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Uniform High-Order Difference Schemes

for a Singularly Perturbed Two-Point

Boundary Value Problem

By Eugene C. Gartland, Jr.

Abstract. A family of uniformly accurate finite-difference schemes for the model problem

-em" + a(x)u' + b(x)u = f(x) is constructed using a general finite-difference framework of

Lynch and Rice [Math. Comp., v. 34, 1980, pp. 333-372] and Doedel [SIAM J. Numer.
Anal., v. 15, 1978, pp. 450-465], A scheme of order hp (uniform in e) is constructed

to be exact on a collection of functions of the type {1, x,... , xp, exp(^j a),

x exp(j/a),..., xp~ exp(\ f a)}. The high order is achieved by using extra evaluations of the

source term /. The details of the construction of such a scheme (for general p) and a

complete discretization error analysis, which uses the stability results of Niederdrenk and

Yserentant [Numer. Math., v. 41, 1983, pp. 223-253], are given. Numerical experiments

exhibiting uniform orders hp, p = 1,2,'}, and 4, are presented.

1. Introduction. We are concerned with the numerical approximation by finite-dif-

ference techniques of the linear two-point boundary value problem

Lu = -eu" + a(x)u' + b(x)u = f(x),       0 < x < 1,

(1-1) "(0) = g0,        u(l) = gx.

Such model problems are studied because, among other reasons, they describe (when

e is small compared to a) physical situations in which convective forces dominate

diffusive forces. This circumstance arises often in fluid flow and convective heat

transport problems.

It is assumed, at a minimum, that a, b, and / are bounded continuous functions

and that a(x) ^ a > 0 on [0,1]. This last condition prohibits the development of

turning points on interior layers (see, for example, [27]). Greater smoothness

conditions are required in some of the theorems that follow.

The numerical approximation of model problems like (1.1) above has been the

object of investigation of numerous researchers for some time. Stiff vector systems

have been attacked by finite differences in [1], [18], [19], and [34], by collocation

methods in [4] and [5], and by asymptotic/numerical techniques in [15] and [16] (in

relation to this last approach, see also [9] for an application to a single nonlinear

equation). The single nonlinear equation similar to (1.1) has been approached by

integrating to steady state the related time-dependent problem using one-sided

differences of the Engquist-Osher type [2], [26], and [30]. The linear model problem

(1.1) and its analogues in conservative form have been approximated numerically
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using various projection methods including collocation [14] and Galerkin techniques

[6], [28], [29], and [33].

The present paper is concerned with finite-difference approximations, which have

received their share of attention (see, for example, [7], [8], [13], [17], and [20] and

references contained therein). A continuous source of analyses of various approaches

to these problems is supplied by the proceedings of the BAIL conferences edited by

J. J. H. Miller [22], [23], and [24]. We also mention the book [12].

It is the object of the present paper to develop and analyze a general approach to

constructing uniform (with respect to e) high-order finite-difference approximations

to (1.1). The technique utilizes the HODIE framework of Lynch and Rice [21] and

Doedel [11]. It proceeds by constructing a difference approximation locally that is

exact on a collection of functions of the type

1, x,..., xK,exp — / a(x) dx\,

x exp — / a(x) dx  ,..., xLexp — / a(x) dx

The procedure is automated in the sense that the difference coefficients are com-

puted numerically, by solving a small local linear algebraic system, rather than

evaluated from closed form expressions. Any uniform order can be achieved, in

theory, and numerical experiments illustrating uniform convergence rates up to

0(h4) are presented.

The high order is achieved by using extra evaluations of the differential operator

L, that is, of the coefficient functions a and b, and of the source term /. The theory

is developed under the assumption that j a(x) dx and a'(x) are known, but it is

then shown that using discrete approximations to these, built on the same evalua-

tions of a(x) as are required by the basic finite-difference construction, yields the

same uniform order of convergence.

The truncation error analysis utilizes a decomposition, proved in Section 2, of the

true solution

u(x; e) = A(x; e) + B(x; e)exp-/   a\,

where, for sufficiently smooth data, the functions A and B have continuous

derivatives up to a given finite order that can be bounded independently of e. This

decomposition implies many a priori estimates on u and its derivatives that have

appeared elsewhere in the literature, and it does not rely on monotonicity arguments

and their consequent b(x) > 0 constraint. The discretization error analysis is

accomplished using the general stability results of Niederdrenk and Yserentant [25].

2. Mathematical Preliminaries. Under the minimum assumptions above (continu-

ity of a and b and positivity of a on [0,1]), the boundary value problem (1.1) is

stable, uniformly in e for all e sufficiently small. In particular, we have the following

result.

Theorem 2.1. Let the coefficient functions a and b of the differential operator L in

(1.1) be continuous on [0,1], and let a satisfy a(x) > a > 0, 0 < * < 1. Then for e
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sufficiently small,  there exists a constant C independent of e such that  \\v\\x <

C{ \\Lv\\x + 11;(0)| + \v(l)\) for all v e C2[0,1].

Proof. It follows from Theorems 9 and 10 of [25] that it is sufficient to establish

that for all e sufficiently small'there exists a constant C independent of e such that

all solutions w e C2[0,1] of the homogeneous equation Lw = 0, 0 < x < 1, satisfy

HL^c"(|w(o)|+|w(i)|).

But this is an immediate consequence of the standard singular perturbation con-

struction as in [27, Section 3.1].   D

The stability estimate above will be used in the discretization error analyses of

Section 5; the discrete approximation to (1.1) will inherit an analogous property. For

the purpose of the truncation error analyses of Section 4, we also require the

following representation result about the true solution u of (1.1).

Theorem 2.2. Let k be a positive integer. Then for e sufficiently small and a, b, and

f sufficiently smooth, the solution u of (1.1) admits the representation

(2.1) u(x; e) = A(x; e) + B(x; e)exp-j   a\,

where A and B and their derivatives up to order k can be bounded on [0,1]

independently of e.

Proof. First express m as a sum u = v + w, where v and w satisfy

-ev" + a(x)v' + b(x)v = f(x),       0 < x < 1,

vi0;e) = g0

and

-ew" + a(x)w'+ b(x)w = 0,       0 < x < 1,

w(0;e) = 0,        w(l;e) = gx-v(l;e).

We consider the v function first. Express v in the form of a perturbation expansion

v(x; e) = v0(x) + vx(x) ■ e + ■ ■ ■ +vk__x(x) ■ ek~x + Vk(x; e) • e*,

where the coefficient functions v0,...,vk_x satisfy

a(x)v'0+ b(x)v0=f(x),        vQ(0) = go,

and

a(x)v'j + b(x)Vj = vjLx,       Vj(0) = 0,       j = 1,..., k - 1,

and the remainder function Vk is required to satisfy

-eVk" + a(x)V¿ + b(x)Vk = v'¿_x(x),       0 < x < 1,

Vk(0) = Vk(l) = 0.

Now v0_, vk_x are independent of e and can be made as smooth as we wish by

making a, b, and / sufficiently smooth. It is enough, then, to show that ||I/i£<'')||00 =

0(e~p), p = 0,..., k. We do this by using an integral equation formulation as in

[10] and [32]. Multiplying both sides of (2.2) by \ e\\->(\.jx a), which is an integrating
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factor for Vk  - (a(x)/E)Vk, and integrating from x to 1 yields

V¿(x) = V¿il)e-*"M° - j}' biy)e*"W'Vk(y) dy

+ lp eW!°v'U(y)dy.
(2.3)

Our estimates on the derivatives of Vk will follow from this, once we have control of

V¿(1).
To get an expression for Vk(l), integrate (2.3) from x to 1 and use the boundary

condition Vk(l) = 0 to get

1  ri
Vk(x) = -V¿(l)f e-W>dy + ±f b(y)\f e^'dl- vk(y)dy

-is:\s:,(l/e)/,£a dí v'k-iiy)ày-

Evaluating at x = 0 and using the other boundary condition Vk(0) = 0, yields

U^Hy)\fóye(1/^ad^Vk(y)dy-\jx[j¿e^^de}v'kUy)dy
v¿ii)

1 „-(!/£)/,' aí¿e dy

Now \\Vk\\x can be bounded independently of e for e sufficiently small [10], vk_x is

independent of e (and bounded if a, b, and / are sufficiently smooth), and the

denominator can be bracketed,

4(l-<r(1/E)'»a)<  fe-'W'v^ -(l -g-d/«)/¿«)>

where a = min{a(x): 0 < x < 1} and a~ = max{o(x):0 < x < 1}. It follows that

Vk\\) = 0(e'x); therefore, from (2.3), \\V¿\\X = 0(e_1). Successive differentiations of

(2.3) yield that \\V¿P)\\X = &(e-p), p = 2,..., k. We conclude that for a, b, and /

sufficiently smooth,

II/ill      II»'II ll»(i:)ll    < CHalloo»  \\v   Moo' • ■ ■ > \\V        II 00   ^   C'

where C is independent of e.

The w-problem can be handled similarly. Two linearly independent solutions of

the homogeneous equations Lw = 0 can be constructed in the form

y(x;E) =y0(x) + yx(x)e + ■■■ +yk_x(x)Ek  x + Yk(x;e)s

and

z(x;e) = <>-(1/e)'*a(z0(jc) + zx(x)e + ■■■ +zk_x(x)£k~x + Zk(x;e)ek),

where the component functions here satisfy

a(x)y¿ + b(x)y0 = 0,       -(a(x)z0)' + b(x)z0 = 0,

y0(l) = 1,       20(1) = 1,

a(x)yj + b(x)yj = yj'_x,       -{a(x)zJ)' + b(x)Zj = zf_x,

yy(l)-0,       j=l,...,k-l,       *,(!)-0,       j = l,...,k-l,
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and

-£yA" + a(x)Yk' + b(x)Yk=y'k'_x,       -eZ'k' - (a(x)Zk)' + b(x)Zk = z'k'_x,

7,(0) = Yk(l) = 0,        Zk(0) = Zk(l) = 0.

These two solutions can be combined to form a solution of the w-problem, and the

remainder functions Yk and Zk can be analyzed exactly as before. The result fol-

lows.   D

The decomposition (2.1) is a standard sort of splitting for these problems, and the

asymptotic correctness of the expansions has been rigorously established before (see,

for example, [10], [27], or [32]). However, we could find no reference for the

observation on the boundedness of the derivatives of the A and B functions, and we

rely heavily on this in the development that follows. Also, we mention that (2.1)

implies the inequalities

\u^(x)\^cll+Xe-<x/^>A,        j = 0,...,k,

where C is independent of e. This type of a priori estimate is used often in the

literature.

3. The Finite-Difference Scheme. We wish to construct compact finite-difference

approximations to (1.1). For simplicity we use a uniform mesh x¡ = ih, i = 0,..., n,

h = 1/n. We construct a discretization of the form

j

, , ¿a"? s «,,-i«f-i + «,,o«? + «M«f+i = Í.fiijfitij), i=l,...,n-l,
(3.1) j=i

"o = go- "* = gl-

The points £iX,..., £, y are auxiliary evaluation points (also called HODIE points

[21]). They are distinct and lie between x¡_x and xi+x; some of them may coincide

with mesh points.

The coefficients, a¡_x, a¡0 and aiX, and weights, ßjX,..., ßt j, are determined so

that the scheme is locally exact on some (J + 2)-dimensional space of approximat-

ing functions, in the sense that this space is contained in the kernel of the local

truncation operator

J

T,[<b] = Lh<b, -  Z ßtjLtittj),

subject to the normalization

(3-2) EAj-i.
j-l

This leads to a local linear algebraic system to determine the a's and ß's. For 7=1

and |, j = x¡, the scheme that is exact on {1, x, x2} is precisely the standard

central-difference approximation, while for J = 1 and £,u = x¡, one gets the Allen-

Southwell scheme [3] by requiring exactness on {1, x, exp(a(xi)x/£)}.

This general approach to finite differences has been analyzed by Lynch and Rice

[21], who refer to it as the HODIE (High-Order Differences via Identity Expansions)

Method, and Doedel [11] (see also [7], where a variation of this is referred to as an



556 EUGENE C. GARTLAND, JR

Operator Compact Implicit Scheme). These authors have shown that for a problem

such as (1.1), with £ fixed, if one uses / evaluation points and imposes exactness on

{1, x,..., xJ+x), then for h sufficiently small, the local linear system that defines

the coefficients and weights is nonsingular and produces a stable approximation

with discretization error at least 6(hJ).

The difficulty with the approach as it applies to our problem (1.1) is that no

matter how large J is taken above, the resulting discretization is not even uniformly

6(h). That is, while \\eh\\ ̂  chJ, c depends on e and blows up as e -» 0 and

sup(/¡"1||e/l||) -» oo as e -» 0. To remedy this situation here we emulate (2.1) and

construct our scheme to be exact on

(l,x,...,^,exp(i/\),xexp(^/',ia),...,^-1exp(|/Xa)}.

It is natural to refer to such a scheme as an exponentially fitted HODIE scheme. To

produce a well-posed local linear system with such a family of approximating

functions, it is necessary that the auxiliary points be distributed with p in the

upwind subinterval [jc,-_1, x¡] and (p — 1) downwind in (x¡, xj+l J. We will analyze

here the special (natural) case of equally spaced points,

t,.i= x„       p = l,

tij = xi-i+jïrLh>       J=h...,2p-l,p = 2,3.

We now prove that for these points the local system is nonsingular for all h

sufficiently small, independent of e.

Theorem 3.1. Let the positive integer p be given. If the coefficient functions a and b

in (1.1) are sufficiently smooth (in addition to satisfying a(x) > a > 0), then for all h

sufficiently small, independent of z and i, the coefficients a¡_x, al0, and aiX and

weights ßiX,..., ß,2/>-i '" the finite-difference approximation (3.1) are uniquely deter-

mined by the conditions of exactness on the family of functions {1, x,..., xp,

exp(^fxa), xexp(jjxa),..., xp~x exp(\fxa)}, subject to the normalization (3.2)

and distribution requirement (3.3), and satisfy

(a)      |a, _! + a,0 + aiX\ < M < oo,

(3.4) (b)     h(aiX - a,vl) > m > 0,

(c)     a,.., «s -E/h2 < a, j < 0,

where m and M are constants that do not depend on h, z, or i.

The proof of this theorem is lengthy and detailed and is relegated to the Appendix

in the Supplements section of this issue. Briefly, it proceeds by carefully analyzing

the concerned linear system for h small in the three cases h/e -> 0, 0 < p < h/z < p

< oo, and h/z -* oo. It is a consequence of this analysis that ß^p+x,---,ßi^p-X,

and a, x all go to zero as h/z -* oo, and the finite-difference scheme converges to a

2-point 6(hp) discretization of the form

,«?_, + "   "*«?= Lß,jfii,J
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for the reduced equation

a(x)u' + b(x)u = f(x)

that is exact on (1, x,..., xp): The estimates (3.4a, b, and c) are required in the

stability analysis in Section 5.

4. Truncation Error Analysis. We now analyze the truncation error t defined by

Ti = T¡[u] = a,_xu(x,_x) + ai0u(x¡) + alXu(xi+x)

(4 1) 2p~l

-I ß,,Mit.j),    f-i,...,«-i.

Here u is the true solution of (1.1), and otj_x,...,ßi2x are the coefficients and

weights of an exponentially fitted HODIE scheme constructed as in Section 3. This,

when combined with an appropriate stability result, can be used to appraise the

discretization error eh, where e¡ = u(x¡) - u), since Lhe^ = t¡. Our main result on

the truncation error is the following.

Theorem 4.1. Let the positive integer p be given, and let t denote the local

truncation error (4.1) in an exponentially fitted HODIE approximation to (1.1) of the

form (3.1) constructed to be exact on

{l,*.-.*'.«p(7 f a), xexp(^ f a},..., xp-x exp^ f fl))

and subject to the normalization (3.2) and distribution requirement (3.3). // the

functions a, b, and f in (1.1) are sufficiently smooth, then there exists a constant c that

is independent of z, h, and i, such that for all z sufficiently small and all h sufficiently

small (independent of z),

I ! / 1 ., \\

t,U ch" 1+7exP \-\Sla i = l,...,n - 1.

Proof. As in the proof of Theorem 3.1, we consider the interval [-h, h] (suppress

the subscript /') and denote E(x) = exp(7/0* a). It is a rather straightforward

consequence of the leading order behavior of the finite-difference coefficients a_x

and ax (as analyzed in the proof of Theorem 3.1) that they satisfy

\ax\, £(-A)|a_!|, E(h

for some absolute constant Cx. Likewise, the weights ßx,..., ß2p^x satisfy

\ßx\,...,\ßp\.E(^x)\ßp+x\,...,E(k2p_x)\ß2p_x\^C2.

Now we know from Theorem 2.2 that for z sufficiently small, u admits the

representation

u(x) = A(x) + B(x)exç\-\ j\\,

where A and B are smooth functions (if a, b, and / are sufficiently smooth) that

can be bounded together with their derivatives up to any given finite order,

independently of z. We can estimate the leading order terms of the truncation error
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as follows. For h > e we have (using the above estimates on the a's and jß 's)

|r[jc'+1]|-|a_1(-l)'+V+1 + a1A'+1

- I.ßj[-*ip + l)ptrX + aitj)iP + 1)«/ + Htj)if+1]

<c3h»

and

\T[xpE(x)]\ =\a_x(-l)"h»E(-h) + axhpE(h)

< c4/i/'  x < c
//''

To handle the case h < z, we expand

£(*) = exp — /   a   = 1 + í/jX + d2x2 + ■ ■ ■ ,

where dk — 6(z~k), k = \,2.Then xp+x can be written

xp+1= -^{E(x) -\l + dxx + ■ ■ ■ +dpx» + dp+2xp+2 + ■■■}}.

And it follows that

|r[x'+1]| <c.
lp + 2

dp+i

K z

T[xp+2]\

< C- i-TK  • hp + 1 + Zh" + hP + 1     < ClhP
£\h2

Finally, still for h s£ e, we have

\T[xpE(x)]\ =\T[xp(l + dxx+ ■••)]!

^cs\dx\\T[xp + x]\^c9\hp.

The truncation error can be bounded via these leading-order terms. Combining these

various estimates, we get

1    /"I
W,\=\Ti[u]\ = T\A\ + T, Bexp -7/_ a

* cd\T.[ix - x,y+l} I + Ta\x - x,)p exp(- \£ a

1    /■!
< cxx lh" + exp - -j  a   7]: (x - x,)p exp \-j  a

1 rx

< ch>
1       I    1 fx

1 + 7exP "li  fl D

We mention that the reason we are able to get by with one less local exponential

function (and essentially trade a power of h for a factor of 1/e) is that the function

in parentheses in our bound for |t,| has a uniformly bounded L'-norm; our stability



UNIFORM HIGH-ORDER DIFFERENCE SCHEMES 559

estimate involves a discrete 1-norm of the truncation error, and we get the desired

bound on the error eh. We take up this aspect now.

5. Discretization Error Analysis. We can use the general stability theorems in [25]

to analyze our exponentially fitted HODIE schemes. We first paraphrase an ap-

propriate version of those results as they apply to our particular problem.

Theorem 5.1. Let a uniform mesh x¡ = ih, i = 0,..., n, h = 1/n on [0,1] be

given. Let Lh be a finite-difference operator of the form

(5.1) Lhvht m a¡_xvf_x + aifivf + aa»*+1,

where the coefficients a¡_x, a, 0, and ajX satisfy, for some positive constants m and M,

(a) h(aiX - a¡_x) > m,

(b) |aírl + a,,o + ou| < M,

(c) «,-_! < -z/h2 < a, ! < 0.

Let L denote the singularly perturbed differential operator of (1.1), and let y0 and yx

denote solutions of the associated homogeneous problems

Ly0 = Lyx = 0,       0 < x < 1,

yo(0) = h       *(<>)-0,

>>„(!) = 0,       *(1)-1.

Let || • \\hao and || • ||A>1 denote the discrete co-norm and 1-norm defined by

\\vh\\h,x = max{\v?\:i = 0,...,n}

and

Ho*iImaA"¿I°í*I-
/=i

Let the original differential operator L satisfy, for all 0 < e < e0 and for all v in

C2[0,1],

HolL<c{l|io|li+l»(0)|+|r(0)|},
where c is a constant that does not depend on z.

It then follows that there is an absolute tolerance tj > 0, which does not depend on z

or h, such that, if the combined residual (consistency error) below satisfies

(5.2) \\(Lh-L)y0\\hl+\\(Lh-L)yx\\hl^r),       0 < e < e0,

then for all mesh functions vh and 0 < e < e0, we have

V Loo < *'{ 1^1^+10*1+ I «tf|),
where c' is a constant that does not depend on z.

This is merely a restatement of Theorem 12 of [25]. In our case, the operators are

second order, the mesh uniform, and the norms, ||| • |||E and ||| • |||Wit in [25], are

taken to be continuous and discrete oo -norms. Also, our formulation differs from

that in [25] in the sign conditions on e and a: Leu = zu" + a(x)u' + b(x)u in [25]

versus Lu = -zu" + a(x)u' + b(x)u here, in (1.1). This changes, under the trans-

formation x >-» 1 - x, the forward differences in [25, Theorem 2] to backward

differences; the inequalities (a), (b), and (c) above are equivalent to the conditions

(i), (ii), and (iii) of that theorem.
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We are now in a position to uniformly bound the discretization error in our

exponentially fitted HODIE approximations.

Theorem 5.2. Let the positive integer p be given. Let eh denote the discretization

error e*¡ = u(x¡) - uf, where u is the true solution of (1.1) and uh is the finite-dif-

ference approximation to u that solves the exponentially fitted HODIE scheme (3.1),

with J = 2p — 1, constructed as in Section 3. If the coefficient functions a, b, and f in

(1.1) are sufficiently smooth, then there exists a constant c that is independent of z and

h such that for all z sufficiently small and all h sufficiently small (independent of z)

»h.x < ch".

Proof. Let r denote the truncation error (4.1); then eh satisfies

L^ = v / = 1....,«- 1,

Theorem 4.1 then implies that for e and h sufficiently small.

Lhe1\^cxhp\l+ \exp[-\\X a

Observe that

exp
1 Z"1

n-l

h,l i-\

exp

< ;1_kp
Z Jn

Thus we have eh\\ < c-,h'

We know (Theorem 2.1) that the original problem satisfies the right kind of

stability estimate, for e sufficiently small. And we know (Theorem 3.1) that our

finite-difference scheme is well defined and satisfies conditions (a), (b), (c) of

Theorem 5.1, for e and h sufficiently small. Our result will follow from Theorem 5.1;

all we require is that the consistency error in (5.2) be sufficiently small. But this

expression is nothing more than the sum of the mesh 1-norms of the truncation

errors in the approximations of problems of the type (1.1) with f(x) = 0 and

g0 = 1, gx = 0 (in the case of y0) and g0 = 0, gx = 1 (in the case of yx). Theorem

4.1 then implies that the consistency error is at least 6(h). So the needed inequality

(5.2) will be satisfied for h sufficiently small, and the theorem is proved.   D

The construction and analysis of these schemes thus far has assumed explicit

knowledge of the derivative and definite integrals of the coefficient function a in

(1.1). We now show that if we approximate this needed information in a natural,

numerical way, then we get the same uniform order of convergence. Suppose that in

the subinterval [jc,-, xi+1], we approximate a locally by the polynomial q¡ of degree

p — 1 that interpolates to a at the auxiliary evaluation points used in that subinter-

val, viz., iip = £,.+11 = x» {,,,+! = €,+ 1,2,..., É/,2,-1 = Ê/+1,, = x, + x. We accept

the integral and derivatives of q¡ as approximations to those of a and get

f-> a = f'-> q, + &(hp + x),        a'iild) = q'Mt.j) + ̂ A'"1),

j = p,...,2p-l,
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and

i + i

J = l,...,p.

We then have the following theorem.

/*'+ 1 " a = fi+1-' q, + 6(hp + x),        a'Ui+XJ) = q^i+XJ) + 6(h»-x),

Theorem 5.3. Let the positive integer p be given. Let an approximate exponentially

fitted HODIE discretization of (1.1) be constructed as in Section 3 but with the needed

integrals and derivatives of a replaced by the numerical approximations indicated above.

If a, b, and f are sufficiently smooth, then for all h sufficiently small, independent of z,

these finite-difference schemes are well defined and stable, and the associated, discreti-

zation error is uniformly 6(hp).

Proof. All that we need to do here is to observe that our approximate scheme is a

regular exponentially fitted HODIE scheme for the approximate problem

Lu = -zu" + 5(x)ü' + b(x)ù = f(x),       0 < x < 1,

"(0) = g0.       "(l) = gi.

where à is a continuous piecewise-polynomial approximation to a given by a(x) =

q¡(x), xt< x < xi+x (here qt is the local polynomial interpolant introduced above).

Now by construction, \\a - â\\œ = &(hp) (for a sufficiently smooth), and it

follows that ä(x) ^ a/2 > 0, say, for all h sufficiently small. Thus our previous

analysis implies that the scheme is well defined and stable; we need only show that

||m - ùll^. is uniformly 6(hp). But this follows since ë = u — ü satisfies

Le = (a(x) - ä(x))u'(x),       0 < x < 1,

ê(0) = ê(l) = 0,

from which we obtain

\\e\L<c\\a-a\\Ju'\\x^c'hp.

Here we have used the facts that the operators L satisfy a uniform stability estimate

of the type in Theorem 2.1 (for all h sufficiently small), u' satisfies (from Theorem

2.2)

\u'(x)\ ^ c|l + -expl -- j  a

and ||e_1 exp(- yjx a)\\x < c, uniformly in e.    D

We see that the same uniform order of convergence can be obtained using only

those point evaluations of a (and b and / ) that were already required in the original

formulation; p-values per mesh subinterval yield a uniform &(hp)-scheme.

6. Numerical Results and Remarks. In this section are reported a small sample of

numerical experiments to demonstrate the behavior of these exponentially fitted

HODIE schemes. The results below are for the following model problem,

.   „. -eu" H-rr"' + —r=-u = f(x),       0 < x < 1,(6.1) x + 1 x + 2       J v   "

M(0) = 1 + 2~x/\       u(l) = e + 2.
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with / corresponding to the true solution

u(x) = ex + 2-l^(x + l)1 + l/e.

Approximate solutions were computed on a CDC 6600 in single precision (around

14 decimal digit accuracy) using schemes constructed as in Section 3.

Discretization errors were tabulated using a uniform mesh spacing h = 1/n,

n = 4, 8,16,..., 1024 while holding the ratio p = h/£ fixed, that is, z -> 0 as h -> 0

with h/z = constant. The experiments were constructed in this way to make it easier

to observe the uniform convergence rates, which were approximated using

psip = \0g2—!!—f       n = 4,8,..., 512.

As an illustration, consider the uniform &(h)-scheme. These results are contained in

Table 1 below.

This table exhibits one of the standard features of these schemes, namely, until e

gets small enough for the problem to actually appear to be singularly perturbed, here

around e < \ (p = 2~4 and h = 1/128,... ), one observes the nonuniform (fixed e)

convergence rate, here 6(h2). Once this threshold is passed, however, the 0(h)

convergence is clearly indicated. Also, for each n, the maximum \\e\\x occurs for

p < 22, with the errors decreasing outside of this range. This leads us to=g

define (and approximate)

Kllloo  =      maX
0<p<oo

<?L,   ~ max
p = 2"4.26

Table 1

Maximum errors and approximate uniform convergence rates

for the 0(h) exponentially fitted HODIE scheme applied to (6.1)

p = 2- 2-2

4

8

16
32
64

128
256

512
1024

.50(-l)
■25(-l)
■ 12(-1)

.53(-2)

.17(-2)
•53(-3)
.93(-3)
.76(-3)
•48(-3)

.97
1.06
1.28
1.63
1.69
-.81

.30

.65

■44(-l)

■20(-l)
.66(-2)
.21(-2)

■37(-2)
■30(-2)
.19(-2)
,ll(-2)

.58(-3)

1.13

1.58
1.67
-.82

.30

.65

.SI

.89

.22(-l)

,73(-2)
•13(-D
.ll(-l)

■69(-2)
•40(-2)
■21(-2)

.ll(-2)

■57(-3)

1.60
-.86

.29

.64

.81

.89

.94

.97

P = 22 P = 24 P = 26

4

8

16

32

64

128

256

512

1024

.34(-l)
3CK-1)
.19(-1)
• ll(-l)

.59(-2)
■31(-2)
•16(-2)
.80(-3)
■40(-3)

.18

.64

.81

.88

.94

.96

.98

.99

■27(-l)

■ 15(-1)
.81(-2)
.42(-2)

■21(-2)

■H(-2)

•53(-3)
.27(-3)
.13(-3)

.82

.93

.97

.98

.99

1.00
1.00
1.00

■ 12(-1)
.54(-2)
■25(-2)

.12(-2)

.56(-3)

.27(-3)

.13(-3)

■67(-4)
■33(-4)

1.13
1.14

1.09

1.05

1.03
1.02
1.01
1.00
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This " maximum-maximum" measurement of the error is tabulated below (Table 2)

for the same model problem (6.1), using our uniform 0(hp)-schemes with p = 1, 2,

3, and 4. These results clearly demonstrate the convergence rates predicted by the

theory.

By way of concluding remarks we mention that investigations are underway

generalizing this approach to other singular perturbation problems, including linear

turning-point problems and nonlinear problems in one dimension and linear convec-

tion-diffusion problems in two dimensions. The applicability of the basic approach

is quite general; essentially, if one has decent a priori information about the local

behavior of the true solution of the problem, then this approach gives a way of

incorporating that into the discretization.

Table 2

Maximum (over p) maximum errors and approximate uniform

convergence rates for exponentially fitted HODIE schemes

0(hp), p = 1,2,3, and 4 appied to (6.1)

/> = 3

4

8

16

32

64

128

256

512
1024

50(-l)
•30(-l)
.19(-1)
■H(-l)
■69(-2)
■40(-2)

■21(-2)
H(-2)
■58(-3)

73

64

81

64

81

89

94

89

•20(-2)
.60(-3)
.16(-3)
■43(-4)
.1K-4)
■28(-5)
.70(-6)

■17(-6)
■44(-7)

1.72

1.87
1.94

1.97
1.98
1.99

2.00
2.00

28(-4)

•43(-5)
,60(-6)
.79(-7)
•10(-7)

.13(-8)
■16(-9)
.21(-10)

2.68
2.85
2.93
2.96
2.98
2.98
2.92

.86(-6)
■65(-7)
.44(-8)

,29(-9)
.19(-10)

3.73
3.88
3.94
3.95

The technical details of rigorous convergence proofs can be extremely difficult to

overcome, even for the one-dimensional problems. Here we were able to get enough

information out of an asymptotic representation of the solution (essentially the

multiple scales expansion) to do our truncation error analysis. Also, each of these

problems requires a new stability analysis, as the standard results for ordinary

differential equations and elliptic partial differential equations do not apply uni-

formly in e.
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Appendix

Proof of Theorem 3.1. For simplicity, we consider the local system on

an interval [-h,h] (suppress the subscript i) and define

1 I
E(x) ; exp (- a)

J0

The auxiliary evaluation points are assumed to be given by

lx • 0    ,      p = 1 ,

(A.l)
i - 1Ej " "h +-pL7T   h     . J = 1.2P-1- P = 2.3  ...

Ordering and scaling the conditions of exactness on {1, x, ..., x , E(x),

xE{x), ..., ¡C°~  E(x)l appropriately gives rise to the local system (with ^ h \ }¡j" )

a-l + °0+ "1 ÏBjMïj) a o

a i +   + «i ^Bj[(a(tj)-a0) + b(Çj)tj]
"0

T

E(-h)o_i + ^0 + E(h)

(A.2)

iBjEfçjXb-a'Xr.j)

h
'-(k-1)-m(ii)[,-

i^hEf-hh.,*  ♦J-hEOOa,-  iBjE(Cj)

k = 2, ..., p ,

z{l-l)-iUj)i-

0(h)   = 0 ,

l-Z

¡f   +ö(h) = 0

l - 1, ..., p- 1
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