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An Efficient Algorithm for Obtaining the Volume

of a Special Kind of Pyramid and

Application to Convex Polyhedra

By Ted Speevak

Abstract. An efficient method is given for obtaining the volume of a pyramid of species « - 2

whose base is a convex polygon. The pyramid is " transformed" into a simplex whose volume

is computed directly. A refinement is provided to the Cohen-Hickey method for determining

volumes of convex polyhedra.

1. Introduction. Recently, some papers have appeared which give analytically exact

algorithms for obtaining the volume of convex polyhedra in U" [1], [3], [4]. These

papers were motivated by practical applications: [1] arose from work on mechaniz-

ing programme analysis and the desire to determine the probability of taking a given

path through a sequence of conditionals (where the Boolean expression in a

conditional consists of a linear inequality); [3], [4] were in conjunction with the

building of chemical stability models. The underlying methodology is similar for

these algorithms: partition the polyhedron into simplices, then sum the volumes of

the constituent simplices. While the approaches are direct, the work (i.e., number of

calculations) increases exponentially with n [1].

This paper gives an efficient method for calculating the volume of a pyramid of

species n — 2 (see p. 123 of [2]), whose base is a 2-dimensional bounded convex

polygon. Hereafter, this pyramid, which is explicitly defined at the beginning of

Section 2, will be referred to simply as a pyramid of species n — 2. Efficiency

decision rules are given. Then it is shown how this method can be used to improve

the efficiency of the algorithms in [1], [3], [4].

Wherever it is convenient, matrix notation will be used. Boldface capital letters

(e.g., A, B, C) will denote matrices, while boldface lower case letters (e.g., a, b, c) will

denote vectors. Prime will indicate transposition, with row vectors always primed,

while column vectors are without a prime. Det( • ) will represent the determinant of a

matrix. ABS( • ) will denote the absolute value of a scalar. SGN[ • ] will represent the

sign of a scalar. By U ", we will denote the «-dimensional Euchdean space. / linearly

independent linear equations in (xx,..., x„) define an (n — /)-flat, where an /--flat is

a flat (Euclidean) space of r dimensions in the sense that r coordinates are needed to

fix a point of the flat.
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2. Algorithm. Let P2 represent a 2-dimensional bounded convex polygon in R ",

whose successive adjacent distinct vertices are the vectorsax,û2,...,apwhere p > 3.

Now consider a pyramid whose base is P2 and with vertices represented by the

vectors w0,..., w„_3 where n ^ 3, and where w„^3 does not lie in the 2-flat defined

by P2, w„_4 does not he in the 3-flat defined by P2y/„-.3, and so on. The pyramid

P2"wn_3 • • • w0 is a pyramid of species n - 2 (see p. 123 of [2]) and the constituent

simplices (w0 • • • w„_3d1d,d,+1, / = 2,..., /? - 1) are nonempty and it follows that

(1)        Det(Wü'•••'W'■-3'    dl'    d"    d,+1|*0,   where2<i</>-l.

\i,...,i, i,      i,      i     /

Direct evaluation of the pyramid P2nyvn_3 • • • w0 entails the evaluation of the

p — 2 determinants on the LHS of (1). The volume of the pyramid P2y¡„-3 • • • w0

does not change if (for w0,...,w„_3 fixed) P2 is replaced by any other polygon

with the same 2-dimensional volume (i.e., area) and contained in the same 2-flat. In

particular, if the replacing polygon is a triangle, then the volume of the resultant

simplex (and hence the original pyramid i>2"w„ 3 • ■ • w0) can be determined by the

evaluation of a single determinant. This reduction in computational effort achieved

by replacing P2 with an equivolume triangle is the crux of the algorithm. The

algorithm transforms P2 into an equivolume (p - l)-gon which is in turn trans-

formed into an equivolume ( p - 2)-gon and so on until an equivolume 3-gon (i.e., a

triangle) is obtained. This is accomphshed through the elimination of one vertex and

changing the coordinates of another, with each transformation.

The algorithm for determining the volume, c, of the pyramid P2"vtn_3 ■ ■ • w0 is

presented in Figure 1 in a pseudocode language which uses matrix notation. After

the code has been executed, the last 3 columns of the matrix S are the coordinates of

the vertices of the triangle replacing P2.

Figure 1

procedure content;

comment the parameters are called by value;

Local variables introduced in the algorithm:

v0,..., v„_3, t1(..., t^,, b: vectors of length n,

S: n X n matrix,

s¿: z'th column of the matrix S,

A: « x 2 matrix.

comment Step 0—shift w0 to origin;

begin integer i, j;

for / «- 0 to n — 3 do

begin

v¡ «- w,- — w0;

end;

for j *- 1 to p do

begin

tj *- d, - w0;

end;

end;
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comment Step 1—initialize S;

begin

if n > 3 then S <- (Vi,...,vB_3,t1,t2,t3)

else S «- (t1,t2,t3);

end;

comment Step 2—bring in t4;

begin

if p > 3 then

begin integer /';

s„-i «-12-14;

comment Step 3—bring in t5, t6.tp;

if/? > 4 then

begin

for j: <- 4 to p - 1 do

begin

^^((ti-ti+l),(t,-ti+l));

b«-s»-i;

Solve A(hv A2)' = b for (hvh2)';

if A2 Athens, <-s„ + (l/A2)tm

else s„ «- s„ + (l/A^t,;

end;

end;

end;

comment Step 4;

c *- ABS(Det(S))/«!;

end;

3. Outline of Proof of Algorithm. This section gives an outline of the proof of the

validity of the algorithm, for n > 3. The outline is provided, for sake of brevity,

instead of a fully detailed proof.

The algorithm is valid if it can be shown that

,„v     ^-ABS(Det(S)) = ^- E ABsÍDetíW°'---'W"-3'    dl'    d"    d/+1))
(2) »!       y     y »    n\ .f2       \     \ 1.....1,        1,     1,     1     Ü

for p ^ 3.

Note that the RHS of Eq. (2) is the collection of the volumes of the constituent

simplices of the pyramid and Det(S) on the LHS is the value used in Step 4 of the

algorithm.

Using an algebraic/geometric argument it can be shown that

SGN[Det(v1,...,v„_3)t1,t2,t3)]

(3) =SGN[Det(v1,...,vn_3,t1,t,,t,+1)]

where 3 </'</?- 1, p > A and « > 3.

It follows from the application of Eq. (3) to Eq. (2) and some algebra that it is

sufficient to demonstrate that

p-ï
(A) Det(S)= £ Det(v1)...,vB_3,t1,t1.JtI.+1)   forp > 3.

i = 2
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It is a well-known fact that if X and Y are both square matrices of the same order

and if X and Y differ only in their k th columns (or rows), then Det(X) + Det(Y) =

Det(Z), where Z is a matrix whose columns (or rows) are the same as those of X (or

Y) except that the k th column (or row) is the sum of the k th columns (or rows) of X

and Y.

It can be shown, using the above well-known fact, that the algorithm holds (i.e.,

Eq. (4) is satisfied) for p = 3, A, & 5 and then, by induction, for p > 5.

The above is an outline of the proof of the algorithm for p ^ 3 and n > 3. In an

identical manner, it can be shown that the algorithm holds for p > 3 and n = 3.

4. Efficiency of Algorithm. The steps of the algorithm, outlined in Section 2,

permit us to compare its efficiency relative to other methods of volume determina-

tion. We define an "operation" as the sum of any two basic arithmetic operations

( +, -, X, -i- ). It is assumed that all determinants are computed using Gaussian

elimination with partial pivoting and require

V _ «f    2« _ 1
3       2 +   3       2

operations for matrices of order n. Each of the methods considered utilizes the

translation of U" given in Step 0 and, as such, it will not be counted in the

determination of number of operations. For the same reason, determination of n\

and the division by n ! will not be considered.

The volume of the pyramid of species n - 2 can be directly evaluated by

triangulation and the evaluation of the sum of the absolute values of the determi-

nants on the RHS of Eq. (4), which excludes division by n\. This requires

(5) (/>-2)fy-y+ yj--operations.

The algorithm (Steps 1-4) requires

(6) — -   — + — - 2 j + (p - 3)^| j   operations,   for p = 3 or 4.
3        2        3

To perform Step 3 requires (3« + 2) operations. It follows that the algorithm ( Steps

1 -4) requires

\-   \ + ~r -2+f+(/>_ 4)(3" + 2)   operations,   for p > A.
2        3

Next we will consider the "repeated application of Steps 1, 2 & 4 approach". This

approach entails using Steps 1,2 & 4 to obtain the volumes of disjoint pairs of

adjacent simplices and then summing the volumes. This method requires

(8)
- 1 rrl_n¿     2n _ 1

3       2  +   3       2 '
P-2

2 (lh\ p-3
operations

where, in this instance, [•] denotes "greatest integer in" (e.g., [2] = 2, [-7/3] = -3).

Table I compares the efficiency of the three aforementioned methods of volume

determination for pyramids of species n - 2. It shows that direct evaluation is as

efficient as the other two methods only when the pyramid of species n — 2 is a

simplex. Examination of Table I as well as Eqs. (5)-(8) reveals that as both n and p
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grow, the algorithm (Steps 1-4) becomes increasingly more efficient than the other

two methods.

Table I

Most efficient method for determining volume of a pyramid of

species n - 2 for given n andp

Notation

I

II

III

*

**

>6

n = 3

III

III

n = A

II

III

Method of volume determination

Direct Evaluation

Algorithm (Steps 1-4)

Repeated Application of

Steps 1,2 & 4

I, II and III are equivalent

II and III are both most
efficient

n > 5

II

II

Equations giving

number of operations

(5)

(6)4(7)
(8)

5. Application of Algorithm for Determination of Volume of Convex Polyhedra. As

noted earlier, the Cohen-Hickey method [1] for determining the volume of a convex

polyhedron is by triangulation and summing the volumes of the constituent sim-

plices. While this is correct, closer examination reveals that the convex polyhedron is

partitioned into disjoint pyramids of species n — 2 each with a 2-dimensional

bounded convex polygon for a base (e2 in the notation of [1]); then the bases are

triangulated which leads to a triangulation of each pyramid of species n — 2 which,

in turn, leads to a triangulation of the entire convex polyhedron.

To improve the efficiency of the Cohen-Hickey method, the following modifica-

tion is suggested:

(i) Determine the volume, by the method indicated in Table I, of each constituent

pyramid of species n - 2. The successive adjacent vertex information can be

obtained from the edges («}■) of a given e2.

(ii) Sum the volumes of the pyramids of species n - 2 to obtain the volume of the

convex polyhedron.

Note that the Cohen-Hickey method, without the above modification, is equiva-

lent to the direct evaluation method for a pyramid of species n - 2, from a

methodology and efficiency point of view.

Von Hohenbalken's method [3], [4] can be modified in an identical manner to that

suggested for the Cohen-Hickey method to obtain the «-dimensional volume of a

convex polyhedron. The algorithm (of Section 2) can easily be adapted to obtain the
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/-dimensional volume (where 2</<w)ofa pyramid of species / - 2, in U", and

then applied to /-dimensional convex polyhedra to compute their /-dimensional

volume.

It is perceived that considerable computational effort can be saved by selecting w0

such that it lies in more (n — l)-dimensional faces of the convex polyhedron than

any of the other vertices. w0 is the same for each of the constituent pyramids of

species n — 2.

6. Summary and Open Questions. An algorithm for determining the volume of a

pyramid of species n - 2 was given. It was demonstrated that the algorithm

becomes increasingly more efficient than other methods, as both « and p increase.

The algorithm was applied to the Cohen-Hickey method to improve the latter's

efficiency.

The algorithm "transforms" a given pyramid of species n - 2 into a simplex to

facilitate the volume determination. Can a general «-dimensional convex polyhedron

be efficiently "transformed" into a simplex of equal volume? Can a general

/-dimensional convex polyhedron (where / < n) be efficiently "transformed" into an

/-dimensional simplex* of equal volume?

Resolution of the above questions may lead to more efficient procedures for

volume determination. The author is exploring these possibilities.
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