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Symmetric FFTs

By Paul N. Swarztrauber*

Abstract. In this paper, we examine the FFT of sequences x„ = xN + „ with period N that

satisfy certain symmetric relations. It is known that one can take advantage of these relations

in order to reduce the computing time required by the FFT. For example, the time required

for the FFT of a real sequence is about half that required for the FFT of a complex sequence.

Also, the time required for the FFT of a real even sequence x„ = xN_n requires about half

that required for a real sequence. We first define a class of five symmetries that are shown to

be "closed" in the sense that if x„ has any one of the symmetries, then no additional

symmetries are generated in the course of the FFT. Symmetric FFTs are developed that take

advantage of these intermediate symmetries. They do not require the traditional pre- and

postprocessing associated with symmetric FFTs and, as a consequence, they are somewhat

more efficient and general than existing symmetric FFTs.

1. Introduction. Let xn = xn+N be a complex periodic sequence with period N.

Then xn has the characterization

(1.1) x„=  £  Xkeikn2"/N,

k = 0

where

(1.2) Iî-ïEV*^
n = 0

The sequence Xk is the discrete Fourier transform of xn, and xn is the inverse

discrete Fourier transform of Xk.

It is well known that the transforms (1.1) and (1.2) can be computed more

efficiently using the fast Fourier transform (FFT). It is also known that further

economies in computation are possible for sequences that satisfy one or more

relations in addition to the periodic relation xn = xn+N. For example, if xn = x„ is a

real sequence, then Xk can be computed in half the time that is required for a

complex sequence. If the real sequence is also even, then xn = xN_n and the amount

of computation can again be halved. Sequences that satisfy relations of this type are

said to be symmetric and variants of the FFT that take advantage of these

symmetries are called symmetric FFTs.

The symmetric FFTs are used extensively in the solution of boundary-value

problems in partial differential equations. Originally, the Fourier method could only

be used for problems in which periodic boundary conditions were specified [6]. Later
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the sine and cosine symmetric transforms were used for Dirichlet-Dirichlet and

Neumann-Neumann boundary conditions, respectively. More recently, the Fourier

method has been applied to Dirichlet-Neumann and Neumann-Dirichlet boundary-

value problems using the symmetric quarter-wave transforms [7], [11]. The Fourier

method can also be used for certain problems that are posed on a staggered grid.

The algorithms presented here further extend the Fourier method to problems in

which one boundary is at a grid point and the other is halfway between two grid

points. This is typically the case for Dirichlet-Neumann boundary conditions.

The fast symmetric Fourier transforms have also been used for computing the

associated Legendre functions [9]. The coefficients in the trigonometric representa-

tions of the functions are computed efficiently as the solution of a tridiagonal system

of equations. The function can then be tabulated using a symmetric FFT. The result

is a reliable and accurate method for computing the associated Legendre functions

which, unlike methods that use recurrence relations, allows a single function of any

degree and order to be computed without computing functions of adjacent degree or

order.

Most of the existing algorithms for the symmetric FFTs are based on preprocess-

ing the symmetric sequence into a complex or real sequence which can then be

transformed using programs for the complex or real transform that are readily

available. The results of this transform are then postprocessed, or decoded, in order

to obtain the symmetric transform. This approach is satisfactory for most applica-

tions, but it does have certain nuisance attributes. First, the length N of the sequence

must be an even integer, or there must be an even number of sequences. Second,

because the FFT is itself a very efficient algorithm, the pre- and postprocessing of

the sequence take a noticeable amount of computing time. The purpose of this paper

is to present new algorithms that are somewhat more efficient and general than their

predecessors. The traditional pre- and postprocessing associated with symmetric

FFTs are eliminated, together with the restriction that N be an even integer.

The algorithms presented here are obtained by modifying the FFT itself. They are

derived by identifying the intermediate symmetries that occur in the FFT of a

symmetric sequence and using these symmetries to eliminate duplicate or zero

computations. Hence, the computations are the same as those in the full complex

transform of a symmetric sequence, but fewer in number, with the result that the

stability properties are at least as good as those of the complex transform.

We find that an even sequence induces intermediate sequences within the FFT

that have real periodic, real even, and real even quarter-wave symmetries. An odd

sequence induces real periodic, real odd, and real odd quarter-wave symmetries.

Further, we find that these five symmetries are "closed" in the sense that if the

original sequence has any one of the symmetries, then each of the intermediate

sequences within the FFT also has one of the five symmetries. This "closure"

property is the reason we restrict our attention to only these symmetries. The real

even and odd sequences are represented as a cosine and sine series, respectively. The

even and odd quarter-wave transforms are represented as cosine and sine series,

respectively, but with odd wave numbers only.

There are three fundamental steps in the development of the symmetric FFTs that

are given in this paper. First, the intermediate symmetries generated in the course of

the FFT must be identified. Second, the intermediate symmetries in the transforms,
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which are induced by the symmetries in the sequences, must be identified. And third,

these symmetries must be used to eliminate unnecessary computations in the FFT.

In Section 2, we identify the symmetries both in the intermediate sequences and in

their transforms for the case where N is a power of 2. In Section 3, we use these

symmetries to develop the symmetric FFTs. In this paper, the symmetric FFTs are

developed in the context of the Cooley-Tukey FFT. However, they could also be

developed in the context of any FFT algorithm including the Pease or Stockham

autosort algorithms. In Section 4, the results of Sections 2 and 3 are extended to the

case where TV is a product of primes. In Section 5, we present the existing symmetric

FFTs for comparison with those developed in this paper. Finally, in Section 6, we

compare operation counts with the existing symmetric FFTs and discuss certain

aspects of implementation, including the vectorization of the algorithms.

2. The Symmetries.

2.1. Preliminaries. Since the complex transform (1.2) can be used to compute the

transform of any periodic complex sequence, it is evident that it could be used to

compute the transform of a symmetric sequence. However, this would be inefficient

since it is known that symmetric sequences can be transformed with fewer opera-

tions than required by (1.2). Existing symmetric FFTs have been collected and

presented in Section 5. The algorithms presented here are derived by modifying the

FFT. In order to develop notation and provide a basis upon which to describe the

symmetric FFTs, it is necessary to review the FFT. In particular, we will present a

detailed derivation of the Cooley-Tukey FFT.

2.2. The Cooley-Tukey FFT. The Cooley-Tukey FFT is a straightforward extension

of the following simple splitting algorithm. The motivation for the splitting algo-

rithm is simply that it halves the computation in comparison with that required by

either (1.1) or (1.2). If N is even, the sum on the right side of (1.2) can be divided

into two sums in which the subscripts are even and odd:

/V/2-1 N/2-1

(2.1) Xk =    £    x2„e-ik2n2"/N +    £    x2n + xe-ik^+l^N.

n-0 n-0

It is customary in the development of the FFT to ignore the scale factor of 1/N in

(1.2). If we define

N/2-1

(2.2) Yk=    £    x2„e-""'2*W2\
n-0

N/2-1

(2.3) Zk=    £    x2n+xe-ik"2^2\
n = 0

then (2.1) has the form

(2.4) Xk=Yk + e-ik2"/NZk,       k = 0,..., N/2 - 1.

From (2.2) and (2.3), it can be determined that Yk and Zk have the period N/2.

That is, Yk + N/2 = Yk and Zk+N/2 = Zk. Also, since

(2.5) e-i(k + N/Z)2*/N = _e-ik2m/N ^

we have

(2.6) Xk + N/2 » Yk - e-ik2"NZk,       k = 0,..., JV/2 - 1.

The splitting algorithm for computing Xk can now be given.
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1. Compute Yk and Zk from Eqs. (2.2) and (2.3), which requires N2/2 complex

multiplications and N(N/2 - 1) complex additions.

2. Compute Xk from (2.4) and (2.6), which requires N/2 multiplications, N/2

additions, and N/2 subtractions.

The motivation for the splitting algorithm is now evident. For large N, the

computation in step 2 is negligible compared to that in step 1. Therefore, the total

number of operations required to compute Xk using the splitting algorithm is about

half the number required to compute Xk directly using (1.2).

The Cooley-Tukey FFT algorithm consists of repeated application of the splitting

algorithm in the following manner. We note that Yk and Zk, as defined in (2.2) and

(2.3), have the same form as Xk, as defined in (1.2), except that N has been replaced

with N/2. Therefore, the computing time can be further reduced by using the

splitting algorithm to compute both Yk and Zk. If N = 2m, then the splitting

algorithm can be applied m times with the result that the FFT requires mN/2 =

(N/2) log2 N complex additions, subtractions, and multiplications.

The Cooley-Tukey algorithm for a random real sequence of length N = 23 = 8 is

given in Table 1. The original sequence xn is in column 1 and its transform is given

in column 7. In column 2, the sequence has been split into two sequences, x2n,

x2n + x, with even and odd subscripts, respectively. Further splittings are given in

columns 3 and 4. Since, by definition (1.2), the transform of a sequence of length 1 is

just itself, column 4 also contains the transforms. Four transforms of length 2 are

computed in column 5. Each transform is computed from two transforms of length 1

in column 4, using Eqs. (2.4) and (2.6) with N = 2. Next, two transforms of length 4

are computed in column 6. Each transform is computed from two transforms of

length 2 in column 5, using (2.4) and (2.6) with N = 4. These transforms are Yk and

Zk, respectively, which were defined in (2.2) and (2.3). Finally, Xk is computed in

column 7 from Yk and Zk in column 6, using (2.4) and (2.6), with N = 8.

Table 1

The Cooley-Tukey FFT for N = 8

12 3 4 5 6 7

3.48+.00Í
.04-.10Í
-.81-.03Í

-.54+1.14i
-.30+.00Í
-.54-1.14i
-.81+.03Í
.04-KlOi

1.59+.OOK
-.25-.62Í
-.81+.00i^
-.25+.62L

1.89+OOi'
-.16+.57Í '
.03+OOi
-.16-.57Í
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Note that each of the sequences in columns 5, 6, and 7 are the FFTs of the

corresponding sequences in columns 3, 2, and 1, respectively. This observation leads

to a symmetric transform for real sequences. From (1.2) it is straightforward to show

that the transform of a real sequence is conjugate symmetric, i.e., Xk = XN_k. But

this implies that all of the transforms in columns 5, 6, and 7 are conjugate symmetric

because they are the transforms of the real sequences in columns 3, 2, and 1.

Therefore, only half of the transforms in columns 5, 6, and 7 need to be computed.

The resulting algorithm was published by Bergland [1], who credits Edson as its

originator. It requires a little less than half the operations of the complex FFT.

Temperton reports [12] that it is also approximately 30% faster than the existing

symmetric transforms for a real sequence which use pre- and postprocessing. It is

also free of the nuisance restrictions that TV be even or that the number of

transforms be even.

The concept of exploiting the symmetries in the intermediate sequences that are

generated in the FFTs has motivated the approach that is taken in this paper. The

algorithms for the remaining symmetric sequences are developed by identifying the

symmetries that are induced in the intermediate sequences and transforms. Unlike

the development for real sequences, the development for the remaining symmetries is

complicated by the fact that new symmetries are generated in the course of the FFT.

In the remainder of this section, we will determine these intermediate symmetries.

2.3. Symmetries Induced by a Symmetric Sequence. In what follows, it will be

convenient to associate a mnemonic with each symmetry. Thus, we define a real even

sequence xn = xN_„ as E symmetric. Following the splitting algorithm for real

sequences, we split xn into the sequences yn = x2n and z„ = x2n+x and ask the

question: What symmetries do yn and zn have? The answer is obtained by noting

that

(2-7) yN/2-n = *JV-2» = X2n = Ä.

and hence yn is also E symmetric. In addition,

(2-8) zN/2-n-\  = *;V-2n-l  = X2n+1  = Zn-

We will define such a sequence as QE symmetric; that is, any sequence xn such that

x„ = .X/v-»-i is called QE symmetric. The mnemonic QE stands for quarter-wave

even. The quarter-wave terminology follows that used in Section 5, and in [7], where

quarter-wave transforms are discussed that are QE symmetric as defined here.

The sequence z„ will also be split in the FFT and therefore it is necessary to

identify the symmetries that are produced when a QE symmetric sequence is split.

Let xn be QE symmetric, and again define yn = x2n and z„ = x2n+x. Considered

individually, these sequences have only real symmetry. However, they do have an

intersequence symmetry, namely

(2.") y¡S/2-n-\ = XN-2n-2 = X2n + l ~ z,r

For this reason, we can ignore one of these sequences, say z„, and observe simply

that a QE symmetric sequence of length N splits into a single R (real) symmetric

sequence yn of length N/2. We see now that the symmetries R, E, and QE are closed

in the sense that a sequence with any one of these symmetries splits into two

sequences, each of which also has one of the three symmetries.
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Table 2
A list of symmetries induced by

an even sequence of length N = 16

1 2

The splittings and symmetries for an E symmetric sequence are given in Table 2

for the case N = 24 = 16. The original sequence of length 16 is designated by a

single E in the first column. At the first step of the FFT the original sequence is

divided into two sequences, each of length 8. From the results above, the first

sequence is E symmetric and the second is QE symmetric. These sequences are

designated by the E and QE that appear in the second column of Table 2. The

subsequent splittings are shown in the remaining columns of the table. Note that a

QE symmetric sequence of length N/2' splits into a single R symmetric sequence of

length N/2'+1 as described above.

If we define a real odd sequence x„ = -xN_„ as O symmetric and proceed in a

manner similar to that above, we can show that an O symmetric sequence splits into

an O symmetric sequence and a QO symmetric sequence zn = -zN/2_n_x.

This completes the identification of the symmetries in the intermediate sequences.

2.4. Symmetries in the Transform of the Symmetric Sequences. Recall that the

development of Edson's algorithm for an R symmetric sequence depended on the

fact that the transform of a real sequence was conjugate symmetric. That is, the real

FFT depended on the symmetry in the transform as well as the symmetry in the

original sequence. Therefore, the next step is to identify the symmetry in the

transform that is induced by the symmetry in the sequence.

We will begin this part with a derivation of the symmetry in the transform of a QE

symmetric sequence. This derivation is sufficiently representative that the remaining

symmetries are presented in Table 3 without derivation.

Let x„ = xN_„_xbea real sequence with QE symmetry. In order to determine the

symmetry that is induced in the Fourier transform, we begin by reversing the order

of summation on the right side of (1.2), with the result
N-l

(2.10)
y   -.    V    y p-ikí.N-n-\)2ir/N
Ak ~    i-i    xN-n-le

n-0



SYMMETRIC FFTS 329

But xn = xN_n_x, and therefore,

N-l

X   = e'k2f/N  y    x eikn2it/N(2.11)

or

(2.12)

«-o

N-l

lN-k
_     -ik2ir/N £ x¿ -ikn2ir/N

» = 0

From (1.2) and (2.12) we determine that the Fourier transform of a QE symmetric

sequence satisfies

(2.13) Xk = eik2"NXN_k.

The remaining symmetries are presented in Table 3. Note that the symmetries are

first presented for complex sequences. The last four rows are obtained by combining

the real symmetry with the complex symmetries. In what follows, we will only

discuss the real symmetries since they are by far the most commonly encountered in

practice.

Table 3

Symmetries

symmetry

periodic

complex even

complex odd

complex qtr. even

complex qtr. odd

real (R)

real even (E)

real odd (O)

qtr. even (QE)

qtr. odd (QO)

sequence

x=x N-n

Xn xN-n

X„ = XN-n-1

cN-n-l

X„ = X„

xR

xn

x„ = X

lN-n

iN-n

N-n-1

X„ = -X N-n-1

transform

%k = XN + k

%k = %N-k

Xk = ~^N-k
y    _ pik2lr/Ny
Ak       e AN-k

Jk2«. /NX
Xk=  _

Xk — xN_k

%k ~ Xk

%k = ~%k

Xk = eik2v/NXk

N-k

xk w/Ny

From a computational point of view the quarter-wave symmetries are not as

satisfactory as the other symmetries. For example, the transform of an even sequence

is strictly real, with the result that complex arithmetic can be eliminated, at least to a

certain extent. On the other hand, the transform of a quarter-wave sequence is

complex and it is therefore less obvious how one can take advantage of the

symmetry. In the remainder of this section, we will show that these transforms can

be represented in terms of real (or strictly imaginary) sequences. These representa-

tions will then be used in Section 3 in order to reduce the amount of computation in

the symmetric transform.

Consider first the symmetry in the transform Xk of a QE symmetric sequence.

From Table 3, Xk = eik2l,/NXk, which implies that the argument of Xk is ak = km/N.

Therefore, Xk has the form

(2.14) _ Xk-e"""NXk,

where X,. is real.
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Consider now the symmetry Xk = -e'k2l,/NXk in the transform of a QO sequence.

This symmetry implies that the argument of Xk is ak = ktt/N + -n/2, and therefore

Xk has the form

(2.15) Xk = eikv/NXk,

where Xk is strictly imaginary.

In both Sections 3 and 4, we will make use of these forms in order to replace

complex with real arithmetic whenever possible. Xk rather than Xk will always be

computed for any quarter-wave transform.

3. The Symmetric FFTs.

3.1. Preliminaries. In this section, we will complete the development of the

symmetric FFTs by using the symmetries that were identified in the previous section

to develop new splitting equations. The FFT itself consists of the repeated applica-

tion of the splitting equations in combinations that are evident from Table 2 or a

similar table which could be presented for any of the symmetric sequences. Only the

splitting equations are presented. However, they must be applied repeatedly and in

the proper combination in order to define the symmetric FFT. As in the previous

section, we will assume that N is an even integer; however, in the next section we

will show that the algorithms can be generalized to arbitrary N. We begin this

section with a derivation of the splitting equations that are used in Edson's

algorithm for the fast transform of a real symmetric sequence.

3.2. Splitting Equations for R Symmetric Sequences. The splitting equations for real

sequences can be determined from Eqs. (2.4) and (2.6) for complex sequences. Since

xn, yn, and z„ are real sequences, their transforms are conjugate symmetric, i.e.,

Xk = XN_k, Yk= YN/1_k, and Zk = ZN/2_k. Therefore, it is only necessary to

compute half of these sequences. Assuming that Yk and Zk are available for

k = 0,..., N/4, we can compute the first half of the Xk from (2.4).

(3.1) Xk = Yk + e~ik2"/NZk,       k = 0,...,N/4.

In order to compute Xk for k = N/A 4- 1,..., N/2 we begin with

hi) y =Y +  P    ¡i.N/2-k)2tr/Ny
VJ'Z^ AN/2-k 1N/2-k T e ^N/2-k-

Using the conjugate symmetry of both Yk and Zk, we obtain

(3.3) XN/2_k = Yk - e-*2"/%,       *-0,...fJV/4-l.

Equations (3.1) and (3.3) comprise the splitting algorithm for R symmetric se-

quences. Hence, the transform of an R symmetric sequence of length N can be

computed from the transforms of two R symmetric sequences of length N/2 with

N — 4 real multiplications and 3N/2 - 2 real additions.

The symmetric FFT for a real sequence which consists of the repeated application

of the splitting equations (3.1) and (3.3) is called Edson's algorithm. It requires a

little less than half the number of operations of the Cooley-Tukey FFT for a

complex sequence (see Table 4). The computations in Edson's real FFT form a

subset of those in the Cooley-Tukey algorithm, and therefore, the stability of

Edson's algorithm is at least as good as the Cooley-Tukey algorithm. Note also that

no pre- or postprocessing is required.
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The approach that was taken above will be used to develop efficient algorithms

for the remaining symmetric transforms. The key is to identify the symmetries that

are present in the intermediate sequences and transforms in columns 2 through 6 in

Table 1, when the first column has any of the symmetries that were defined in

Section 2.

3.3. Splitting Equations for E Symmetric Sequences. Unlike the full complex

transform and Edson's FFT for real symmetric sequences, the remaining symmetric

FFTs use several different splitting equations. For example, the symmetric FFT of

an E symmetric sequence will use equations that correspond to splittings of E, QE,

and R symmetric sequences. The order in which the equations are used is evident

from Table 2. The splitting equations are all derived from those given above for

Edson's real FFT, which was itself derived from the splitting equations for the

complex FFT. We continue this approach in which the equations are developed by

eliminating duplicate or zero computations.

Consider now an E symmetric sequence xn = xN_n, and its splittings yn = x2n

and zn = x2n + x. As before, we denote their transforms by Yk and Zk, respectively.

From the results in Section 2, Yk is also E symmetric and Zk is QE symmetric.

Therefore, both Xk and Yk are real and, from (2.14), Zk has the form Zk =

e'k2n/NZk, where Zk is real. Substituting this form into (3.1) and (3.3), we obtain the

splitting equations for an E symmetric sequence,

(3.4) Xk=Yk + Zk,       k = 0,...,N/4,

(3.5) XN/2_k=Yk-Zk,       k = 0,...,N/4-l.

Since all the quantities are real, only real arithmetic is needed. Equations (3.4) and

(3.5) provide the splitting algorithm for an E symmetric sequence. Note that only

N/2 + 1 real additions are required. Note also that for any QE symmetric sequence,

Zk is computed rather than Zk, in order to avoid complex arithmetic.

3.4. Splitting Equations for O Symmetric Sequences. Consider now an O symmetric

sequence xn = -xN_n and its splittings yn = x2n and z„ = x2n+x with transforms Yk

and Zk, respectively. From the results in Section 2, Yk is also O symmetric and Zk is

QO symmetric. Therefore, both Xk and Yk are strictly imaginary and, from (2.15),

Zk has the form Zk = e'k27r/NZk, where Zk is strictly imaginary. Substituting this

form into (3.1) and (3.3), we obtain the splitting equations for an O symmetric

sequence,

(3.6) Xk=Yk + Zk,       k = l,...,N/4,

(3.7) XN/2_k=Yk-Zk,       k = l,...,N/4-l.

Since Xk, Yk, and Zk are all strictly imaginary, the splitting equations require only

N/2 - 1 real additions.

3.5. Splitting Equations for QE Symmetric Sequences. Let xn = xN_n_x be a QE

symmetric sequence. Let yn = x2n and z„ = x2n+x be the sequences of length N/2

in the splitting algorithm. Recall from Section 2 that these sequences have the

intersequence symmetry,

(3-8) JV/2-n-l = XN-2n-2 = X2n+l = Zn •

Using a development similar to that preceding (2.13), we find that

(3.9) Zk = eikA"/NYk.
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Substituting (2.14) and (3.9) into (3.1) and (3.3) we obtain

(3.10) Xk = 2Re[e-ik"/NYk],       k = 0,...,N/4,

(3.11) kN/2_k--2hn[e-'k"»Yk],       k - 0,...,N/4 - 1.

These equations constitute the splitting algorithm for a sequence with QE symmetry.

They imply that the discrete Fourier transform of a sequence xn of length N with

QE symmetry can be computed from the Fourier transform Yk of a real sequence y„

of length N/2 with N - 2 real multiplications and N/2 - 1 real additions.

At this point, we see that the symmetries R, E, and QE are "closed" in the sense

that a sequence with any one of these symmetries splits into two sequences, each of

which also has one of the three symmetries. Therefore, the splitting algorithms given

above for each of these symmetries can be combined to develop discrete FFT

algorithms for sequences that are either E or QE symmetric.

3.6. Splitting Equations for QO Symmetric Sequences. Let xn = -xN_n_x be a QO

symmetric sequence. Then y„ = x2n and z„ = x2n+x have the intersequence symme-

try

(3.12) yN/2-n-2 ~ XN-2n-2 ~  ~X2n + l =  ~Zn-

Using a development similar to that preceding (2.13), we can determine that

(3.13) Zk = -eik*«/NYk.

Substituting (2.15) and (3.13) into (3.1) and (3.3), we obtain the splitting algorithm

for QO symmetric sequences,

(3.14) Xk = 2ilm{e-,k7,/NYk),

(3.15) XN/2_k = -2iRe{e-^NYk).

These equations imply that the discrete Fourier transform of a QO symmetric

sequence xn of length N can be computed from the Fourier transform yk of a real

sequence yn = x2n of length N/2 with N - 2 real multiplications and N/2 — 1 real

additions. The splitting equations that have been developed in this section can be

used to define symmetric FFTs for any of the five symmetries R, E, O, QE, or QO.

4. The Splitting Equations for General N.

4.1. The Splitting Equation for the Complex Transform. In this section, we extend

the results that were given in the previous section to the general case in which N has

an arbitrary factor p. We begin this section with a derivation of the splitting

equation for the full complex FFT. Proceeding in a manner analogous to that

following (2.1), we split the sum on the right side of (1.2) into p sums,

p-l N/p-l

(4.1) Xk =  £ e-"«2"»   £    xpn+qe-ikn2^N/"\

<?-0 n-0

If we define the following p sequences, each with N/p elements,

(4.2) x     ~x   +,       q = 0,l,...,p - 1,
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and their transforms

N/p-l

(4.3) Yk,q =    £    W-'*"W>,
n-0

then (4.1) takes the form

(4.4) Xk =  £ e'ik"2^NY.

<i-0

Next, we define

p-i
(A S) Y      =   Y =   y    p-HIN/P + k)q2*/Ny
{*■•>) Ak,l       A-IN/p + k i~i   e 1IN/p + k,q-

9-0

It can be shown that YIN/ +k   = Ykq and therefore,

p-\

(4.6) Xkl=  £ e-iW'/re~i*#'/i*Yktr

q-0

This is the splitting equation for a complex sequence in which the complex transform

Xk of a sequence xn of length JV is expressed in terms of p transforms Ykq of

sequences x„„, each of length N/p.

4.2. 77ie Splitting Equations for the Real Transform. If x„ is real, then only half the

sequences XkJ and Yk   need to be computed. In this case, it can be shown that

p-i

(4.7) **/,-*,/-!= I e'*2'/*-'*«2^.,.
9=o

Equations (4.6) and (4.7) constitute the splitting algorithm for a real sequence xn.

Only half of each Fourier transform is computed, with the result that the real FFT

can be computed with half the operations required by the complex FFT. With p = 2

these equations are the same as (3.1) and (3.3) and thus constitute a generalization of

Edson's algorithm for the case in which N has an arbitrary factor p.

4.3. 77ie Splitting Equations for E Symmetric Sequences.  If x„ = xN_n  is E

symmetric, then from (4.2),

\^-°) XN/p-n-\,q ~ XN-pn-p + q ~ Xpn+p-q ~~ Xn,p-q-

It can be shown that x„ 0 is E symmetric and therefore, Yk 0 is real. If p is divisible

by 2, then x„  /2 IS QE symmetric and therefore Ykp/2 has the form

(4.9) n.,/2 = '""""KpA*
where Ykp/2 is real. For the remaining q, xnq has real symmetry and the

intersequence symmetry (4.8) implies that

(4.10) yt,,_, = e'k^NYk,q.

Substituting these results into (4.6) and (4.7), we obtain

p/2-1

(4.11) XkJ-Ykfi + 2   £    Kt\e-">2^"e-ik"2^NYk¡q\+(-l)lY^p/2,
q-l

p/2-1

(4.12) XN/p_kJ_1 = YkJ0 + 2   £    R4ei">2^"e-ik"2^NYkJ+(-l)lYk,p/2.
q-l
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Equations (4.11) and (4.12) provide the splitting equations for an E symmetric

sequence. If p is odd, a somewhat simpler form is obtained.

4.4. The Splitting Equations for O Symmetric Sequences. If xn = -xN_n is O

symmetric, then from (4.2),

V*Ai) XN/p-n-\,q ~ XN-pn-p + q ~   ~Xpn+p-q ~   ~Xn.p-q-

It can be shown that xn0 is O symmetric, and therefore Yk0 is strictly imaginary. If

p is divisible by 2, then xn  /2 is QO symmetric, and therefore Ykp/2 has the form

(4.14) Yktp/2 = e'k»^NYktp/2,

where Ykp/2 is strictly imaginary. For the remaining q, xn q has real symmetry and

the intersequence symmetries (4.13) imply that

(4.15) Yk,p-q= -e'kp2"/NVk,q-

Substituting these results into (4.6) and (4.7), we obtain

P/2-1

(4.16) XkJ-Ykfi + 2i   £    lm[e-^2^e-k^NYkJ+(-l)'YkW2,
q-l

p/2-1

(4.17) XN/p_kJ_x=Ykfi + 2i   £    \m[e"i2^e-'k^NYk^\+{-l)'Yk,p/2.
q-l

Equations (4.16) and (4.17) provide the splitting equations for an O symmetric

sequence. If p is odd, a somewhat simpler form is obtained.

4.5. The Splitting Equations for QE Symmetric Sequences. If xn = xN_n_x is QE

symmetric, then from (2.14),

(4.18) XkJ=XIN/p+k = e"^e^NXkJ,

and

(4 lû\ y — p-Hl+liv/Ppikir/Ny
\H-ly) AN/p-k,l       e e A-N/p-k.h

where Xk , = X/N/p+k is real. From (4.2),

(4.2U) XN/p-n-l,q = XN-pn-p + q = Xpn+p-q- 1  = Xn,p-q-l-

If /7 is odd, x„lp_X)/2 is QE symmetric and hence Yk,p_X)/2 has the form

(4 ?~\\ Y = p'kp"/Ny
VH-Z1/ Ik,(p-l)/2       e Ik,(p-l)/2>

where Yk{p_X)/2 is real. For the remaining q, xnq has real symmetry and the

intersequence symmetries (4.20) imply that

(4.22) yk,P-q-i - e'WY^.

Substituting (4.18), (4.19), (4.21), and (4.22) into (4.6) and (4.7), we obtain

(/>-3)/2

(4.23) XkJ = 2    £     Re[e-W+"-/'e-'*<2«+1)-/"yJkiJ+(-l)/ñJ(,_1)/2,
<?=o

(p-3)/2

(4.24) XN/p_kJ_l = 2    £     Re[e«^+1>'/'e-'*^+l>^yJk,J+(-l)lfw,_lva.
<?«o

Equations (4.23) and (4.24) provide the splitting equations for a QE symmetric

sequence.



SYMMETRIC FFTS 335

4.6. The Splitting Equations for QO Symmetric Sequences. If xn = ~xN_„_i is QO

symmetric, then from (2.15),

(4.25) XkJ = XIN/p + k = e^"eik^NXkJ

and

(4 0t\\ y =  _p-'(l+l)*/PpikTi/Ny
V*-¿0) AN/p-k.l e e AN/p-k,h

where Xkl = XIN/p+k is strictly imaginary. From (4.2),

(4.2/) xN/p-n-l,q = XN-pn-p + q =  ~Xpn+p-q-l =   ~Xn,p-q-V

If p is odd, xnÁp_X)/2 is QO symmetric and hence Yk{p_X)/2 has the form

(4-28) 'k.ip-D/2 = e     '   y*.(p-i)/2'

where Yk   /2 is strictly imaginary. For the remaining q, xnq has real symmetry, and

the intersequence symmetries (4.27) imply that

(4.29) Yk,p-q-i = -e,kp2"/NYk,q.

Substituting (4.25), (4.26), (4.28), and (4.29) into (4.6) and (4.7), we obtain

(P-31/2

(4.30) XkJ-ll    £     Im[e-«(Vi)^-^f+i)./^tJ+(_1)'yto_i)/2!
9=o

(P-31/2

IA  ,1\ AN/p-k.l-l Ll       ¿*        lm[e e "k.q\

(4.31) c,=o

_(-i) y*.(p-i)/2.

Equations (4.30) and (4.31) provide the splitting equations for a QO symmetric

sequence.

5. Existing Symmetric FFTs.

5.1. Preliminaries. In this section, we will review existing algorithms for computing

the symmetric transforms. The symmetric sequences are preprocessed into either real

or complex periodic sequences that can be transformed using FFTs with software

that is generally available. The transform is then postprocessed in order to determine

the transform of the symmetric sequence. This approach has the advantage of being

relatively easy to implement, but the resulting transforms lack the generality and

efficiency of the algorithms presented earlier. The real forms of the symmetric

transforms are also presented. They are by far the forms that are most commonly

used in practice and provide the basis on which most pre- and postprocessing

algorithms are developed.

5.2. Existing Transforms for R Symmetric Sequences. Two algorithms for real

sequences are described in this subsection as well as in a number of other places

including Brigham [2]. Both algorithms are about twice as efficient as the complex

transform but less efficient than Edson's FFT which was presented earlier.

We show first that two real sequences yn and z„ can be transformed in the time

that is required by a single complex transform. Define the complex sequence

xn = yn + izn and compute its complex transform Xk. Since the Fourier transform is

linear,

(5.1) Xk-Yk + iZkt
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where Yk and Zk are the Fourier transforms of yn and zn, respectively. Since Yk and

Zk are complex sequences, they do not correspond to the real and imaginary parts of

Xk. Nevertheless, they can be computed from Xk in the following manner. From

(5.1),

(5.2) XN_k = YN_k + iZN_k.

Since yn and zn are real, Yk and Zk are conjugate symmetric, and therefore

(5.3) XN_k=Yk-iZk.

Then from (5.1) and (5.3),

(5-4) Yk = j(Xk + XN_k),

(5-5) Zk = j:{Xk-XN_k).

Therefore, two real transforms of length N can be computed from a single

complex transform of length N. First, form xn = yn + izn, next compute Xk, and

finally compute Yk and Zk from (5.4) and (5.5).

The second algorithm for real sequences consists of transforming a single real

sequence of length N by pre- and postprocessing around a complex transform of

length N/2. Let xn be a real sequence of length N, which is an even integer. Define

y„ = x2n and z„ — x2n+i and w„ = y„ + 'Z„- Next, compute the Fourier transform

Wk of w„. From (5.4) and (5.5),

(5-6) Yk = \{wk+WN/2_k),

(5-7) Zk = ±:(Wk-WN/2_k),

where Yk and Zk are the discrete Fourier transforms of the sequences y„ = x2„ and

z„ = x2n+x. But Xk can now be computed from the splitting equations (3.1) and

(3.3) for a real sequence.

In summary, given a real sequence xn, we first form wn = x2n + ix2n+x and

compute its discrete complex transform Wk. We next compute Yk and Zk from (5.6)

and (5.7), and finally Xk from (3.1) and (3.3).

We close this part with the development of the trigonometric representation of the

transform of a real sequence. This form will be used in the development of the

remaining symmetric transforms, which are also presented in trigonometric form.

If we assume for the moment that N is an even integer, then (1.1) can be written

N/2-1 N/2

(5-8) *„ =    £    Xke'k»2«/N+ £ X,N-k
i{N-k)n2tt/N

k-0 k=l

Since Xk is conjugate symmetric,

N/2-1

(5.9) xn = X0 + 2   £    Rc[xke'k"2^]+(-l)"XN/2,
k = l

or

1 N/2~l I 2ir 2ît\     1
(5.10) x„ = -a0+    £   [akcoskn^- +bksmkn-j?-j+-aN/2(-l)",
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where

(5.11) ak = 2Re(Xk)   and    bk = -2 Im( Xk ).

Using the fact that x„ is real, it can be shown from (1.2) and (5.11) that

2 N~1 2
(5.12) ak = ~Ñ E  x»coskn-N1,

n = 0

2 N~x 2

(5.13) bk = ñ Y, x„smkn—.
n-l

Equations (5.10), (5.12), and (5.13) comprise the real form of (1.1) and (1.2) for a

real sequence xn. The relation between the complex and the real forms is established

by (5.11).
If N is an odd integer, then (5.10) takes the form

(5.14) x„=2ao+     £    [akcoskn^- +bksinkn — ^

5.3. Existing Transforms for E Symmetric Sequences. For n = 0,..., N - 1, let

xn = xN_n be a real even sequence. From Table 3, we note that Xk is real and

hence, from (5.11), bk = 0. If JV is an even integer, then from (5.10), x„ has the

trigonometric representation

1 N/2~1 2ir      1
(5.15) x„=2ao+    £    ak^oskn— + -(-l)"aN/2.

Substituting xn = xN_n into (5.12), we obtain

- .   N/2-1 , »
, v Z 4       r-, Z77 Z   ,       ,k

(5.16) ak = —x0 + —    L    xn^oskn— + — (-1) xw/2.
n = l

If JV is an odd integer, then xn has the trigonometric representation

1 W-W/2 2tt
(5.17) vn = -a0+     ^     a^cos/cw —,

where

2 4 *'v-1)/2 2tt
(5.18) a^ = -x0 + -     £     x„coskn — .

k = i

We observe that the Fourier transform of an even sequence is the inverse of itself,

except for a multiplicative constant. That is, except for a factor of 4/N, Eq. (5.16) is

the same as (5.15), and (5.18) is the same as (5.17).

Assume that an E symmetric sequence x„ = xN_n is given, and we wish to

compute its real Fourier transform ak given by (5.16). The first step is to compute a

new sequence en given by

2l7
(5.19) e„ = (xn + xN/2_„) - sin« — (x„ - xN/2_„).

If N/2 is also even, then it can be shown by substituting (5.15) into (5.19) that

W/4-1

en = ^o +    £
(5.20) k-i

+ (-l)"a/v/2.

a2kcoskn— +(a2k+x - a2k_x)sïïikn —
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By comparing this equation with (5.10), it can be seen that en is an R symmetric

sequence of length N/2. Hence, we can use the real periodic transform to compute

coefficients ck and dk such that

A,/4~1/ 4 4   \
(5.21) en = c0+    £   \^ckcoskn-^ +dksinkn-j?-j+(-l)"cN/4.

Equating coefficients in (5.20) and (5.21),

(5.22) a2k = ck,       k = 0,...,N/4,

(5.23) a2k + x-a2k_x=dk,        k = l,...,7V/4 - 1.

We can now summarize the algorithm for the transform of an E symmetric

sequence:

1. Given the E symmetric sequence xn, compute en from (5.19). This calculation

can be made more efficient by computing eN/2_n and en at the same time.

2. Use the real periodic transform to compute ck and dk of the R symmetric

sequence e„ of length N/2.

3. Compute a2k from (5.22), and a2k + x by using (5.23) in recurrence form

(5.24) a2k + x = a2k_x + dk,

which is initialized by computing ax from (5.16).

This algorithm is due to Dollimore [4]. Unlike the algorithms that are presented in

the previous sections, N must be even. The requirement that N/2 also be even can

be eliminated by developing an alternate algorithm that is based on Eqs. (5.14),

(5.17), and (5.18). From Eq. (5.15) through (5.18), it can be observed that the

transform of an E symmetric sequence is essentially the inverse of itself. Therefore,

an alternate algorithm for E symmetric sequences can be developed by reversing the

order of the computations given above. The resulting algorithm is due to Cooley,

Lewis, and Welsh [3]. This algorithm may not be as attractive since it requires a

division by sm(2tT/N).

5.4. Existing Transforms of O Symmetric Sequences. For n = 0,..., N — 1, let

xn = -xN_n be a real odd sequence. From Table 3 we observe that Xk is strictly

imaginary and hence, from (5.11), that ak = 0. If JV is an even integer, then from

(5.10), xn has the trigonometric representation

(5.25) xn=    £    bksinkn — .
k = i

Substituting xn = -xN_„ into (5.13), we obtain

A   N/2-1 »
i, ~s\ 4   v> •   .   277
(5.26) ** = /7    ^    x„smkn — .

n = l

If N is an odd integer, then x„ has the trigonometric representation

(N-D/2

(5.27) xn=     £     bksinkn-^-,
k = l

where

4 (A,"1)/2 277

(5-28) bí = ~Ñ     £     x„smkn-^.
n = l
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We observe that the Fourier transform of an odd sequence is the inverse of itself,

except for a multiplicative factor of 4/N. That is, except for this factor, Eqs. (5.25)

and (5.26) are the same, as are Eqs. (5.27) and (5.28).

Assume that an O symmetric sequence xn - -xs_a is given, and that we want to

compute its Fourier transform bk given by (5.26). The first step is to compute a new

sequence en given by

277
(5.29) e„ = (xn - xN/2_„) + sinn — (x„ + xN/2_„).

If N/2 is also even, it can be shown by substituting (5.25) into (5.29) that

N/4-lr . A
4tt 4t7

(¿>2*+i - b2k_x)coskn— + b2ksmkn-^-e„ = b, +    y
(5.30) "       1       ti   -

-(-l)"*AT/2-l-

By comparing this equation with (5.10), we can see that en is an R symmetric

sequence of length N/2. Hence, we can use the real periodic transform (5.12) and

(5.13) to compute ck and dk such that

(5.31) e„ = c0+    £   [ckcoskn-j?- +dksïnkn-^j+(-l)"cN/4.

Equating coefficients in (5.30) and (5.31),

(5.32) bx = c0,

(5-33)                                        b2k + x - b2k_x = ck,

(5.34) b2k = dk,

(5.35) bN/2_x = -cN/4.

We can now summarize the algorithm for the transform of O symmetric sequences:

1. Given the O symmetric sequence xn = -xN_n, compute en from (5.29). This

calculation can be made more efficient by computing eN/2_n and e„ at the same

time.

2. Use the real periodic transform to compute the Fourier transform ck and dk of

the R symmetric sequence en of length N/2.

3. Compute b2k from (5.34), and b2k + x for odd subscripts by using (5.33) in

recurrence form

(5.36) b2k+x = b2k_x + ck,

starting with bx computed from (5.32).

This algorithm is due to Dollimore [4]. Unlike the algorithms that are presented in

the earlier sections, N must be even. The requirement that N/2 must also be even

can be eliminated by developing an alternate algorithm that is based on Eqs. (5.14),

(5.27), and (5.28). An alternate algorithm for O symmetric sequences can be

developed by reversing the order of the calculations. The resulting algorithm is due

to Cooley, Lewis, and Welsh [3]. However, like the transform for even sequences,

this algorithm may not be as attractive since it requires a division by sin(27r/yV).
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5.5. Existing Transforms for QE Symmetric Sequences. For n = 0,..., N — 1, let

x„ = xN_n_x be a QE symmetric sequence. We start the development of the real

form by substituting (2.14) into (5.9). Assume for the moment that N is even, then

N/2-1

(5.37) xn = X0 + 2   £    Re[Xkeikl2H+1)"/N],

k = l

or

N/2-1

(5-38) xn = -a0+    £    akcosk(2n + l)^-r,
*-i

where

(5.39) ak = 2Xk = 2e~ikv/NXk.

To obtain the forward transform, we begin by splitting the sum on the right side

of (1.2),

N/2-1 N/2-1

(5.40) Xk = j¡   £    V-'W + ±   £    ^^^-^-W.
n=0 n = 0

Substituting (5.39) into the left side of (5.40) and xN_„_x = xn into the right side,

we obtain

4   N/2~l 77

(5.41) a* = Ñ   ^    x»cosk(2n + l)tf-
n = 0

Equations (5.41) and (5.38) comprise the real form of the discrete Fourier transform

and its inverse for a QE symmetric sequence. Their relation with the complex forms

(1.1) and (1.2) is given in Eq. (5.39).

For N an odd integer, the real forms of the transforms are

4  (N-3)/2

(5.42) ak = —     £     xncosk(2n + l)j¡ + j¿(-l)kx(N_l)/2,
n —0

1 (N-D/2

(5-43) xn = ^ra0+     £     akcosk(2n + l)^.
k = i

Assume that the coefficients ak are given, and we wish to compute xn from (5.38).

The first step is to compute ek given by

IT It
(5-44) ek = cosk—(ak + aN/2_k) - sink — (ak - aN/2_k).

If N/2 is also even, then it can be shown by substituting (5.41) into the right side of

(5.44) that

4 a»/*-1'

ek - N xo + N  £

(5.45) " "    "=1

+ 7/'"   )   XN/2-l-

(X2n + X2n-l)cOSkn^-+(x2n ~ X2n^ x )sin kn -jf
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By comparing this equation with (5.10), we can see that ek is an R symmetric

sequence of length N/2. Hence, we can use the real periodic transform (5.12) and

(5.13) to compute c„ and d„ such that

N/A~lI A A    \

(5.46) ek = c0+    £     c„ cos kn-j¿- + d„ sin kn -^ \+(-l)kcN/4.
n — 1

Equating coefficients in (5.45) and (5.46),

(5-47)

(5.48) x2„ + x

N
0'

N
2n   '   A2n-1 A     «'

TV
(5-49) x2n - x2„-i = jd„,

N
(5-50) xN/2-l =  4"CA'/4.

We can now summarize the algorithm for the inverse transform (5.38) of a QE

symmetric sequence:

1. Given the coefficients ak, compute ek by using (5.44). This calculation can be

made more efficient by computing eN/2_k and ek at the same time.

2. Use the real periodic transform to compute the Fourier transform cn and d„ of

the R symmetric sequence ek of length N/2.

3. Compute x0 from (5.47), xN/2_x from (5.50), and the remaining xn from (5.48)

and (5.49) in the form

(5.51) x2n = j(c„ + d„),       « = l,...,/V/4-l,

(5.52) x2n-i = j(c„-d„),       n = l,...,N/4-l.

This algorithm is due to Swarztrauber [7]. Unlike the algorithms that are presented

in the earlier sections, N must be even. The requirement that N/2 be even can be

eliminated by developing an alternate algorithm that is based on Eqs. (5.14), (5.42),

and (5.43).

The forward transform (5.41) is computed by reversing the steps in the inverse

algorithm:

1. Given xn, compute c„ and dn from (5.47) through (5.50).

2. Compute the R symmetric sequence ek from cn, dn by using the inverse

periodic real transform (5.10).

3. Compute ak from ek using the inverse of (5.44), namely

cosk-^(ek + eN/2_k) - sinkj¿(ek - eN/2_k)

5.6. Existing Transforms of QO Symmetric Sequences. For n = 0,..., N - 1, let

x„ — -*/v-,,-i De a QO symmetric sequence. Assume for the moment that N is even

and substitute (2.15) into (5.9),

N/2-1

(5.54) xn = 2   £    Re(V'^"+1^)+(-l)"^/2,
A: = l

(5-53) ak =
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or

N/2-1

(5.55) x„=    £    bkSmk(2n + l)-+(-l)"bN/2,

where

(5.56) bk = 2iXk = 2ie-'k"/NXk.

To obtain the forward transform, we begin by substituting xN_n_x = -xn into the

second term on the right side of (5.40),

N/2-1 N/2-1

(5-57) Xk = j¡   £    x„e-'*"2"/» - £   £    v'«"«»-/*.
n-0 «=0

Next we substitute (5.56) into the left side of (5.57) and obtain

(5-58) bk = -    £    x„sinA:(2n + l)^.
n — 0

Equations (5.58) and (5.55) comprise the real form of the discrete Fourier transform

of a QO symmetric sequence and its inverse. Their relation with the complex

transforms (1.1) and (1.2) is given in (5.56).

For the case in which N is an odd integer, the real forms of the transform are

4    (A,~3)/2 „

(5.59) ¿>, = -     £     *„sinA:(2« + l)-
n = 0

and

(N-D/2
h. ein h-(0 n  -I-  ~\\

N
(5.60) x„=     £     bksmk(2n + l)^.

k = l

Given the coefficients bk, we wish to compute xn, which is defined in (5.55). The

first step is to compute ek given by

(5.61) ek = cosk^(bk + bN/2_k) + sink^(bk - bN/2_k).

If N/2 is also even, it can be shown by substituting (5.58) into the right side of

(5.61) that

A       ±Ny'
ek MX0 +    \T       Li

(5.62) N N   n = l

±, Uk

"/y-V     U    XN/2-l-

(x2n - x2n-i)™skn-j^- +(x2n + x2n+x)smkn-^

By comparing this equation with (5.10), it can be seen that ek is an R symmetric

sequence of length N/2. Hence, we can use the real periodic transform (5.12) and

(5.13) to compute cn and dn such that

N/4-1 . . .     .
/ 477 477  \ L

(5.63) ek = c0+    £   U„coskn— + d„sin/cn— I +(-1) cN/4.
n = 1

Equating coefficients in (5.62) and (5.63), we obtain

N_

4(5-64) ^o^TCo.
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N
(5-65) x2n- x2„_l = jc„,

N
(5-66) x2n + x2„_x = jdn,

N
(5.67) xN/,2_x = -~^cN/4.

We can now summarize the algorithm for the inverse transform (5.55) of a QO

symmetric sequence:

1. Given the coefficients bk, compute ek by using (5.61). This calculation can be

made more efficient by computing eN/2_k and ek at the same time.

2. Use the real periodic transform (5.12) and (5.13) to compute the Fourier

transform cn and dn of the R symmetric sequence ek of length TV/2.

3. Compute xQ from (5.64), xN/2_x from (5.67), and the remaining x„ from (5.65)

and (5.66), but in the form

(5.68) x2n = j(dn + c„),       n = l,...,N/4-l,

(5.69) x2n-i = j(dn-cn),       n = l,...,N/4-l.

This algorithm is due to Swarztrauber [7]. Unlike the algorithms that are presented

in the earlier sections, N must be even. The requirement that N/2 also be even can

be eliminated by developing an alternate algorithm that is based on Eqs. (5.14),

(5.59), and (5.60).

The forward transform (5.58) is computed by reversing the steps in the inverse

algorithm:

1. Given xn, compute cn and dn from (5.64) through (5.67).

2. Compute the R symmetric sequence ek from cn and dn by using the inverse

periodic real transform (5.10).

3. Compute bk from ek by using the inverse of (5.61), namely

TT TT

(5.70) bk = \cosk-^(ek - eN/2_k) + sink — (ek + eN/2„k)

6. Computational Notes and Summary.

6.1. Preliminaries. In this section, we will consider several topics of practical

interest. In the first part, we will compare the operation counts of the new with

existing symmetric transforms. Next, we consider certain aspects that are related to

the implementation of the transforms, including those associated with advanced

computer architectures. Finally, we summarize briefly the results presented in this

paper.

6.2. Operation Counts. We begin this section with Table 4 which contains the

operation counts for the various symmetric transforms. This table can be compared

with Table 5, which contains the operation counts for the existing transforms that

are given in Section 5. The counts given in both tables are valid for N > 8 because

different equations are used for splittings in which the length of the sequence is less

than 8. These counts do not include multiplications by 1, -1, /', or -/.
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Table 4

Operation counts for the FFT of a

sequence of length N = 2m

transform additions multiplications

full complex

real (Edson's)

E symmetric

O symmetric

QE symmetric

QO symmetric

3mN - IN

3mN/2 - 5N/2 + 2
3mN/4 - 3N/2 + 2m + 1

3mN/4 - 3N/2 + 9

3mN/4 -2N + 2

3mN/4 -2N + 2

2mN - 4N

mN - 3N + 4

mN/2 -2N + 2m-2

mN/2 - 2N + 2m - 2

mN/2 - N + 2

mN/2 - N + 2

A comparison of Table 4 with Table 5 yields the observation that the operation

counts for the new algorithms are comparable to those that would be obtained by

eliminating the pre- and postprocessing from the existing symmetric FFTs. However,

the difference in the operation counts does not explain the total difference in the

performance of the algorithms. The new algorithms also require fewer data accesses.

For example, the FFT of a sequence of length N = 44 = 256 would require the data

to be accessed four times using a radix 4 FFT. However, the pre- and postprocess-

ing, used by the existing symmetric FFT of an E symmetric sequence, requires three

additional data accesses. This 75% increase in the number of data accesses will

significantly increase the amount of computing, particularly on a vector or pipeline

computer.

Table 5

Operation counts for existing symmetric FFTs

of length N = 2m

transform

real periodic

E symmetric

O symmetric

QE symmetric

QO symmetric

additions

3mN/2 - 2

3mN/4 + N/2 + 5

3wiV/4 - 3ÍV/4 + 1

3mN/4 - N/2 + 4

3mN/4 - N/2 + 4

multiplications

mN - IN - 4

mN/2 - N + 1

mN/2 - 3N/2 + 2

mN/2 - 3N/2 + 2

mN/2 - 3N/2 + 2

The operation counts given in Table 5 were computed as follows. The count for

the real periodic transform was obtained from the second algorithm given in

Subsection 5.2. It includes the computations in (5.6), (5.7), (3.1), and (3.3), plus the

computations required for a complex transform of length N/2, computed from

Table 4. The counts for the remaining existing transforms include the counts for pre-

and postprocessing plus the counts for a real transform computed from Table 4

rather than Table 5. Computing the counts in this manner produces those most

favorable to the existing symmetric FFTs.

6.3. Vectorizing the Symmetric FFTs. An examination of Table 2 reveals that the

programming of the algorithm for the E symmetric, and indeed all symmetric

sequences, is relatively straightforward. One need only modify an existing program

for real or R symmetric sequences. The first two sequences in a column are
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computed using the splitting algorithms for E and QE symmetric sequences, respec-

tively. The remaining sequences use the existing splitting equations for R symmetric

sequences.

Consider now the implementation of the symmetric FFTs on the recent generation

of computers with advanced architectures. The vectorization of the FFTs has been

discussed in a number of places, including [5], [8] and [10]. Depending on the

method, the vectorization of the symmetric FFT may be unchanged from the

complex FFT. The vectorization of multiple transforms can be performed by

applying each operation in the FFT to all of the sequences. When this approach is

used, the vector lengths are equal to the number of sequences. This method can also

be applied to the symmetric FFTs.

The vectorization of a single transform is complicated by the fact that the

sequences in Table 1 get shorter as they are split. However, as the sequences get

shorter, their number increases. Using the "loop inversion" method described in [8]

and [10], we select a vector, either as a sequence or as a collection of the same

element from each of the sequences. Therefore, the length of the vector is equal

either to the length of the sequences or to the number of sequences, whichever is the

greatest. The length of the vectors still decrease initially but then increase after loop

inversion.

Once the loop is inverted, only elements from the R symmetric sequences can be

included in the vector, since different computations are performed on the remaining

symmetric sequences. For example, in Table 2, the number of R symmetric se-

quences determines the length of the vector after loop inversion, which is equal to

2'"2 - 1 for i > 2. Interestingly, this has very little effect on the length of the

smallest vector. From Table 6, the minimum length of a vector in the transform of

an R symmetric sequence differs by only 1 from that of an E symmetric sequence.

Table 6

Minimum vector length in a single

FFT of length N = 2m

transform

complex

Rreal

E, O symmetric

QE, QO symmetric

m even

{ÑJ4
y[W/4- 1

{Ñ~/4

m odd

V^/2

JÑ/&
vW8

Longer vectors can be obtained by using symmetric transforms that are based on

FFTs other than the Cooley-Tukey. If the Pease algorithm is used, then all vector

lengths are N/2 in the computational phase. However, the Pease algorithm requires

an additional phase in which the transform is ordered. This phase can be performed

in log ¿V steps using a FORTRAN program in which the vectors again decrease in

length to jN/2 . Alternately, the ordering can be achieved in log A' steps using the

compress and merge machine language instructions that are available on pipeline

computers.

On the Control Data CYBER-205, where compress operations are significantly

more efficient than merges, Fornberg [5] has shown that the Glassman FFT can be
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implemented using only compress instructions. Two compresses are inserted at each

of the log N steps of the FFT with the result that the transform is ordered and all

vectors have length N/2. This approach can also be used in the Stockham FFTs,

however it is not as attractive on the CRAY-1 where the insertion of the compress

(gather) instructions can be more expensive than short vectors.

6.4. Summary. In this paper, we have examined existing efficient algorithms for

symmetric sequences. The symmetries are those generated by the splittings that

occur in the FFT of real even or odd sequences. There are five symmetries generated

by the splittings, namely, real, real even, real odd, and the even and odd quarter-wave

symmetries. We have used these symmetries to develop new symmetric FFTs that

are free of pre- and postprocessing as well as of the restriction that the length of the

sequence be an even integer. We have also shown that the amount of computational

work is that which would be expected. That is, just as the transform of a real

sequence takes half that of a complex sequence, the transform of a real odd or even

sequence takes half that of a real sequence.

Although the presentation of the symmetric FFTs has been made in the context of

the Cooley-Tukey FFT, the results are applicable to any of the FFTs. That is,

symmetric FFTs can also be developed based on the Pease or Stockham autosort

algorithms given in [8] and [10]. This is due to the fact that the FFTs differ only in

the way in which the intermediate computations are stored. An autosort symmetric

FFT can be developed by replacing the splitting equations used in the autosort FFTs

with those developed in this paper.
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