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Elliptic Curve Cryptosystems

By Neal Koblitz

This paper is dedicated to Daniel Shanks on the occasion of his seventieth birthday

Abstract. We discuss analogs based on elliptic curves over finite fields of public key

cryptosystems which use the multiplicative group of a finite field. These elliptic curve

cryptosystems may be more secure, because the analog of the discrete logarithm problem on

elliptic curves is likely to be harder than the classical discrete logarithm problem, especially

over GF(2"). We discuss the question of primitive points on an elliptic curve modulo p, and

give a theorem on nonsmoothness of the order of the cyclic subgroup generated by a global

point.

1. Introduction. The earliest public key cryptosystems using number theory were

based on the structure either of the multiplicative group (Z/NZ)* or the multiplica-

tive group of a finite field G¥(q), q = p". The subsequent construction of analogous

systems based on other finite Abelian groups, together with H. W. Lenstra's success

in using elliptic curves for integer factorization, make it natural to study the

possibility of public key cryptography based on the structure of the group of points

of an elliptic curve over a large finite field. We first briefly recall the facts we need

about such elliptic curves (for more details, see [4] or [5]). We then describe elliptic

curve analogs of the Massey-Omura and ElGamal systems. We give some concrete

examples, discuss the question of primitive points, and conclude with a theorem

concerning the probability that the order of a cyclic subgroup is nonsmooth.

I would like to thank A. Odlyzko for valuable discussions and correspondence,

and for sending me a preprint by V. S. Miller, who independently arrived at some

similar ideas about elliptic curves and cryptography.

2. Elliptic Curves. An elliptic curve EK defined over a field K of characteristic

# 2 or 3 is the set of solutions (x, y) e K2 to the equation

(1) y2 = x3 + ax + b,       a,b e K

(where the cubic on the right has no multiple roots). More precisely, it is the set of

such solutions together with a "point at infinity" (with homogeneous coordinates

(0,1,0); if K is the real numbers, this corresponds to the vertical direction which the

tangent line to EK approaches as x -» oo). One can start out with a more com-

plicated general formula for EK which can easily be reduced to (1) by a linear

change of variables whenever chavK ¥= 2,3. If char AT = 2—an important case in
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possible applications—this general formula can be reduced by a linear change of

variables to the form

(2) y2 + cxy + dy = x3 + ax + b,        a,b,c,d<=K.

The points on EK form a group with identity element the point at infinity. The

negative of a point P e EK is the second point on EK having the same x-coordinate

as P. Now suppose that Px = (xx, yx) and P2 = (x2, y2) are two points not the

point at infinity and not the negatives of one another. If K is the real numbers, there

is a simple geometric description of the point P3 = (x3, y3) which is their sum:

Draw the line through Px and P2 (the tangent line to the curve at Px if Px = P2),

and let P3 be the negative of the third point of intersection of PXP2 with the curve.

Moreover, there are algebraic formulas which can easily be derived from this

geometrical procedure and can then be applied over any field K. Namely, if EK has

the equation (2), then

(3) x3 = -xx - x2 + a2 + ca,        y3 = -cx3 - d - yx + a(xx - x3),

where

( a = ( U - *)/(*2 - *i), itPi + P2;

\(3x2 + a-cyx)/(2yx + cxx + d),    Ú Px = P2.

In particular, if EK is given by the equation (1), one sets c = d = 0 in (3)-(4), and

the formulas become a little simpler.

Using these formulas, one can compute a multiple mP of a given point P in the

same order of time as it takes to exponentiate am, using the analogous procedure,

i.e., by means of O(logw) doublings and additions, e.g., IIP = P + 2(P + 2(2P)).

Alternatively, one can use recursive formulas which express the coordinates of 2mP

and (2m + l)P in terms of those of mP (see [5, pp. 37-38]).

If K = G¥(q), q = p", is a finite field, then the points of EK form a finite

Abelian group. In some ways this group is similar to the multiplicative group

GY(q)* of the field K. For example, Hasse proved that the order of the group \EK\

is equal to q + 1 - aE , where \aE | < 2\fq, and so it has the same asymptotic size

as |GF(¿¡r)*| = q — 1. Actually, one can obtain G¥(q)* from the above construction

of an addition law on EK if one lets EK "degenerate" by letting the cubic on the

right in (1) acquire a double root; then, if the two slopes at the singular point of EK

are in G¥(q), it turns out that the set of nonsingular points of EK (i.e., those whose

x-coordinate is not the double root) form a group isomorphic to GY(q)*.

But unlike GF(^r)*, which is a cyclic group, the Abelian group EK for K = GV(q)

can either be cyclic or else a product of two cyclic groups. In practice, for a

"random" elliptic curve, usually either this group is cyclic or else it can be written as

a product with one of the cyclic factors much smaller than the other, i.e., it is

"almost" cyclic. We shall return to this question when we discuss the examples.

3. Imbedding plaintext. Let E = EK be an elliptic curve defined over K = GF(<?),

where q = p" is large. We shall suppose that we have a method of imbedding

plaintexts in E which is easy to implement and easy to decode. Here are some

examples of such methods.
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(1) Suppose that p is arbitrary (e.g., 2) and « = 2«' is even. Suppose that our

plaintexts are integers m, 0 < m < p" written in the form m = m0 + mxp

+ ■ ■ ■ +mn,_xp"'~x, 0 < my < p; and let b0,..., b„>_x be a convenient vector space

basis of GF(p" ) over GF(p). Set x(m) = m0b0 + mxbx + ■ • ■ +mn>_xb„>_x, and

let y(m) e GF(/>") be either solution of the quadratic equation (1) or (2) defining

points on E. Set Pm = (x(m), y(m)) e E. Here such a solution y(m) is guaranteed

to exist, but the most efficient algorithms for solving quadratic equations over finite

fields are probabilistic (except for R. Schoof's recently discovered method [12] for

finding square roots mod p using elliptic curves).

(2) Suppose that « = 1, q = p = 3 (mod 4), and E is given by Eq. (1). Suppose

that our plaintexts are integers m, 0 < m < />/1000 - 1. We try appending three

digits to m until we obtain an x, 1000m < x < 1000(w + I) < p, such that f(x) =
3 def .      1   ,.

x + ax + b is a square in GV(p). Then Pm = (x,f(xyp)/) is a point on E;

and obviously m can be decoded from Pm simply by dropping the last three digits

from the ^-coordinate. This is a probabilistic imbedding of {m} in E, since there

is a miniscule probability that f(x) will be a nonsquare for all 1000m < x <

1000(w + 1).

(3) Let p = 2, n = 4 (mod6), let b0,..., b„_x be a convenient vector space basis

of GF(2") over GF(2), and let E be given by the equation

(5) E: y2 + y = x3.

Suppose that our plaintexts are in the range m < 2"~10, m = m0 + mx2

+ • '• +w„-n2"~11> mjŒ {O-1}* and try setting y = m0b0+ ■■■ +mn_lxb,,„xx +

"J„-uA-io+ ••■ +m„_xb„_x <= GF(2") with various ron_10,...,mn_T e {0,1}; if

y2 + y is a cube in GF(2"), then the point Pm = (x, y) is on E for x =

(y2 + yY2" + 2)/9, This gives a probabilistic imbedding of the set {m} of plaintexts in

E.

4. Cryptosystems. Cryptosystems based on GF(q)* can be translated to systems

using the group E, where E is an elliptic curve defined over GF(<¡r). We shall

illustrate this by describing two elliptic curve public key cryptosystems for transmit-

ting information. A discussion of an elliptic curve analog for the Diffie-Hellman key

exchange system can be found in [9].

(1) Elliptic curve analog of the Massey-Omura system. Let q = p" be large, let E

be an elliptic curve defined over GF(g), and let N = \E\. Here q and E are fixed

and publicly known, as is N. We also have a publicly known imbedding m >-> Pm of

plaintexts as points of E. Suppose that user A wants to send user B a message m.

She chooses a random integer c satisfying 0 < c < N and g.c.d.(c, N) = 1, and

transmits cPm. Next, B chooses a random integer d with the same properties, and

transmits d(cPm) to A. Then A transmits c'(dcPm) = dPm back to B, where c'c = 1

(mod TV). Finally, B computes d'dPm = Pm, where d'd = I (mod N).

(2) Elliptic curve analog of the ElGamal system. We assume the same setup as in

(1), except that now no one needs to know N. (This is no major theoretical saving,

since R. Schoof [12] has found an algorithm to compute N in 0(log9<7) bit

operations; but it might be a great practical convenience to be able to avoid this.)

We further let G e E be a fixed and publicly known point. The receiver B chooses a
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randomly and publishes the key aG, while keeping a itself secret. To transmit a

message m to B, user A chooses a random integer k and sends the pair of points

(kG, Pm + k(aG)). To read the message, B multiplies the first point in the pair by

his secret a, and then subtracts the result from the second point in the pair.

Remark. Both Massey and Omura's and ElGamal's constructions are essentially

variants of Diffie and Hellman's original key exchange system. In the elliptic curve

context, the latter consists in each user A choosing an integer c and making cP

public; two users A and B take as their key d(cP) = c(dP), where d is B's secret

key. Massey-Omura works the same way, except that user B waits until A publishes

cP and then makes dcP (rather than dP) known to A. The ElGamal system uses the

same type of construction, with the additional element that the map P >-» P + Q is

used as a "generalized Vernam cipher." (The author thanks the referee for this

remark.)

Breaking either the elliptic curve Massey-Omura or the ElGamal system requires

the solution of the elliptic curve analog of the discrete logarithm problem:

Elliptic Curve Discrete Logarithm Problem. Given an elliptic curve E defined over

GF(q) and two points P,Q e E, find an integer x such that Q = xP if such x exists.

It is likely that this problem will prove to be more intractible than the classical

discrete logarithm problem. The strongest techniques known for the latter do not

seem to be applicable to the elliptic curve analog (see [9] for a discussion of this). In

particular, elliptic curves might be especially suitable for use over GF(2"), because,

as Odlyzko explains [11], discrete logarithms in GF(2") are relatively easy to

compute unless « is chosen to be quite large. It is likely that the analogous systems

using elliptic curves over GF(2") will be secure with significantly smaller values of «.

However, in order to avoid an easy solution to the discrete logarithm problem

using the techniques that apply to any finite Abelian group (which take approxi-

mately -/r operations, where r is the largest prime dividing the order of the group), it

is important to choose E and q so that N = \E\ is divisible by a large prime (see the

examples below). Notice that this is the exact opposite of the (more difficult)

requirement in Lenstra's factoring algorithm, where one must look for elliptic curves

with TV a "smooth" number.

5. Examples. (1) In the ElGamal elliptic curve system, given q = p", choose both

E and G randomly. For example, let g(y) = y2 if p > 2 and g(y) = y2 + y if

p = 2. Then choose random elements x, y, a e G¥(pn), and set b = g(y) - x3 -

ax. Then G = (x, y) is a point on the elliptic curve with equation (1) or (2) (with

c = 0, d = 1). (The discriminant of the equation must be nonzero, but this is

virtually certain if a and b are random elements of a large finite field.)

Before using the chosen E and G, one should check that the order of G in £ is

not a smooth integer; if a product of fairly small primes takes G to the identity (the

point at infinity), then another random choice should be made.

(2) Let E be given by the equation y2 + y = x3 over GF(2"), « = 4 (mod6), as

above. As described above, we have a simple (probabilistic) imbedding m -> Pm of

plaintexts into E. This E is also convenient for other reasons. The formulas for

doubling a point are particularly simple:

2P = (x4,y4 + l)    for P = (x,y),
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as we see by substituting xx = x2 = x, a = b = c = 0, d = 1 in (3)-(4) and using

the equation (5) of the curve to simplify >>3 = -1 — y + x2(x - x4).

In addition, there is an easy formula for N in this case:

N = |E | = 2" + 1 - 2(-2)n/1 = {(-2)n/1 - l)2.

Thus, in order to ensure that N is divisible by a large prime, we could, for example,

choose « so that «/4 = 1 (mod 3) gives a Mersenne number with a large factor, e.g.,

a Mersenne prime (for example, « = 508).

This curve could be used for the Massey-Omura system or, after choosing a

random point G (using the technique described above for imbedding plaintexts in

E), for the ElGamal system.

(3) Let E be given by the equation

(6) y2+y = x3-x

over GF(/7), p a large prime, and set G = (0,0). It is known that, if the equation of

E is considered over the field of rational numbers, then G = (0,0) is a point of

infinite order whose multiples exhaust all rational points of E. It does not follow

that, after reduction modulo p, G generates all points of E over GF(p); in fact, the

latter group is not necessarily cyclic. However, it is likely that G almost always

generates a large part of EGFip). We now discuss this in more detail.

6. Primitive Points. In elliptic curve cryptosystems of the sort discussed above, one

does not work with the entire group E, but rather with cyclic subgroups: the groups

(Pm) in the Massey-Omura system and the group (G) in the ElGamal system. It is

desirable for the groups (Pm) and (G) to be large, i.e., for their index in E to be

small. More precisely, the order of these cyclic subgroups should be nonsmooth, i.e.,

divisible by a large prime, in order to preclude easy solution of the discrete

logarithm problem in them.

In our examples, G is either a "random" point chosen after we have specified q

(in Examples (l)-(2) above) or else a global point (Example (3)), i.e., a fixed point of

infinite order on an elliptic curve EQ defined over the rational numbers which is then

reduced mod p after we choose some large p and decide to work with EGV(p) =

E mod p. In either case, it is natural to ask: What is the probability (as p varies with

G fixed, or as p and " random" G both vary) that G generates E mod pi Or, if we

cannot rely on that happening often enough, we might ask: What is the probability,

if \E mod p\ is divisible by a large prime /, that |(G mod p)\ will also be divisible by

/?

The first question is the elliptic curve analog of the primitive root problem for

GF(/7) that was considered by E. Artin (see the Preface to [6] and also [14] and [10]

for more details). Let a =f= 0, +1 be a fixed integer which is not of the form ±b" for

any « > 1. Artin first observed that one can use the Chebotarev density theorem to

show that, for any prime /, the probability that / divides the index of a in GF(p)*,

i.e., that /1/7 - 1 and a(p~l)/l = 1 (modp), is equal to 1/(1(1 - 1)). He then

conjectured that these events are independent for different /, in which case the

probability that a is a generator, i.e., that no prime / divides the index of a in

GF(p)*, is equal to

(7) nJ'-iTT1!))'0'3729-'
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It was later noticed that the events are not necessarily independent, and for certain a

one must modify a few of the factors in (7). For example, the number that has the

highest probability of being a generator is a = -3, where this probability is obtained

by deleting the 1 = 3 term in (7). In particular, since -3 is a square and hence not a

generator whenever p = lmod3, it follows that -3 is a generator of GF(p)* for

89.7% of all p = 2 mod 3. The modified Artin conjecture was shown by C. Hooley to

hold if one assumes the generalized Riemann hypothesis (GRH).

In the elliptic curve case, an analog of Artin's conjecture was proposed by Lang

and Trotter [7] (see also [3]). Let £ be a fixed elliptic curve defined over Z with

discriminant A, and let px, p2,... be the increasing sequence of primes with the

primes dividing A omitted. Let G be a fixed point of infinite order on £ which is

not of the form «G' for any « > 1. One says that G is "primitive for p" if G mod p

generates £ mod p. Let /(«) be the proportion of the first « primes for which G is

primitive:

/(")=/e,g(") = ñl{X «|G is primitive for/»y}|.

Then Lang and Trotter conjectured that /(«) approaches a nonzero limit and

described how to determine this limit. In the case of the three elliptic curves

(8)   A: y2 + y = x3 - x,    B: y2 + y = x3 + x2,    C: y2 + xy + y = x3 - x2

and the point G = (0,0), they conjectured the following value:

lim/(«) »il  1 -   ,   '   ~ ' ~ *-   =0.440.
n^JK   '     V\       /2(/-l)(/2-l)/

This conjecture supposes that the events l\[Emodp: (Gmodp)] are independent

for different /. (Actually, at the "bad" prime 37, 43, 53, respectively, one must

introduce a correction term which does not, however, affect the above value in the

first three decimal places [15].)

In the case of elliptic curves with complex multiplication, a weaker version of the

Lang-Trotter conjecture (where one must ignore primes p that do not split in the

complex multiplication field) was proved by Gupta and Murty [3] assuming the

GRH. Serre ([13], see also [10]), also assuming the GRH, proved an analogous result

about the question of cyclicity of £ mod p: The proportion of p for which £ mod p

is a cyclic group approaches a nonzero constant.

Lang and Trotter tested their conjecture in the cases (8) (and G = (0,0)) for the

first 200 primes. The results were not very close to the predicted value of 88 primes

for which G is primitive (the numbers were 91, 96 and 91, respectively; my

computations show that these numbers should be corrected to 92, 96, 92), so they

then discarded the first twenty pj, and counted the proportion of the remaining 180.

In the interval Pj, 20 < j < 200, the agreement with the predicted proportion was

fairly good. Recently, Trotter [15] has extended these computations to the first 2000

primes, obtaining more convincing statistical evidence supporting the conjecture for

the curves (8).

7. Nonsmooth Cyclic Subgroups. The second question about the index of

(G mod p) in £ mod p is weaker: If we have ensured that |£ mod p\ is nonsmooth

and know that it is divisible by a large prime /, then what is the probability that

\(G mod p)\ is also divisible by /? Unless I21 |£ mod p\, which is not likely for large
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/, this is equivalent to asking about the probability that / divides the index of

(Gmodp) in Emodp. In other words, for fixed £,G, and /, what is the condi-

tional probability that l\[Emodp: (Gmodp)} given that l\\Emodp\l Following

the argument in [7] and using the Chebotarev density theorem and results of Serre

and Bashmakov for non-CM curves, one has the following answer.

Theorem. Let G be a fixed point of infinite order on an elliptic curve E of

discriminant A which is defined over Z and does not have complex multiplication.

Then, for all but finitely many primes I,

¡{primesp < x, p t A | /divides [E mod p: (Gmod p)])\

x^cc \{primesp < x, p + A 11 divides \Emod p\}\

l'-l-l=\ + o(l-
l2(l2-2)      I        \l3

Corollary. Under the conditions of the theorem, for all but finitely many primes I,

¡(primesp < x, p 1 A 11 divides \(G mod p)\}\ 1      1 / 1 \
hm —■-— = 1- — + — +0 —  .

x^cc    ¡{primes p < x,p \ A 11 divides \Emodp\)\ '      I \ I31

In the corollary, the extra l~2 term arises from the possibility that l2\\E mod p\.

Finally, we note that the gist of these conjectures and partial results is that, even

though |£ mod p\ increases with p, the index [£ mod p: (G mod p)] on the average

does not. Thus, for extremely large p, the subgroup generated by G can be expected

to be almost as "good" (i.e., nonsmooth) as £ itself.
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