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Convergence Theorem for Difference

Approximations of Hyperbolic Quasi-Linear

Initial-Boundary Value Problems*

By Daniel Michelson

Abstract. Dissipative difference approximations to multi-dimensional hyperbolic quasi-linear

initial-boundary value problems are considered. The difference approximation is assumed to

be consistent with the differential problem and its linearization should be stable in /2. A

formal asymptotic expansion to the difference solution is constructed. This expansion includes

boundary and initial layers. It is proved that the expansion indeed approximates the

difference solution to the required order. As a result, the difference solution converges to the

differential one as the mesh size h tends to 0.

Introduction. The convergence of difference schemes is considered to be one of the

main problems numerical analysis is concerned with. In this context one often

quotes Lax's equivalence theorem that "stability is equivalent to convergence"

provided the difference approximation is consistent with a well-posed initial value

problem. Although the said theorem is stated in a broad setting of continuous

semigroups in Banach spaces, it applies only to linear initial value problems. The

nonlinear problems require a more detailed treatment. The result one expects here is

of the following kind. Suppose the difference scheme is consistent with a well-posed

differential problem and the linearization of the scheme around the analytic solution

is stable in some norm. Then the convergence should follow. The stability really

means that a certain a priori estimate is valid. In order to control nonlinear terms

one should bound the maximum norm of the solution. Unfortunately, the usual

stability estimates for hyperbolic problems are in the /2-norm. Strang in [6] used a

clever idea to overcome this difficulty. He constructed a high-order approximate

solution to the difference scheme «ap = T,^=0u(,)h', where u0) are smooth functions

of the space-time variables and h is the mesh size. The function m<0) is the solution

of the original nonlinear differential problem while u(l) for i > 1 are solutions of the

linearized differential problem with forcing terms depending on u(j\ j < i. The

approximate solution u satisfies the difference equations up to order 0(hN). Thus,

one expects that the difference v = u - wap between the exact solution of the scheme

and the approximate one will be of order 0(hN) in the /2-norm. For N > n/2 + I,

where n is the space-time dimension, this would imply that v = 0(h1+s) in the

Received March 11, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 65N10, 65M10; Secondary 35B25.

"This work was supported by the National Science Foundation under Grant No. MCS 78-01252 and

the Reulen Bird Prize.

©1987 American Mathematical Society

0025-5718/87 $1.00 + $.25 per page

445



446 DANIEL MICHELSON

maximum norm. Thus the /2-norm of quadratic terms like v2 is negligible compared

with ||u||/2, and the final bound on \\u\\, would follow from the stability estimate.

Strang applied this idea to difference approximations of initial value problems for

quasi-linear hyperbolic systems, i.e., the problem is considered in the whole space or

has periodic boundary conditions. In this paper we study the initial-boundary value

problems in a half space or in a strip. As a rule, the difference approximation

requires more boundary conditions than the differential problem. The additional

boundary conditions are often called the artificial ones. When the scheme is

dissipative, the situation is somewhat similar to the singular perturbations of

hyperbolic systems, with the mesh size h playing the role of the viscosity coefficient.

As a result, numerical boundary layers develop as h tends to 0. Therefore, there is

no smooth approximate solution wap as in the case of a Cauchy problem since the

smooth functions u(,) would not satisfy the artificial boundary conditions. One can,

however, circumvent this difficulty by adding boundary layers to the approximate

solution. Namely, let us look for a function

N N

(0.1) uap(x,h)= £«&(*)*'+ E«i2(*i/A,*2.-■•.*«)*'.
¿=0 1=1

where u^t and «(¿} are smooth functions of their arguments so that uip(x,h)

satisfies the difference equations and boundary conditions up to order 0(hN+1)

(here the boundary is xx = 0). The first sum in (0.1) is called the outer solution while

the second is the inner one or the boundary layer. The coefficients u^t and w^'j

could be computed using the technique of singular perturbations. In the case of

multi-level difference schemes there are also artificial initial conditions, so that one

has to add to wap an initial layer L^=xu\^(xx,x2,...,xn_x,xjh)h', where x„ is the

time direction. Such initial layers develop also in Cauchy problems (this is the reason

Strang considered only two level schemes). It is indeed essential that the boundary

and initial layer are weak, i.e., of order h. Otherwise, it would be impossible to

construct the approximate solution, let alone prove the estimate for the difference

v = u - wap. We will see that the weakness of the layers follows from the consistency

assumption. The proof of convergence then proceeds as in [6]. The above approach

requires a considerable smoothness of the data and of the analytic solution u(0). As

mentioned before, /V should be greater than n/2 + 1. The functions w^ are

solutions of linear hyperbolic systems with forcing terms depending on the deriva-

tives Dau^v \a\ +J < i + 1. Since there is a loss of derivative in hyperbolic

problems, in order for u{0^ to be in C1 the function u(0) should belong to a Sobolev

space of order greater than 2N + (n + l)/2 > 3n/2 + 5/2. An alternative ap-

proach to the convergence problem is to derive a linear stability estimate in a

discrete Sobolev space of order greater than n/2. Actually, with weak boundary

layers one may expect one bounded (numerical) derivative in the directions normal

to the boundaries and an unlimited number of tangential derivatives (e.g., see [4]). In

the framework of the stability theory in [3] such an estimate indeed could be derived,

however the proof is lengthy and very technical. The high-order Sobolev norm

bounds the maximum norm of the function and thus controls terms like 0(u - uQ)2

in the convergence proof. The optimal smoothness requirements would be that u(0)

and the data belong to a Sobolev space of order greater than n/2 + 2.
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It is also essential that the scheme is dissipative in the directions normal to the

boundaries since otherwise the boundary layers would not decrease exponentially in

these directions. For example, the proof is not valid for the leap-frog scheme. Note

also that for multi-dimensional problems the only schemes for which a general

stability criteria was proved are the dissipative ones (see [3]).

1. The Difference Scheme and the Approximate Solution. Let uh(x) e Rd be a

grid vector function defined on a uniform mesh Qh with a step size h in the domain

ñ = (jc = (xx,x2,...,xn) e R"\0 < xx < oo,0 < xn < T).

Consider a difference system

(1.1) L{{Eyh(x)}a^,x,h) = 0,       xeS2„.

Here a is a multi-index belonging to a finite set sé',

a — (ax,a2,... ,an) £ stf

= { a e Z" 10 < ax < a* + 1,0 > o„ > -a* - 1, \a¡\ < af for 2 < / < n },

£««*(*) = £"' • ££.e?;u„(x) = «A* + «A)

is a shift operator and L is a smooth real vector function of dimension d which

depends smoothly on its variables (the precise order of smoothness will be specified

later in Remark 1.3). The system in (1.1) is augmented by boundary conditions

(1.2) S({Eauh(x)}a^M,x,h) = 0,       x^übdh= {x^Qh\xx = 0},

where

s/bd= {a(EsS\0^ax <af },

and by initial conditions

(1.3) E;:u„(x) =hn{x,h),       0>an> -a*, x e S2in.A = {x e Q|x„ = 0}.

Note that the specific form of the sets sé and stfhd does not pose a restriction, since

one can always add to L and S dummy variables Eauh(x). However, the lower

bound -a* — 1 of a„ should agree with the number of the initial layers in (1.3), so

that the problem (1.1)—(1.3) is solvable. Now let us state the

Consistency Assumption, (i) For smooth functions u(x),

(1.4) L({Eau(x)},x,h) = h -Se(u) + 0(h2),

where

n

(1.5) &(u)= ¿ZAj(u,x)Dxu + B(u,x).

7 = 0

(ii) There exists a smooth function u{0) which belongs to C([0, T], /P~r(S2in)) for

all 0 < r ^ 5 with s ^ 3[n/2 + 2] and which satisfies Eq. (1.1) up to order 0(h2)

and Eqs. (1.2) and (1.3) up to order O(h). In other words,

(1.6) Íaj{uw(x),x)DXiuw(x) + B{uÍO)(x),x) = 0,       x g fi,
./ = !

(1.7) 5({w<0>(jc)},x) = 0,        xGÍ2bd= {jcGñ|x! = 0},

(1.8) «<«>(*) =/„(x,0),      0>a„>-<,xeoin={xefí|x„ = 0}.
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Until additional assumptions are imposed on the matrices A¡(u, x), the condition in

(1.4) merely states that the operator L({Eau],x,0) vanishes on constant grid

functions.

Let us linearize the problem in (1.1)—(1.3) at the smooth function u(0). Namely,

define the matrix functions

(1.9) Lß(x,h) = dL({Eau(x)},x,h)/dE>)u(x)\u=um.

Then the linearization of L at m(0) is

(1.10) dL[um] = XX(x,/,)£",        a^s/.
a

Similarly is defined

(1.11) ^[/»] = E^,A)£«,       «e^bd.
a

The linearized initial-boundary value problem is

(i)     dL[u^]v(x) = hF(x),       x<=Qh,

(1.12) (ii)     dS[u^]v(x) = g(x),       xeßbdA,

(iü)     Eax:v(x) = faj[x),       0>an> -a*, x G ßin „.

There are several definitions of stability. The one used in [3] is

Definition 1.1. The problem in (1.12) with zero initial conditions is stable if there

exist constants K0 > 0, h0 > 0 and r/0 ̂  0 such that for any 0 < h < h0 and any

grid functions F g l2(üh), g g /2(fibcu) there exists a unique solution u g l2(Qh)

which satisfies the estimate

«f

(1.13) T,\\e-"*"v\\lh+   Z  l|£;i'^,,JC"Hrßbd.^^(T'"1lle",'X"Fll^+lle",,^l|2^)
a! =0

for all T)0 < i) < l/h.

Here \\u\\q = Exe0. \v(x)\2h" is the weighted /2-norm over the space Slh and

similarly for the norm || • ||Qbd . With t/ = l/h, estimate (1.13) implies the solvability

of the problem in (1.12). Namely, for grid functions w defined on the mesh ßin h the

mapping

(1.14) w -* (dLm[uV>]w,dSm[um]w)

is an isomorphism from /2(ßin,/,) onto /2(ßin,A) X /2(ßin,A n übdh) with the estimate

(1.15) I|w(x)|2 < K0(¿Z\dL^w(x)\2 + }Z\dS(0)w(x)\2)

holding uniformly for all 0 < h < h0. Here,

(1.16) ¿L(0)[U<°>] = Y,La(x,h)Ea,        a = (a1,a2,...,a„_1,0)G^
a

is the restriction of dL[u(0)] to the upper time level and similarly for dS(0). The

summation in (1.15) is carried over the appropriate domains of the argument x.

Estimate (1.13) was proved in [3] for dissipative difference approximations of strictly

hyperbolic problems, provided the so-called uniform Kreiss condition is satisfied.
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There are well-posed problems for which the Kreiss condition does not hold

uniformly. In such a case one may hope that a weaker estimate

(1.17) Tille"'*»«;||a» < K0(r,-l\\e-K*"F\\lh +(T,A)-1||e-'Jt"g||obd>)

is valid (e.g., see [1]). Note that like (1.13), the above estimate with i\h = 1 implies

the solvability condition (1.15).

We will need also the following

Remark 1.1. Suppose that the problem in (1.12) is stable in the sense of estimates

(1.13) or (1.17). Let us perturb the coefficients of dL and dS by order 0(h). Then

the perturbed problem is also stable in the sense of the same estimates with,

possibly, larger constants tj0 and K0.

Next, we assume that the linear operator ¿L[w(ü)] is dissipative in the directions

normal to the boundaries, i.e., in the directions xx and xn. More precisely, define

difference operators dLhd and dLm by the equalities

(1.18) {EXi - l)dLbd = E L.(x,0)E«,       x g fibd,
IIEj/

and

(1.19) (EXn-l)dLm=  ¿Z La(x,0)EÍ<:,       *GS2in.
«erf

By the consistency assumption in (1.4) the sum T.a^^La(x, 0) is zero and hence the

operators in the right-hand sides of (1.18) and (1.19) are indeed divisible by

(Ex - 1) and (Ex -I), respectively.

Dissipativity Assumption. The operators dLbd and dLin do not have eigenvalues on

the unit circle.

This is the same as to say that the equations

(1.20) det( ¿Z La(x,0)za>) = 0,       x g S2bd,

and

(1.21) det( E La(x,0)za") = 0.       x g ßin,

do not have solutions with \z\ = 1 but z = 1, and that in addition the matrices

Ax(um, x) for x g ßbd and An(u(0), x) for x g ßin are nonsingular.

Now let us start to construct the approximate solution wap for the problems

(1.1)—(1.3). As mentioned in the introduction,

N N

«ap(*>A)=   E «&(*)*' +   ¿ZuÜ¡(xx/h,X2,...,Xn)h-

(1-22)

+ íu^(xx,...,xn_x,x„/h)h',
( = 1

where uQí¡t = «<0). In order to substitute «ap(x, h) into (1.1) we first expand

/ N~' I   n^k     \

E*u0'l(x) = |   E  {-^hk
U=o     K-

(1.23)

*" (JV-/ + 1)!

N - i + 1

ouM
+ 7^^-TT7"om(^ + 0h)hNl + l,        i>0,
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and

E«uti(xx/h,XtJ=l   E'(a'M.ftan)VWMbdW^*,an)
U = o K- j

(1-24) /       .D    )»-<+i

i> 1,

where atan • Z)tan = H"=2ajDx, and use a similar expansion for u\^. Then L is

expanded around the point {Eauh(x)} = {t/(0)(;c)}, A = 0, in powers of Eauh(x)

- u(0)(x) and h up to order N + 1, and Eauh(x) - w<0)(x) is replaced by an

expansion of £aMap(.x\ A) - u(0)(x) corresponding to (1.23)-(1.24). Combining the

terms according to the powers of h gives

N

(1.25) L({Eauap(x,h)},x,h)= ¿ZL"(x,xx/h,xn/h)-h' + 0(hN+1),
i = i

where

(1.26) \0{hN+1)\<KhN+l,

provided the functions m<2„ 0 < /' < N, belong to CN~i+1(Q), u\j¡, 1 < i < N,

belong to CN~' + l(Qbd) uniformly in xx/h and similarly for u[^\ Note that by the

Consistency Assumption the expansion in (1.25) indeed starts with a first-order term

L(1)/t, which is effected only by the boundary and initial layers wb¿¡ and h{^ (see

(1.28) below). For i > 1 the function u0^1] contributes to LU) as

E (La(x,0)(aD) + dhLa(x,0))uo^ = d^[u^]u^

ÍAJ(u^(x),x)DXJ+ i^uAJ{u^(x),x)Dxu^(x)

J-0 7=0

+ duB{u{0)(x),x) u^-v
"out

and uoai with k ^ i does not enter L(,). On the other hand, for i > 1 the highest

term «bd> to enter L<0 is «{,'j and its contribution is

(1.28) ZLa(x^)E^ub2(xx/h,xtm).

The other terms in LU) will be separated into four parts. The first one is

(1-29) F« = E coef(«0)n^«^„       X«'" 2,

where the sum T.(\ß\ + j) of the indices in the product does not exceed i. Here and

elsewhere, coef(w0) is a generic notation for partial derivatives of L or S at the point

{Eauh} = { h(0) }, h = 0. The second part is

(1.30) F<d» = ecœiKXrR'«^) •(n^,r£;1i"bd))'    fc< ;-1,

where

(1.31) E(lJ8|+./) + E(kJ+ *)<!',     Lk>o.
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This part is obviously absent when i = 1. The third part F$p is of the same type as

(1.30) with u\!2 replaced by u\k), while the fourth part R(bdin is a sum of products

where both wbd and win participate. Now, we balance the smooth part F¿¿¡ with

(1.27), i.e.,

(1.32) dJ?[uM]u<&=-F&+1\       xeQ,i>l.

In F¿d' two scales xx and xx/h are present. Thus, in the smooth coefficients

/(x1,xtan) = coef(«0)n^"^

we write xx = h ■ (xx/h) and expand

(1.33) f(xx,xtJ = Nf-^-f(0,xlan)(^)k ■ hk + 0(xri+1)

around x = (0, jctan). A similar expansion is performed for La(x, 0) in (1.28). We

will see below that wbd' is of the following form,

(1.34) uti(xx/h,xtJ = Ee-W* .(Xl/h)'fikl(Xtan),
k,l

where

A„>ô>0,   /</-l,   /iWeC^-i+1(ÖM).

Thus, the contribution of 0(xx~' + l) to L is bounded by

(1.35) A' • Kx?~i+1 ■(x1/h)'e-Sx^h < KxhN+1.

With the expansion in (1.33) substituted into F$ and La(x,0), the sum

,v

Ei^,0)£>S + F<i A'E
¿-i

is recombined into

(1.36) £ (^ - /)[^bd^ + F$]h' + 0(hN+i),
i = i

where F^'j has the form of the right-hand side in (1.34). Here we have used (1.18)

and the fact that

(Exi - j)"W* -(xx/h)'= e-W* ¿ c¡k(X)(xx/h)k.
k = 0

Thus, the boundary layer satisfies the equation

(1.37) dLhdu<$=-F$.

Similarly, for the initial layer

(1.38) dLÍBuW=-F¡¿K

We will prove later that under the compatibility conditions, the boundary and

initial layers are negligibly small near the space-time corner. More specifically,

(1.39) DJxubnd = 0   atx„ = 0   and    Djjug = 0   at xx = 0   for y < iV -/.

Then, by (1.34), the interaction of the boundary and initial layers,

(1.40) E*œ*A' = 0(A"+2),
í-i

is a negligible term.
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The boundary operator S is treated in a way similar to L. Define

(1.41) dSOM = ZSa(x,0),    J5bd = E5a(x,0)£;;,       a£s/bd,xx = 0.
a a

Then one can write

(1.42) s({E'uv),x,h)= îs"(xtJh' + 0(hN+').
¿=i

By (1.7) there is indeed no zero-order term in the expansion. The coefficients S'0

have the form

(1.43) S^(xtan) = dS0Utu0^(x) + dSbdub^(x) + g^(x),       xx = 0,

where

(1.44) g«>(x) = E coeî(u0)UD.^^tE^D^uh^

and the indices in each product are bounded as

(1.45) E (101 + ./)+ E(lY,J+ *)<**.        j<i-l,k<i-l.

In view of (1.39), the contribution of the initial layer win to the boundary operator

is an 0(hN+1) term and is absorbed in the remainder of (1.42). Altogether, this

remainder is bounded as in (1.26), provided the mentioned smoothness conditions

hold for u^v u\¡d] and u\2- Note that unlike L{,) there are no different scales in S{'\

The resulting boundary condition

(1.46) dSmtuW(x) + dSbdu{¡¡(x) = -g"(x),       x g ßbd,

couples together the outer solution u0^{ with the boundary layer u(b\. However, with

the aid of Eq. (1.37) one can decouple the boundary condition (1.46). Namely, for a

grid function w: Z+-> Rd, denote by vv(0) the vector

(1.47) 55(0) = (w(0),w(l),...,w(a*)).

Let V(xl!in) be the space of vectors vv(0) corresponding to the exponentially

decreasing solutions of the equation dLbdw = 0 at fixed xtan (and with Exw(j) =

w(j + 1)).

Since dLhd is a difference operator in the xrdirection with coefficients indepen-

dent of jcj, such a space could easily be constructed. By the dissipativity assumption

the space V(xlw) depends smoothly on xlan. Given a grid function F in the

^j-direction, denote by dLbd(xtan)F the solution w of the problem

(1.48) dLhdw = F,        w(0)±V(xlan).

Thus, the vector dSbdu(bid)(x) in (1.46) is equal to dSbd ■ dLbd(xtàn)(-F^'d]) modulo

the space

(1.49) W(xtJ = dSbd ■ V(xlm).

Let Pbd(xtm) be a projector which acts on the space of the vectors g('\x) and

whose kernel is the subspace W(xxan). Apply Pbd to (1.46). The resulting boundary

condition is

il   SOI bd'Xtan) "^outMout( X )

= ^bdUan) -(VW + dSbd ■ ¿L-bd(xtan)F<d>),        x = (0,0-
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The initial conditions are treated in the same manner as the boundary ones. The

functions u^t(x) and u\£(x) satisfy the initial conditions

(1.51)        u™(x) + EZug(x) = fW(x),       x g ßin, 0 > an > -<,

where

(1.52) /W(X) = -\D'hfan(x,0) + Í ^DJu^(x).
J=iJ-

Thus, the approximate solution «ap satisfies the initial conditions

(1.53) E»:u&p(x,h)=fan(x,h) + 0{hN+l),       xeüfa,0> <»„>-«:

with 0(hN+l) bounded by KhN+l as in (1.26). The separated initial conditions for

"out are

Pta(x)-(«ä(*).--..«Sä(*))

= Pin(x)[(/4(x),...,/0<'Hx))+dL-fa1(x)F4')])       xeßin.

Note that the stability of the problem (1.12) as stated in (1.13) or in (1.17),

together with the Dissipativity Assumption, implies that the characteristic equation

for dLm has solutions only in the disc |z| < 1. Thus, the space of the decreasing

solutions of the equations dLin ■ w = 0 has dimension a* X d and the image of Pin

has dimension d. Since constant grid functions are not eigenfunctions of dLin, Eq.

(1.54) uniquely defines the vector u^t(x), x g ßin, for all values of /a(1)(x) and F^\

Then (1.51) provides the necessary initial conditions for «{^ in order to solve Eq.

(1.38).
The functions m^'J,, ub'J and u\^ axe computed in the following order. First one

solves the initial-boundary value problem in (1.32), (1.50), (1.54) for u^t. With

u0l¿t(x) known at the boundary übd, one obtains from (1.46) the necessary boundary

conditions to solve Eq. (1.37) for ubld\ Similarly one computes u\l\ Then the same

loop is repeated for i = 2,3,..., N. Obviously, one should assume that the initial-

boundary value problem

(i)     d&[ul°>]o=f,        XGß,

(1-55) (ü)     PbddSoato = g,        *GÍ2bd,

(iii)     v=f,        x g ßm

is well posed. The usual definition of well-posedness for a hyperbolic initial-boundary

value problem requires the a priori estimate

(1.56) sup    ||ü(-,*J||Oiii<^(||F||O(Ti,Tí) + ||0(.,T1)||Oiii)

for all solutions of (1.55) with g = 0 and all subintervals [t^ t2] c [0,7], and a

similar estimate for the adjoint problem. A more strict definition of Kreiss [2]

requires

sup    ||ü(-,x„)||aln+H0, •)ll8bd(T„T2)
(1.57) Tl<x"<T2

^^(llfL(T1.r2)+klLbd(T1,T2)+lk(->T1)||ßm)



454 DANIEL MICHELSON

for the problem in (1.55) and a similar estimate for the adjoint problem. Here and

above, ß(T1( t2) = {x e B|t, < xn < t2), and similarly for Qibd(Tx,T2). Our next

assumption is that the map

(1.58) dSbd: ^(-*tan) ~* ^(^tan) is an isomorphism.

Thus, one can solve (1.37) and (1.46) uniquely for u(b¡ provided u0'¿t satisfies (1.50).

The simplest way to assure both (1.57) and (1.58) as well as the stability in (1.13) is

by imposing all the conditions of Theorem 1.3 in [3]. Namely,

(i) the operator dSC[u(0)] is strictly hyperbolic with xn being the time variable,

(ii) the matrix Ax(u(0)(x), x) is nonsingular at x g ßbd,

(iii) the difference problem in (1.12) is solvable as stated in (1.15),

(iv) the difference operator is dissipative as stated in [3] (Assumption 1.4),

(v) the uniform Kreiss condition (UKC) holds for problem (1.12) (see (1.34) in

[3]).
As shown in [3, Lemma 1.1], conditions (i), (ii) and (v) above together with the

dissipativity assumption for dLbd imply the Kreiss condition for the problem in

(1.55) and the isomorphism in (1.58). Hence the problem in (1.55) is well posed in

the sense of estimate (1.57). There are, however, difference schemes for which the

conditions (i), (ii), (iv), and (v) are not fulfilled and for which estimate (1.17) could

be proved by an energy method. In such a case the conditions in (1.56) and (1.58)

should be imposed independently.

The construction of the approximate solution requires that

and

ui?(-,x.)6C"-'+1(0j.

The natural spaces for the hyperbolic problem in (1.55) are, however, the Sobolev

spaces Hs. Since there is a loss of derivative in hyperbolic problems, the appropriate

smoothness conditions for wout, wbd, and win are

(1.59) U<'u> GC'([0,r],//-2'-'(ßin)),       0<r<j-2i\

(1.60) ^(x1,.)eC([0j],F-2'-'-1/2(ßbdnßJ), 0<r<S-2i-l

and

(1-61) u<£{-,xn)eH°-2i{ü.m),

where

(1.62) s>2N+(n + l)/2.

Remark 1.2. If the problem in (1.55) is Kreiss well posed, i.e., estimate (1.57)

holds, then «W(0, .) e //-2<(ßbd) and u\H(xx, ■) G //s-2'(ßbd).

For u0'^ to be of the required smoothness, the problem in (1.32) should satisfy the

compatibility conditions of order i - 2/ - 1 at the time-space corner xx = xn = 0

(see [5]). Since one does not want the boundary and initial layers to interfere with

these conditions, one has to request that

(1.63) DJxu\^ = 0   at xx = 0   and    D^ub^d = 0   at x„ = 0 for j < s - 2i - 1.
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This is obviously stronger than the assumption in (1.39). The resulting compatibility

condition for the problem in (1.1)—(1.3) could be stated as follows.

Compatibility Condition. Let us substitute in (1.1)—(1.3) a formal expansion

uh = Lüo"out(^)A' with n<°>, = M<01. Define F0$ as in (1.29), /« as in (1.52), and

g0) as in (1.44) with ubd> = 0. With the aid of the equations in (1.32) and the initial

conditions in (1.54) (with F$p = 0) express the derivatives Dxu^t, 0 < \a\ < s - 2/

- 1, at the corner xx = xn = 0 in terms of the original data / in (1.3),

(1.64) Z)>0'u\ = Ecoef(M<°))n^"(0>o;^//(^0),

where in the above products the sum of the indices L(|/S| + |y| + k) < a + i.

Substitute the above expressions into D{n(dSoalu0^t + gV)) and  Z)^(a^t -/J°),

0<y'<j — 2/ — 1. Then the resulting similar expressions in terms of coef(«<0)),

Df w<0) and D^f,(x,0) should vanish at xx = x„ = 0 for all 1 < i < N.

The above deliberation can be summarized in the following

Theorem 1.1. Let the difference problem in (1.1)—(1.3) satisfy the Consistency

Assumption with s > 2N + (n + l)/2, the Dissipativity Assumption and the Compati-

bility Condition. Also let the reduced differential problem in (1.55) be well posed in the

sense of (1.56) and the boundary operator dSbd satisfy the assumption in (1.58).

Finally, let the functions fa(x,h) in (1.3) belong to C'([0,Ao], Hs-2,(Qin)) for

0 ^ i < N + 1. Then there exists an approximate solution uap(x, h) as in (1.22) such

that u0^t, ub% «jñ1 belong to the spaces shown in (1.59)—(1.61), u[„\ ub^ vanish at the

time-space corner as in (1.63) and the derivatives Dau^t for |a| < s — 2/ - 1 at

xx = x0 = 0 coincide with the ones in (1.64). This approximate solution satisfies

(i)     L({E*uap(x,h)},x,h) = 0L(hN+1),       xGßA,

(1.65) (ii)     s{{E°uap(x,h)},x,h) = Os(h»+1),       xGßbcUl,

(iii)     E^ujx, h) -/„„(*, A) = Of(hN+1),       x g ßin,„,

where

(1.66) Ho£(A"+1) ||^ + ||Os(A"+1) ||0b-jb + IIC^Ä*-1) ||Qw < Ä»*+1
and the constant K is independent ofh.

Proof. We will prove the smoothness conditions in (1.59)—(1.61) and the degener-

acy of the initial boundary layers in (1.63) by induction in i. Consider the problem

in (1.32), (1.50), (1.54) for i = i0. Note that the function F£°+v> in (1.29) belongs to

Hs-2i«(2). Indeed D^u0Ju\ g HS~2J-W(Q) c Hs~2io(Q), since 2j + \ß\ = (j + \ß\)

+ j < (¿0 + 1) + (/0 - 1), while Hs'2i"(Q) is a Banach algebra for s - 2/0 > n/2.

Similarly, for the function g(,'o) in (1.44), D-fw^it belongs to HS~2'0+1(Q) and its

restriction to ßbd as well as the second factor E^D^u^iO, •) lie in

iP~2,'0+1/2(ßbd). Since the last space for 5 - 2/0 > n/2 is a Banach algebra, the

function gUo) belongs to //i_2'0+1/2(ßbd). Recall that the function F¿d(l) has the

form displayed at the right-hand side of (1.34) and the corresponding coefficients

fikt(xtan) belong to Hs-2,"+l/2(Qbd). Thus for i = i0 the right-hand side in (1.50)

belongs to Hs~2i»+1/2(Ubd). Finally the functions /£•> belong to Hs-2i«(Qin).

Clearly, the data in the problem (1.32), (1.50), (1.54) is smooth enough for the

purposes of the compatibility conditions of order s — 2/0 — 1. By the induction

hypothesis, (1.63) holds for i < i0 - 1. Thus the initial and boundary layers u\n] and
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«b'J do not affect the partial derivatives Dxu(^\ \a\ < s - 2/0 - 1, at the corner

xx = xn = 0. Hence the later ones coincide with Dxu0^ in (1.64). As a result, the

initial-boundary value problem in (1.32), (1.50), (1.54) for i = i0 satisfies the usual

compatibility conditions of order s — 2i0 — 1 at the time-space corner. As it follows

from Theorem 5.1 in [5], the solution u0'^ of the above problem belongs to the

spaces in (1.59) with / = i0. The function ujjjj' is computed by solving Eq. (1.37)

with boundary conditions in (1.46). Since F^\xv •) g Hs~2'0+l/2(Q.bd) belongs to

C([0,r], Hs-2i°-l/2-r(Qbd n ßin)) for all 0 < r < s - 2/0 - 1, and so does the

restriction u(^(0, ■), the function ub^> therefore belongs to the spaces in (1.60). By

the Compatibility Condition, D¿JídS0Utu0'^ + g{'o)) vanishes at xx = x0 = 0 for

j < s - 2i0 - 1. Since the derivatives D^u^ vanish at xn = 0 for j < s - 2; - 1

and j < i0 - 1, so do the derivatives D¡ F^'do) for j < s - 2/0 - 1. Therefore, (1.63)

holds also for u[¡^\ The function u\^o) is treated in a similar way. The formulas in

(1.65) follow from the construction of the approximate solution. With í > 27Y +

(n + l)/2 the function «« belongs to CAr_,'+1(Ö),

u&(xx,-)£CN->^(Slbd)   and    u£(xH, ■) e C»-'+i(QM).

Hence the truncation errors in (1.65) are bounded by KhN+l in the maximum norm.

With the integral formula of the remainder in the Taylor expansions (1.23), (1.24)

and (1.33), one is able to prove that the bound in (1.66) holds also in the L2-norm.

This observation concludes the proof of the theorem.   D

Remark 1.3. In the proof above we were not concerned with the smoothness of L

and 5 as functions of {Eauh(x)}, x and h. It could be shown that the sufficient

smoothness requirements are that L and S lie in the space Hs with respect to the

totality of their variables, where s is as in (1.62).

2. The Convergence to the Asymptotic Solution. In this section we shall prove that

the formal asymptotic solution Map(x) indeed approximates the true solution of uh

of the problem (1.1)—(1.3). The specific construction of «ap and the smoothness of

the coefficients as in (1.59)—(1.61) are not needed any more. The precise statement of

the result is as follows.

Theorem 2.1. Let uzp(x,h) be a family of grid functions defined on the grids Qh

such that the difference wap(jc, h) - um(x) is 0(h) in the lx(üh)-norm, where u(0)(x)

is a function defined on ß. Assume that u (x,h) satisfies Eqs. (1.65) with the

truncation errors bounded as in (1.66), where N > n/2 + 1. Finally, let the linearized

problem in (1.12) be stable in the sense of (1.17). Then for h < h0 there exists a

solution uh of (1.1)—(1.3) such that

(2.1) \\uh-uap(x,h)\\Qh^KhN,

where h0 and K are some positive constants. If Uh is another solution of (1.1)—(1.3)

and uh — «<0) is sufficiently small in the lx(Qh)-norm, then necessarily Uh = uh.

Proof. If uk is a solution of (1.1)—(1.3), the difference v = uh — u (x, h) satisfies

the equations

(a)     dL[uap]v(x) = hF(x),       *GÍ2„,

(2.2) (b)     dS[u.dp]v(x) = g(x),       *GS2bcU„

(c)   e;;i>(x) «/„.(*),    o > an > -«j, x g aiia.
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where hF(x) = -0L(hN+1) + Ox(v2), g(x) = -0s(hN+1) + 02(v2) and fa(x) =

-Of(hN + ï). The quadratic terms Ox and 02 are bounded by

(2.3) \\Ox(v2)\\ah + h1/2\\02(v2)\\aMh^Kxsup\v(x)\-\\v\\r¡h.
x<=a„

(We assume that L and 5 are C2 functions with respect to the variables Eau.) Since

u3p(x,h) - u(0)(x) = 0(h), estimate (1.17) for the problem in (1.12) implies the

estimate

(2.4) \\v\\Qh < K2[\\F\\üh + h-^\\g\\ahdh + /T^EI/Jk.,

for the problem in (2.2). Thus, in view of (1.66),

(2.5) \\v\\Q^ K3hN + K.K.h-1 sup \v(x)\-\\v\\^,
X<EÜh

where K3 = K2K and K is the constant in (1.66). We wish to prove that for h

sufficiently small

(2.6) \\v\\a^2K,hN.

Clearly, \\v\\a¡¡ = 0(hN) would imply A^sup^K*)! = h~lO(hN-n/2) = o(l), so that

the second term in the right-hand side of (2.5) is negligible compared with ||u||0 . Let

Qf = {*= (x_,xn)\x_^üinh,x„=jh,-a* <j </c}.

We will prove by induction in k that for h < h 3

(2.7) |M|ai < 2K,h\

where A 3 is to be defined later. For k = 0 this estimate follows from (1.66). Since the

difference scheme may be implicit, in order to construct uh at xn - (k + l)h, one

has to apply the implicit map theorem. Namely, consider the equations

(a) L{{E«(uip + v)},x,h)-L({E»uap},x,h) + OF = 0,

(b) s{{E°(uap + v)},x,h)-S{{Eauap},x,h) + Os = 0

at the time level xn = (k + l)h. The left-hand side of (2.8) could be thought of as a

map which depends on the grid functions

v{x_,(k+ l)h),...,ü(x.,(k-a*)h),       ^_GÍ2in/!,

and on 0F, Os at x„ = (k + l)h with the norms

(2.9) nLo^-EK*-)!2,    x-^ain,h
(i.e., without the weight h"~l as in the || • ||j¡. -norm). The values of the map are

pairs of grid functions with the same norm as in (2.9). Clearly, this map is

continuously differentiable and its differential with respect to v(-,(k + 1)A) at the

zero point is given by the pair (dL{0)[uap], dS^0)[uap]) (see the definition in (1.16)).

Since wap - u<0) = 0(A), the above differential, like the map in (1.14), is an

isomorphism and estimate (1.15) holds. Thus the equations in (2.8) could be solved

with respect to v(x_,(k + l)h) and the solution is bounded by

\\o{-,(k + l)h)\\htaink)

(2.10) <*4       E     lk(-.7'A)||/2(í!,n./,) + !|Of||/2(0,n„) + ||Os||/2(í2mi)
\j=k+aZ j

< K4A-/2((1 + <)1/2Hoî +||0,lk +H°slk) < K5A'V-/2,
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provided the last bound is sufficiently small. Hence,

(2.11) sup   \v(x)\< max(K5,2K3)hN-"/2 = KbhN-"/2.
x<=û£+1

Note that estimate (2.5) is valid also when ßA is replaced by ßjj. Hence, for

KxK2K6hN'n/21 < 1/2 we obtain ||»||0*+i < 2K3hN. Since the constants K¡ are

independent of A and k, estimate (2.7), and hence (2.1), are valid for all A bounded

by some A3. For the local uniqueness of the solution uh in lx(Qh) one has to prove

that the map in (1.14) is an isomorphism also in the maximum norm. Indeed, as

shown in [3, Theorem 1.1], the solvability of the problem in (1.12) is equivalent to a

certain algebraic coercivity condition for the pair of operations (dL(0), dS(0)). For a

complex vector z = (zx,z2,...,zn_x) define

dL?» = E¿.(*.A)W.
a

where the above sum is carried over the same set of indices a as in (1.16) and

(zE)a = (zxEx¡)ai ■ ■ ■ (zn_xEx(i_1)°"-1, and in a similar way define dSf>. Note that

the pair (dLf\dS¡0)) satisfies the same coercivity conditions as (dL{0\dSi0)),

provided (1 + e)"1 < |z,| < (1 + e), ;' = 1,2,...,«- 1, and e is sufficiently small.

As a result, for such z,

,2 |2 r-i    i ,l ,ny      ,     , |2(2.12) EI*VM*)|   <K\¿Z\zx/hdLmw(x)\   +   E  \zx/hdSmw(x)\
x \   x jc, = 0 /

If the supports of dL{0)w and dS(0)w lie in the cone x > 0, the above estimate with

z, = (1 + e)"1, i = l,...,n - I, implies

(2.13) |w(0)|^/í(||¿L<o»w|U+||^<o»h'|U),

where || - ||00 is the lx-norm. The other cones in the half space xx > 0 are treated in

a similar way, i.e., if x¡ < 0 then choose z, = 1 + e. In the general case, the functions

F = dLi0)w and g = dS(0)w are split into a sum of 2"~2 terms with supports in

corresponding cones so that (2.13) follows. Since the point x2 = 0,..., x„_1 = 0 has

no preference in the grid ßbdh n Qmh, the same bound as in (2.13) holds also for

\\w(xx = 0, - ) 11 oc - Now let w(x) = w(x) for xx > 0 and w(x) = 0 for xx < 0. With

dL(0)w defined in the whole space, we obtain

HI« < K\\dL^w\\x < K(\\dL^w\\x+\\w(xx = 0, ■) ||J

^K{\\dL^w\\x+\\dSmw\\x).

This estimate concludes the proof of the theorem.   D

Corollary 2.1. Let the conditions of Theorem 1.1 hold and let u[p,] be the part of

the expansion in (1.22) with powers of h up to (and including) hN>. If Nx ^ N — I,

then

(2-15) \\uh-u^%^Kh^\

and if Nx ̂  N - n/2 - 1, then

12 16) llw   - »Wll < KhN' + x
\¿LO) \\"h      "ap    H/^n,,) ** A-'1
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In particular, if the difference problem in (1.1)—(1.3) is an rth order approximation of

(1.6)-(1.8), then w(0) = wapM) and hence

(2.1V) \\uh-u^\\uiih)^Khr,

provided the conditions of Theorem 1.1 hold with N ^ r + n/2.

Thus, estimate (2.17) establishes the precise rate with which the difference solution

uh converges to the analytical solution u(0).
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