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On the Discretization in Time of Semilinear

Parabolic Equations with Nonsmooth Initial Data

By Michel Crouzeix and Vidar Thomée

Abstract. Single-step discretization methods are considered for equations of the form u, + Au

= f(t, u), where A is a linear positive definite operator in a Hubert space H. It is shown that

if the method is consistent with the differential equation then the convergence is essentially of

first order in the stepsize, even if the initial data v are only in H, but also that, in contrast to

the situation in the linear homogeneous case, higher-order convergence is not possible in

general without further assumptions on v.

1. Introduction. We shall begin by recalling some results concerning the discretiza-

tion in time of the linear homogeneous equation

u, + Au = 0   for t > 0, u, = au/dt,

"(0) = v,

where A is a selfadjoint positive definite operator in a Hubert space H (cf., e.g.,

Baker, Bramble and Thomée [1]).

Let r(z) be a rational function having no poles for z > 0, and define an

approximate solution Un at t = /„ = nk, where k is the time step, by

Un+x = r(kA)Un    for« = 0,1,2,...,

U0 = v.

Assume that the approximation is of order p with p > 1, or

(1.2) r(z) = e~z+ 0(zp+1)   as z -» 0,

and also that the method is stable in the sense that

\r(z) | < 1    for z > 0.

Then one may show the "smooth data" error estimate

||Î4~ "('ON Ckp\\APV\\    fori;e D(A>>).

This follows easily from spectral representations and the fact that under our

assumptions

\r(z)" - e-"z\^Cz"    forz>0.

In applications, the requirement v e D(AP) is quite restrictive. For example, if A

is associated with an elliptic partial differential operator in a domain ü c Rd, it

demands not only smoothness of the initial data, but also that they satisfy certain
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compatibility conditions at the boundary 3S2 for t = 0. However, under the stronger

stability assumption

(1.3) |r(z)|<l    forz > 0, and|r(oo)|< 1,

one can also show the "nonsmooth" data error estimate

(1.4) ||£/B-«(tJ||<a'V||i;||   for v e H, t„ > 0.

This follows again by spectral arguments from

\r(z)" - e-"z\^ Cn~p    for z ^ 0,

and shows that even with v only in H, the 0(kp) convergence is retained for ¡„ > 0.

It follows also that for 0 < q < p the intermediate estimates

(1.5) ||l/B-u(fII)||<CJt'V||,4'-'i>||    forveD(Ap-«)

hold.

The question we want to address below is to what extent these error estimates with

reduced regularity assumptions carry over to semilinear equations. Thus assume that

f(t, u) is a smooth function on J X H, where / = (0, T] with T < oo, and consider

the semilinear problem

u. + Au =f(t,u)   for tej,
(1-6) '

u(0) = v.

For its approximate solution we will investigate in Section 2 single-step discretiza-

tion schemes of the form

Un+l = r(kA)Un + kF(k,tn,Un)    for tn e J,

U0 = v,

where r(z) satisfies (1.2) with p = 1 and F(k, t, v) is chosen to be consistent with

(1.6) in a sense to be made precise below. As an example of such schemes, consider

the standard first-order backward Euler scheme defined by

(1.7) Um+1 = (/ + kA)'lUn + k(I + kA)'lf(tn+l,U„+x),

or the linearized version

(1.8) U„+x = (7 + kA)~lUn + k(I + kAylf(tn,Un),

where in the first case F(k, tn, Un) is defined implicitly by (1.7). We shall be able to

show (Theorem 1) that for such schemes

\\U„~u(tn)\\^Ckt-nl\og-^    for tnej,

where C depends on an upper bound for ||u||, so that for first-order schemes the

estimate (1.4) essentially remains valid in the semilinear case.

In Section 3 we briefly recall the definitions and basic properties of Runge-Kutta

methods (cf., e.g., Crouzeix [2]) and show that our result above applies to such

methods.

In Section 4 we shall then demonstrate that, more surprisingly, it is not in general

possible to generalize the higher-order estimate (1.4) with p > 1 to semilinear

equations. This will be done by exhibiting a simple system of the form (1.6) such
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that, for any choice of a Runge-Kutta method satisfying (1.3), and any t e J, we

have

limsup  \\U„ - u(t„) || > ck    withe = c(t) > 0.
n = t/k —» oc

We shall then proceed, in Section 5, within the framework of Runge-Kutta

methods satisfying (1.3), to show (Theorem 2) that if the method is accurate of order

p, with order p - 1 for the intermediate equations (cf. Section 5), then, if uU)(t) are

bounded for j < p together with tuip)(t), f(t, u(t))u\ j < p, and tf(t, u(t))(p), we

have

\\U„ - u(tn)\\ < C^(/>g^ +(log^)2)    for tn e J,

which is thus an analogue of (1.5) with q = 1. Again, in practice, these assumptions

will require certain compatibility conditions at r = 0.

These investigations are in a sense a continuation of work by Johnson, Larsson,

Thomée and Wahlbin [3] concerning finite element type discretization with respect

to the space variables of semilinear parabolic equations, and as we shall see below,

our present results may be combined with those of [3] to yield error bounds for

completely discrete schemes. The fact that the nonsmooth data error estimates for

the linear homogeneous equation do not generalize to the semilinear problem for

higher-order methods was shown in the case of semidiscretization in space in [3] by a

counterexample, which was the starting point of this work.

2. The First-Order Error Estimate for Nonsmooth Data. Consider the initial value

problem

,     , u, + Au=f(t,u)   forteJ=(0,T],
(2.1)

m(0) = v,

where A is a selfadjoint positive definite operator in a Hubert space H and where

f(t,u) has values in H and is continuous and bounded together with its first-order

derivatives with respect to t and u for (t,u) e J x H. This problem has a unique

solution on J for v e H, which satisfies the integral equation

u(t) = E(t)v+ (' E(t - s)f(s,u(s))ds,

where E(t) is the semigroup generated by -A. This semigroup is analytic, since by

spectral representation

t\\AE(t)v\\^sMtze-'z)h\\=C\\v\\,
z>0

so that, in particular, for the solution of the homogeneous linear problem (1.1),

||m/(0|| = Mu(0II = M£(0"II<7II»II  forre/,

and for the solution of (1.1) we also have that u{ is bounded in H if v e D(A), i.e.,

\\ut(t)\\ = \\E(t)Av\\^\\Av\\.
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We shall need the corresponding results for the solution of our semilinear problem

(2.1).

Lemma 1. There are constants C, = C¡(p), i = 0,1, such that the solution of (2.1)

satisfies

||«,(i)||< C0t~l   for all v e H with \\v\\^ p

and

||m,(()||< Cx    for all v e D(A) with ||/lf||< p.

The constants C¡, i = 0,1, depend only on p and on bounds in H for f, f andfu and

are independent of the Hubert space H and the positive definite operator A.

Proof. We introduce the symmetric, positive definite bilinear form

a(v,w) = (Av,w)   for v,w e D(A),

which we may consider extended to the subspace V of H defined by the norm

H^H^ = a(v, v)l/2. We may then write our differential equation in weak form

(2.2) (ut,<p)+a(u,<p) = (f(t,u),<p)    fortpeV.

We obtain by differentiation with respect to t, which is legitimate since the equation

obtained is linear in «,, with bounded coefficients,

(2.3) (utt,<p) + a(u„<p) = (/,(*,u)+fu(t,u)(ut),<p)    for t e J,

and hence with <¡p = u,,

f|ll"(||2 + ll«,llUc(||M,||+i)||M/||.

This yields

II II      -     j^H II      i       s~<^ll"«ll< clkll+ c'

and, since J is bounded,

||k,(/)||< cllMr(°)ll+ C< C||í4d||+ C< Cx(p),

which is the second statement of the lemma.

In order to show the first, we choose <p = t2ul in (2.3) to obtain

¿|('2IM2) + t2\\utiv = t2(f + /„(«,),«,) + r|k||2 < a||«,||2 + c,

and thus

í2||h,(()||   < C (' s\\u,\\2ds + C.

Taking <p = tut in (2.2), we find

'II"/ +iJt(tWutv) = *(/('.«).»i) + 2 HIk,

and hence

1   s||m,(j)|| ds < C I   ^u^vds + C.
Jq jo
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Finally, <p = u in (2.2) gives similarly

f \\u\\lds ̂ \\v\\2 + C< C0(p),
Jo

which completes the proof.

As in the introduction, we consider now a difference scheme for (2.1) of the form

(24) Un + x = EkUn + kF(k,tn,Un)   for t„ej,

U0 = v,

where Ek = r(kA) for some rational function r satisfying (1.2) with p = 1 and (1.3),

and where F(k, t, tp) is a sufficiently smooth function chosen to make (2.4) con-

sistent with (2.1). For a finite-dimensional problem this would simply mean that

(2.5) F(0,t,v)-f(t,9);

in the general Hubert space context we shall need to make this more precise. We

shall thus assume that F is uniformly Lipschitz continuous will respect to tp, so that,

for some k0 > 0,

(2.6) \\F(k,t,<p)-F(k,t,+)\\*C\\<p-i¡,\\   on[0, k0]xlx H,

and, in addition, that

(2.7) \\A-l(F(k,t,<p)-f(t,<p))\\*iCk{\\A<p\\+l)    on[0,k0]xJxD(A).

Note that the latter condition follows from (2.5) in the finite-dimensional case if F is

Lipschitz continuous with respect to k. Observe also that (2.6) implies

(2.8) ||F(*,r,<p)||<C(l+||«p||)    on[0,k0]xJxH.

We are now ready to state and prove the main result of this section.

Theorem 1. Assume for the difference scheme (2.4) that Ek = r(kA), where r

satisfies (1.2) with p = 1 and (1.3), and that (2.6) and (2.7) hold. Then there is a

constant C = C(p) such that for tne J

\\U„ - «(*„) || < C   * log^- + *(log^±¿) J    forveHwith ||o||< p.

The constant C depends, in addition to p, only on bounds for f,f,,fu and on the

constants of (2.6) and (2.7) and is independent of the particular choice of the Hilbert

space H and the positive definite operator A.

Proof. We find at once

U„ = E"kv + kZ Erl-JF{k,tj,Uj).
7 = 0

For the exact solution we may write similarly, with L = (t, tj+x) and un = u(tn),

«-i

"„ = £('>+£   f E(tn-s)f(s,u(s))ds,
7 = 0  J'j

so that for the error, en = U„ — un,

(2.9) e„ = (E"k - E(tn))v + £ / DnJ(s)ds,
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where

Dn,J(s) = Erl-JF{k,tJ,UJ)-E(t„-s)f(s,u(s)).

We write this latter expression in the form

DnJ(s) = Er^iFik^Uj) - F{k,tj,uj))

+ (Erl-J-E{t„_x„J))F(k,tJ,uJ)

+ E{tn_x_J){F(k,tJ,uJ)-f(tJ,uJ))

+ E(t„_x_J)(f{tJ,uJ)-f(s,u(s))

+ {E{tn_x__J)-E(t„-s))f(s,u(s))

1=1

We now proceed to estimate these five terms for s e !.. We first have, by the

stability of Ek and (2.6),

IM<C||u/.-«J=C||e,||.

For the second term we note that (1.4) may be written

(2.10) \{Enk-E(tn))v\^Cj\\v\\   for,„>0,

and we conclude, by (2.8),

làjA^C--    for y * it-1.
ln-\-j

Since dn_x2 = 0 we may write

llrf;,2II <-    forO <y < n - 1.
"-j

For the third term we use the consistency condition (2.7), the analyticity of E(t) and

Lemma 1 to obtain for 0 < j < n - 1,

\\dJj\\ = \\AE(tn_x_J)A-l{F(k,tJ,uJ)-f(tJ,uJ))\\

<^k(lMJl+l)<CT^--([u,(tJ)\+l)<CT^-.
ln-l-j ln-\~jy ' ljln-\-j

For j = 0 and n - 1 we find easily by the boundedness of F and /,

K3||<c = cf <c-^-,
'l »l'n

so that we may write

li j   il     ^     * Ck[   \ \\ .
UjA<Cr-r- -—  — + — ,       0<y<«-l.

'j+l'H-j ln   \ '7+1 '«-7/

For the fourth term we have

KJ < ||/(o- "7) -A*. "(J)) II < c(* + Ik - »(J) II)

< ŒI sup||w,(i)||+ lj « C-    forO <y"< « - 1,
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and, since d0A is bounded,
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Finally,

K,
K-4  < C-    forO </< « - 1.

lj+i

\dJ^ = \\AE(tn_x_J)A-l(E{tJ+x-s)-l)f(s,u(s))\

< C-    for j < n - 1,
B-l-y

where we have used the analyticity of E(t) and the fact that

e-(.tJ+1-s)z

z>0

Again,

\A'1(E(tJ + x - s) - l)v\\^ sup V || < C/i|| D I

so that

k-i.5Nc=c-,

|i/,,||<C-    for0 </'<«-
1     y i-» Il * s

1.

Altogether we have thus from (2.9), using (2.10) to estimate the first term, for

Ml < P,

k„  <
,* "^M „*     £      ACy + Ck £ IkyII + cf E 7 < c* £ lk>II + cf-log(» + l);

■ y-o "7-1    7 7=0 «

setting ßn = A:E"_olky||, we thus have

ßn<(l + Ck)ß„_1 + -\og(n + l),

and hence

ß„ < * £ (1 + C/c)"-Wilog(; + 1) < CArlog(« + 1) I  - < C/c(log(7z + l))2
y /=1 j7 = 1

and finally

|ej< a(log(« + l))2 + C*log(« + 1)

= c (Alog¥+t(log¥n,

which completes the proof of the theorem.

As our first example we consider the linearized modification of the backward

Euler scheme defined in (1.8). Here,

F(k,t,<p) = (I+kA)-if(t,cp),
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and it is clear from our assumption on / that (2.6) is satisfied. Further, we note that

A-1(F(k,t,9)-f(t,q>)) = k(kA)-\(I + kA)'1 - l)f(t,<p)

= k(l + kA)-1f(t,<p)

and hence

\\A-l(F(k,t,<p)-f(t,<p))\\*iCk,

so that (2.7) holds even without the term \\A<p\\. For schemes with this property the

result of Theorem 1 is in fact valid without the term Ck(\og(tn+x/k))2.

Turning now to the standard backward Euler scheme, we have here

F(k,t,<p) = (I + kAylf(t + k,*),

where ^ = ^(9) is obtained from the nonlinear equation

* = (/ + kA)-l(cp + kf(t + k,*)).

It is clear by the contraction mapping theorem that this equation has a unique

solution ^ for small k and that ^ depends Lipschitz continuously on <p. Obviously,

again (2.6) is satisfied for this scheme. As for (2.7), we have

^ - (p = <ff -(I + kA)'\ -(I + kA)~lkA<p

= k(I + kA)'lf(t + k,*)-(l + kA)~lkA<p,

and thus

||*-<p||< Ck{\ +Mg>||).

Further,

F(k,t,9) -f(t,<p) = (I + kA)-\f(t + k,*) -/(, + k,<p))

+ (l + kA)-l(f(t + k,tp)-f(t,9))

-(I + kA)~ikAf(t,<p)

and hence, since A~l is bounded,

\\A~1(F(k,t,<p)-f(t,<p))\\^ C||*-«p||+C*< Ck{\ +M<p||),

which is the desired estimate.

The above result may be applied to parabolic problems which have already been

discretized in the space variables. For instance, for concreteness, consider the case

that H = L2(ü), where ß is a domain with smooth boundary in Rd, where A = -A,

with D(A) = Hl(Sl) n H2(ü), and where f(t, u) is generated by a smooth function

f(x,t,u) on S2 xJ X R which is bounded together with its first-order derivatives

with respect to t and u. Now let Sh c //¿(fi) consist of continuous, piecewise linear

functions on a partitioning of ß into simplices and let uh: J -> Shbe defined by

(2 11)        (uh.nX)+(Vuh,Vx) = (f(-,t,uh),x)    forx^ Sh,tej,

«*(0) = "a.

where (•, •) denotes the standard inner products on L2($l) and L2(Q)d. Defining

the discrete solution operator Th: L2(S2) -* Sh of the associated elliptic problem by

(V7>,vx) = (w,x)    forXeS„,

and setting Ah = -Th~l, (2.11) may be written in the form (2.1) as

(2.12) uhJ-Ahuh = Pj(-,t,uh)    for tej,
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where P0 denotes the orthogonal L2-projection onto Sh. From [3] it is known that, if

vh = P0v, the error in this space discretization satisfies

h2       t
\\uh(t) - w(?)|| < C(p)—log—    for all o e L2(Q) with ||u||< p,

t       h

where h is the maximal diameter of the simplices of the partitioning.

Our above analysis applies to this situation and yields estimates which are

uniform in h. In fact, if / is as above, then P0f(x,t,u) generates a function

J X Sh3 (t, uh) -* P0f(-,t, uh) e Sh which satisfies our above assumptions with

respect to the Hubert space defined by Sh equipped with the norm of L2(ti). For

instance, the derivative of this function with respect to u applied to w e Sh is

P0(fu(-,t,u) ■ w) e Sh, which is clearly bounded in the L2-norm, uniformly in h.

Also, if vh = P0v and ||f|| < p, we have ||i;A|| < ||u|| < p and hence Theorem 1

implies that for a completely discrete solution obtained by discretization in time of

(2.12) by a scheme of the above type, and with vh = P0v, we have

'.-'^¥+h¥)2]}
for v e L2(ß) with ||ü|| < p.

We remark that in interesting applications of the type just described it is generally

the case that / and fu are unbounded for u e R so that, as u is not necessarily

bounded when u e L2(Q), the above analysis does not apply. However, it is then

often the case that by some independent argument, for instance by a maximum

principle, the exact solution is known to be uniformly bounded in modulus by some

constant M, say, in some interval J = [0, T], if the initial data are bounded, and

that thus the values of f(x, t, u) for \u\ > M do not influence the exact solution of

(2.1). One can then modify / for these values of u in such a way that our

assumptions become valid, thus changing the equation (2.1) without changing its

solution for the initial data under consideration. With F(k,t,u) based on the

modified function, our assumptions (2.6) and (2.7) may remain valid. Note that this

procedure might lead to a different discrete solution than the one based on the

original /. Similarly, such a modification would change the semidiscrete equation

(2.11) and thus also the totally discrete solution based on (2.12).

3. Runge-Kutta Methods. We recall (cf., e.g., [2] for details) that a Runge-Kutta

method for the initial value problem

y' = g(t,y)   fori>0,

y(0)=yo,

defines an approximate solution Yn at tn = nk successively by setting Y0 = y0 and

then determining Yn + X from Y„ for n > 0 as follows: Let tnj = tn + ktj be given

quadrature points with t-> 0 for j = l,...,m; define intermediate values Yn/,

j = 1,..., m, approximating y(tnj) by the nonlinear system

m

Y„i=Yn + kZ a,jg{tnj,Y„j),       i = l,...,m,
7 = 1

|U„ -u(tn) || ̂ C(p) -iog-f +k
h
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and set finally

Yn + l = Yn + klZ bjg(tnj,Ynj).
7 = 1

The coefficient matrix j/= (a,,) and the vector b = (bx,...,bm)T are associated

with the quadrature formulae

(3.1) f'*(t)dt = £ a,j*(rj)
J0 y_,

and

m

(3.2) /  *(/),*- £*,*(*,),
•'O y-l

respectively, and we shall always assume that the latter is exact for constants, so that

m

(3.3) I.bj-1.
7 = 1

The method is implicit unless s/ is strictly lower triangular.

Applied to the parabolic problem (2.1), the method takes the form

m

(3.4) Uni = i/B + * £ at]{-AUn] + f(tnj, Unj)),        j = \,...,m,

7 = 1

m

(3.5) í/„+1 = l/„ + *£ ftyMti,,- +f(t„j,Unj)).
7 = 1

We shall assume that s/ has no eigenvalues ay with a, < 0 so that, in particular,

the method is implicit and / + zs/ is nonsingular for z > 0. We set

o(z)={oIJ(z)) = (l + zs/y1,

s(z) = (sx(z),...,sm(z))T = o(z)e    where e = (l,...,l)T,

S(z) = {su(z)) = o(z)s/,

r(z) = 1 - zbTs(z) = 1 - zbTo(z)e,

q(z)T=(qx(z),...,qm(z)) = bMzl

and note that all these functions are bounded for z > 0, and that o, s, S and q all

vanish at z = oo. With this notation, the equations (3.4) and (3.5) may be written

m

Uni = s,(kA)Un + kZ su(kA)f{tnj,UnJ),       i = l,...,m,

(3-6) j"m

Un+X = r(kA)Un + kZ qj(kA)f{tnj,Unj),
7 = 1

where the rational functions of kA are defined by spectral representation and thus,

by the above, are all bounded linear operators on H.

Henceforth we shall restrict ourselves, as earlier in Section 2, to schemes such that

r(z) satisfies the strong stability property (1.3). Recall also that the method is

accurate of order p, and, in particular, that (1.2) holds, if (3.1) and (3.2) are exact for
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polynomials of degree p - 2 and p - 1, respectively (cf. [2, p. 12]). For p = 1 this

reduces to the condition (3.3).

Since f(t,<p) is Lipschitz continuous with respect to <p, it is easy to see that the

nonlinear system (3.6) has a unique solution (UnX,..., Unm) for U„ given, and that it

depends Lipschitz continuously on Un. We may thus write our method in the form

(2.4), where

m

F(k,t,<p) =   £  qj(kA)f{t + Tjk,q>j),
7 = 1

with q>. = q>j(k, t, <p) defined by

(3.7) «p,. = s,(kA)<p + k £ qj(kA)f{t + Tjk,<pj),       i = l,...,
7 = 1

771.

We show that this method satisfies the conditions of Theorem 1. In fact, (2.6) is

obvious and it remains only to consider (2.7). We write

m

F(k,t,<p)-f(t,<p)= £ qJ(kA)(f(t + rJk,(Pj)-f(t + Tjk,q)))
7 = 1

m

+ E qj(kA)(f(t + Tjk,<p)-f(t,<p))
7 = 1

£ qj(kA)-l\f(t,<p)

= 8X + 82 + 83

Here

n^-^ii < cii«xii < c i: Hep,. - «pu
7 = 1

and, noting that s¡(0) = 1, we have easily from (3.7)

||ç)I.-«p||<||(jI.(^)-/)(P||+a<c/c(M«p||+ i).

Further, it is obvious that

¡¿"^N CH52N Ck.

Finally, since by (3.3)

we obtain

\A~%

I 9,(0)« Lbj-1,
7=1 7=1

(kA) -l\Lqj(kA)-l\f < Ck.

Together, these estimates complete the proof that the Runge-Kutta methods under

consideration satisfy the assumptions of Theorem 1.
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4. The counterexample. We shall now show that, at least for methods of Runge-

Kutta type, the estimate of Theorem 1 is essentially best possible. For this purpose

we introduce the unidimensional parabolic system

(4.1) «»-«xx- f       in [o^Jx/,

with the boundary and initial conditions

«(0,0 = u(m,t) = v(Q,t) = v(m,t) = 0,

*  ' u(jc,0) = 0,    v(x,0) = w(x),

which we consider in the Hubert space H = L2(0, m)2, with the obvious correspond-

ing definition of A. We note that by the maximum principle ||ü(0IIl <q) lS

nonincreasing and hence u(t) is uniformly bounded on J for all w with a common

uniform bound.

We consider now the discrete solution (U„,V„) of (4.1), (4.2), defined by a

Runge-Kutta method as described above. We shall show that for no t e J is it

possible to find C = C(t) such that the error, measured in the norm in L2(0,7r)2, is

bounded by Ckek with ek -> 0 as k -» 0, for all w with ||w||L < 1, say. More

precisely, we shall show that there is a positive constant c such that for initial data

of the form w = sin Nx with TV = 1,2,... it is possible to find associated sequences

{nN} and {kN} with nNkN = t such that the error in the »-component satisfies

(4.3) \\U„N-u(t)\\L2(0v)>ckN    for large TV.

This will be demonstrated by showing that the corresponding estimate holds for the

first Fourier coefficient of the error.

For the ocomponent of the exact solution of (4.1), (4.2) we have at once

v(t) = e-N\mNx,

which gives for the determination of u the inhomogeneous linear equation

i. a\ ut - uxx = e~2N 'sin2 Nx    for t e J,

w(0) = 0.

Similarly, we have for the corresponding discrete problem, using the Runge-Kutta

method, with our above notation,

Vn = r(kN2)"sin Nx    for t„ e J,

and thus also

Vn, = Si(kN2)r(kN2)"sinNx,       i = \,...,m,

and hence for the determination of U„ the recursion formula

m

U„+i = r(kA)Un + k £ qj(kA)sj(kN2)2r(kN2)2"sin2Nx,
(4-5) 7 = 1

i/0 = 0.

We now introduce the first Fourier coefficients of u(t) and Un,

2  r" . 2 r*
a(t) = — /    u(x, t)sinxdx    and    «„ = — /    Un(x)sinxdx.

m J0 m J0
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We obtain from (4.4)

a' + a = -e-2N2'f sinxsin2TVxÄ =-^-e~2Nl',
it Jo m(4N2 - 1)

«(0) = 0,

which yields

«(/)=    , 8f    ,       }      (e"-e-™2>).
m(4N2- 1) 27V2 - 1 V ;

Correspondingly, from (4.5),

m ^

"n + i = r(k)cLn + k £ ql(k)sj(kN2) r(kN2) "f   sinxsin2Nxdx,
7 = 1 ■'o

«0 = 0,

and hence

r 2 B — 1 m

<*„ = ^-    - £ ri*)""1"'*! qj(k)Sj(kN>)2r(kN>f
"     m(4N2 - 1) ,fo 7^1

^(47V2 - 1)   £*'        ' r(*)-r(^2)2

We write

k m(4N2-l)\jtqÁk)SÁkN)    r(k)-r(kN2)2

1        1

2N2-l k
(e-> - e-2N2')\

We now fix t positive and set, with M a fixed positive integer, 77^ = MN2 and

kN = t/nN so that kNN2 = t/M = t0. We note that since r(z) = e~z + 0(z2) for

small z, we have r(0) = 1 and r(kN)"N = r(t/nN)nfl -» e"' as TV -* 00. Further,

since |r(f0)| < 1, we have r(kNN2)2"N = r(t0)2"N -» 0 as N -» 00, and since qj(0)

bj, we conclude

«„   -«(0      2     ,i £ ,    „   x2        1 1
(4.6) lim      "»        W=VEW,

We shall show that for M suitably chosen the last factor is nonzero, which then

shows that, for large N,

IK„-"(')|L2(0,,r)>(f)     \ä„K-a(t)\>ckN    withe = c(0>0,

and thus completes the proof of (4.3). Assume therefore that for any choice of M the

expression inside the parentheses in (4.6) vanishes. In such a case, this rational

function vanishes identically, and we have
m

2z£ry,(z)2 = i-7-(z)2.
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But for large z, s-(z) = 0(z~l) so that, by letting z tend to infinity, we obtain

|r(oo)| = 1, contrary to our hypothesis. This completes the proof.

We note that the right-hand side of (4.1) is not bounded for v e R so that,

formally, the assumptions of Section 2 are not satisfied for (4.1), (4.2). However,

both |u(OI an<3 W„\ are bounded by 1 and |K„,.| by K = max,sup2>0|i,(z)|. Hence

only the values of the right-hand side for \v\ < K enter the calculations, and we may

replace v2 by a smooth function f(v) which satisfies our previous conditions and

agrees with v2 for \v\ < K, without changing either the exact or the approximate

solutions.

5. A Higher-Order Result for a Class of Runge-Kutta Methods. Although for initial

data in H it was only possible, above, to show an essentially first-order error

estimate, it may still be possible to do better for initial data which are more regular,

but not regular enough for optimal order estimates to hold uniformly down to / = 0.

In this section we shall show a 0(kp) error estimate for a Runge-Kutta type method

based on quadrature formulas of orders p — 1 for the intermediate points and p for

the whole interval, and for the case that u{p) and f(t, u)(p) are of order 0(f_1) for

small t.

Theorem 2. Let Un be the discrete solution of (2.1) by a Runge-Kutta scheme

satisfying (1.3) and for which the quadrature values (3.1) and (3.2) are exact for all

polynomials of degree p — 2 andp — 1, respectively. Then there is a constant C = C(p)

such that

H^-^iJII^C^I^log^+flog^)2)    fortneJ

if,withq)(t)=f(t,u(t)),

(5.1) max( max (||m0)||, \\<pU)\\), t\\uip)\\, t\\<p(p)\\) < p.
\jip-i I

The constant C is independent of the particular choice of the Hilbert space H and the

positive definite operator A.

Proof. Let us introduce the error functional for the quadrature formulae (3.1) and

(3.2), transformed to the interval /„, i.e.,

m

£„.,(*) = f« *ds-kZ a^(tnl),       j=l,...,m,

m

ô„(*) = /'"+1 ** - *£*,*(',/)■
Jt„ i=i

Recall that our assumptions that (3.1) and (3.2) are exact for polynomials of

degree p — 1 and p - 2, respectively, imply

(5.2) \\Qnj(*)\\^ Ck'+lsup\\*U)\\   for/</>-l,
/„

(5.3) ||e„(*)||< Œ/+1sup||*(/)||    forl^p.
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We note now that QnJ(ut) and Q„(ut) are the truncation errors in (3.4) and (3.5),

or that
m

«('„,) - "(Ü + k £ a¡j(-Au(t„j) +f(tnj,u(tnj))) + Qju,),
7 = 1

i = l,...,m,
m

u(t.+1) = u(t„) + kZ bj(-Au(t„j) +f(tnj,u(tnj))) + Q„(u,).
7 = 1

It follows by obvious calculations that
m

"('„) = s,(kA)u(tn) + k £ slJ(kA)f(tnj,u(tnj))

7 = 1

m

+ E o,j(kA)Qnj(ut),       i = l,...,m,
7 = 1

m

u(tn + x) = r(kA)u(tn) + k £ qj(kA)f(tnj,u{tnj))

7 = 1

m

-£ ^(^)o„,(«r) + ô„(",)-
7 = 1

Hence for the errors en = Un - u(tn), enj = UnJ - u(tnj), we have
m

em. = s,(kA)en + k £ í(.,(/c¿)(/(*„,, Unj) - f{tnj,u{tnj)))

7 = 1

m

- £ ou(kA)Qnj(ut),
7 = 1

(5 4) m

en + x = r(kA)en + kT. qj(kA)(f{tllJ,U„,j) - f{tnj, u{tnJ)))

7 = 1

m

+ £ kAQj(kA)Qnj(u,) - Qn(ut)
7 = 1

= 7-(^)e„ + t\nX + r\n2 + ijn3,

and, where as in Section 2 we have set £¿. = r(kA),

n-l

(5-5) e„=    £   £rW(TÎ7l+TJ72 + î]73)-

7 = 0

We obtain at once from (5.4), for k small,
m m

Elk„,Nc||ej|+c£||ßny(«,)|,
,=1 7=1

and hence, using also (5.2), for j = 1,..., n — 1,
m im

hJ1\\<Cklí\\eJi\\^Ck\\\eJ\\+ Elßy/dOl
/=i \ /=i

< C*||e.||+ C)t'+1sup||«(')||< Cit|ky||+ Ok'*1//

Ck\\ej\\+Ckp+hjlx,
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and, for j = 0,

lh011| < Cfc||e0||+ C/c^sup||M(''-1)||< Ck\\e0\\+ Ckp+lt[\

so that for the sum in (5.5) with jj j

I E»k-l-\i
7 = 0

n-1 n-1

<c*£||*,.||+c*'+1£ -y-
7-0 7=0   V+l

B-l

<C*£ Ik-H+C^log-2^-.
7 = 0 *

In order to estimate the term involving tj-2, we note that since z^r(z) is bounded,

we have, using the property (1.3),

|r(z) zq(z)\^ —— = C
n + 1 '« + i

and hence, for j = 1,..., n — 1,

|*r1_vl< cr- ¿ lßir(»»)l< c^-supi|M^i
n-1 1=1 "-J      h

1 kp+1 I 1
<Oc'+1 —— = C— -   - +

tn-h \  tj tn-j

so that, again with an obvious modification for the term with j = 0,

£/> + ! "-]E ^"-l_V
7 = 0 'n     y = 0 \   7 + 1 "-7/ "

It remains to estimate the term in Tjy3 which we write

I73 = ßy(««) = ß,M« + ?(")) - -AQj(») + ß7(<p)-

For the second term we have by (5.3) and our assumption (5.1)

L-P+l VP

ß/(v) <c^— = c
'7 + 1 7 + 1

for 7 = 0,..., n — 1,

and hence

£ Erl~jQj(<p)
7=0

*S Ok'log 'n + l

To estimate the first, we note that

\\E£Av\\ < \{r(kA)" - e-"kA)Ao\\ + \\e-"kAAv\\

< C-^-\\Av\\ + -^\\v\\^ -^(\\v\\ + k\\Av\\)    forn^O
'n+l 'n + l 'n + l

(if r(oo) = 0 we have more directly ||.E£/4i;|| = ||7-(&/4)"./4i;|| < Cr^ll^ll)» and hence,

using (5.3) with I = p and / = p - 1, and noting also that tAu{p~l) is bounded by

our assumptions,

|£A-1"^ß>(«)|<7^(llß7(«)l + *llßyM«)i)<cfc'+lr^— -
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so that

n-1

El*;-1-^/-)^ Aog^i.
/-o r«        K

Altogether, we thus have

n-1
.'n + lIkNcfcElkj+ŒViog-f1,

7 = 0

from which our result follows in exactly the same way as in the proof of Theorem 1.

As an example where Theorem 2 applies, consider as in Section 2 the case that

H = L2(ñ), where fi is a domain with smooth boundary in Rd, now with d < 3,

where A = -A with D(A) = Hl(iï) n H2(ti), and where f(t, u) is generated by a

smooth function f(x,t,u) on Ü xl X R which is bounded together with its

derivatives of first and second order in t and u. The equation (2.1) thus reads

ut - Au = f(x, t, u)    in Í2 X J,

(5.6) u = 0 onoüxj,

u(x,0) = v(x) in Q.

Assuming now that v e D(A) with \\Av\\ = ||Au||L (0) < p, it follows from Lemma 1

of Section 2 that u and u' = ut are bounded in H for t e J. To see that also

tu" = tutl is bounded in H, we differentiate (5.6) twice to obtain

(5-7) «„- A«, = /, + /„•«„

and

(5-8) w,„ - A«„ = /„ + 2ftuu, + fuu ■ uj + fuiia.

Note that, since d < 3, we have

(5.9) ll<plk<-><C||c||ff*(Q)«C||A<p||    for <peD(A).

Therefore, since «, is bounded in H, we obtain from (5.7)

||",2Nil«,lk<û)ll",II < C\\Au,|| < C\\u„ 11+ C.

Multiplication of (5.8) by r2«,, and integration over fi gives

1      d   1    tu ll2\ 911 II2 ^   ?/ll II2 II \\\ II II22^1' II««II ) + t llv"»H   <° (ll"«H   +ll«»ll) + 'll"«ll

<a||M„||2 + c,

and hence

í2||m„||2 < C¡' s\\u,tf ds + C.

Multiplication of (5.7) by tuH and integrating gives similarly

/  s|k,|| ds < C \   ||v«,|| ds+C,

and using instead (5.7) multiplied by «, we have finally

(' \\vu,\\2ds ^ C7|| wr(0) l|2 + c< C||At;||2 + C < C.
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Together, our estimates show the boundedness of tuu in H. We also have for

<p(t) = f(t, u(t)) that <p and <p' = /, + fuu, are bounded. Finally, in order to see that

i<p" is bounded, we note that by the above,

ll<P"|| = ||/„ + 2/uf«r+ /„„«? +/„«„|< C(||«„||+ i) < cr\

The assumptions of Theorem 2 are thus satisfied with p - 2, and we conclude that

for such methods

|k„-u(/J||<C(p)^(i;1log^ + (log^i)2)   iflAoflcp.

The same method can be applied to the discretization in time of the equation

obtained from (5.6) by discretization in space. Consider for example, as in Section 2,

the semidiscrete equation (2.11) or (2.12) with continuous piecewise linear approxi-

mating functions, now on a quasiuniform partitioning of ß. With vh = Pxv = -ThAv

the elliptic projection of v onto Sh, we have for v e D(A)

\\uhJ(0)\\ = \\Ahvh + P0f(0,vh)\\^\\Av\\+ C.

It is easy to show that the error in the semidiscrete solution is then bounded as

IK(0-"(0||<C(p)A2    forAw^p,

and we also conclude by Lemma 1 that uh and uh, are bounded in L2(ß) with Av.

The same arguments as above will then show that tuhn is bounded in L2(ñ),

uniformly in h, provided only that the analogue of (5.9) is valid in the present

situation, namely

(5.10) IIxIL(0)<C||AaX||    forXeS„,

or, equivalently,

R**xlk.<o»)< cllxll    forXe5A,

where fi„ (c ß) is the union of the simplices in the definition of Sh. But with

T = (-A)"1 we have by (5.9)

||7xlk(Q)< c||xll,

and it remains to estimate (Th — T)x, the error in the elliptic problem with

right-hand side x- By well-known error and regularity estimates for the elliptic

problem (cf. Schatz and Wahlbin [4]) and an inverse estimate to estimate the norm

of x in Hl/2+e(il) by that in L2(ß), we have with 0 < e < \,

IK7* - 7,)x||l„(^)< Clog-r inf \\Tx ~ xlk(ß*)< Chlog-r\\Tx\\KiQ)

< Chiog-\\Tx\\H^'(S¡) ^ CAlog^HxlU1/2*«^)

< c/t^-nogi ix || < c||xl|.

Together, our estimates show (5.10) and thus complete the proof that tuh u is

bounded. As above, it follows that <ph = P0f(-,t,u) is bounded together with <p'n

and tyh\ uniformly in h, and we conclude by Theorem 2 for the completely discrete
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solution U„ obtained by discretization in time of (2.12) that

t
\U„-u(t„)\\^C(p){h2 + k

.-ll_"n + l    ,     ,       'n + l
'„   l0g-7-+   log-

k

for v e D(A) with ||Au||< p.

For methods which are higher-order in space, a higher power of h may be

obtained in combination with some negative power of tn.

We close by exhibiting two examples of methods which satisfy our assumptions

with p = 2 (cf. [2]). First let

1
3'

1,
12

3
4

12
1

4

bJ =
3   1
4' 4

Then U„+x = t/„2 and r(z) = (1 - }z)/(l + fz + |z2) is the Padé approximant of

e~z of orders (1,2) and satisfies t-(oo) = 0. Secondly, with

1 1

Tl=2 + 2/r

1
r2= 2-

1

2^3 ' i/T

o

.ii).

we have (cf. Calahan's scheme)

z
r(_)-l

1  + TXZ 6 1  + TXZ
with | t-(oo) I < 1.
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