procedure P is exactly described by the j2-tuple of these parameters. (For

example, the 4-tuple (0,3,2,2) means the procedure: Form 1 + 1, form 1 + 2\ form

22 • (1 + 23)2, the end number being 324.)

We are now in a position to estimate the counting function of the integers costing

at most j<t. Such a number might be formed by many procedures; some, perhaps of

<j additions, but we can, by ignoring some steps and ignoring duplications

estimate this counting function by the number of y-addition-procedures. This is

exactly equal to the number of j2-tuples and since we may assume that all the

parameters are bounded by Log« (or else the corresponding ax (aM) would exceed

«). The result is that: The number of integers up to « which cost at most j$ is

< (1 + Logn)A

Thus, if (1 + Log«)7 < « there is a number < « which is left out of this tally,

and this is to say C(n)>j. In other words, j < /Log«/LogLog2« implies

j < C(n), and this proves that C(«) > /Log«/LogLog2« .

Ruzca: We fix on a number «, and call the largest triangular number < Log«,

({). For this j, we make a down payment of j<t by producing 2, 3, 5, 9,..., 1 + 2y~l.

For this same j<t then, we also produce S¡, the set of all products

2m    n    (1 +2').
some i <j

The following is essentially an old Putnam problem:

Lemma. If x¡ decreases to 1 and x¡ < xf+x, then every number between 1 and Fix,

is equal to a subproduct, FI,, x¡.

Proof. The greedy algorithm! Given £ we form its subproduct by taking, in turn,

the largest (earliest) x¡ that we can. Thus when x¡, x¡,..., x¡   have been chosen

with x¡ ■ x¡.Xj < £ then we define ir+1 as the first integer above i„ for which

xi • x¡.x¡     < £ (with the understanding that iy+1 = oo if x¡  ■ ■ ■ x¡ = £)■

It is an easy induction that, at each stage, 1 < £/x, x¡ ■ ■ ■ x¡ < x¡. The conver-

gence of the subproduct to ¿ follows from the fact that xi —> 1.

So let us return to «.

Write Log« = ({) + k + 6, j, k integral, 0 < k <j, 0 < 6 < 1. Clearly, 2e < 2

< n(l + 2"') so that our lemma tells us that 2e = FI(1 + 2~'°). Multiplying through

by 2ii) + k then gives

« = 2mn(2''+ !)• 11(1 + 2"'"),

where m = k +Ui<j.itK>tanyiri.

The number N - 2mX\i < ,(2'" + 1) is in our set S¡, and furthermore, we have

0 < n - N = nil - El (1 + 2-'')"1) < »(l - 11(1 + 2-T1) < -j^.
\ ip>j I V ,>y / lJ
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If we then subtract off M, the highest power of 2 below « - N, we obtain

0<«' = «-A-M< n/2>, and this «' corresponds to a / which is strictly

smaller than j.

We may now prove inductively that « is the sum of 2j — 1 numbers from S¡. This

is clearly true for j = \, which entails « = 1, and if we assume that «' is the sum of

2/ - 1 members of Sy (and hence of SX then « = «' + N + M is the sum of

2j' — 1 + 2 < 2 y — 1 such, and the induction is complete.

Altogether, then, the total cost of « is bounded by 2 y - 1 + j, j being the cost of

the set Sj. Since 3y - 1 < Si/f^) for j > 2, we obtain, finally, C(«) < 5/Log«.
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