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An A Posteriori Parameter Choice for Ordinary

and Iterated Tikhonov Regularization of

Ill-Posed Problems Leading to

Optimal Convergence Rates

By Helmut Gfrerer*

Abstract. We propose an a posteriori parameter choice for ordinary and iterated Tikhonov

regularization that leads to optimal rates of convergence towards the best approximate

solution of an ill-posed linear operator equation in the presence of noisy data. Numerical

examples are given.

1. Introduction. Let X, Y be real Hubert spaces, T:  X -> Y a compact linear

operator, v e Y. Our aim is to obtain the "best approximate solution" of

(1.1) Tx=y

i.e., the unique element that has minimal norm among all minimizers of the residual

\\Tx - y\\. If rf denotes the Moore-Penrose generalized inverse (see, e.g., [17]), the

best approximate solution is given by T^y. For nonclosed range R(T) of T, the

problem of determining T^y is ill posed. The best approximate solution exists only

for y e D(T*):= R(T) + Ä(r)1 (which we assume from now on) and depends

discontinuously on the right-hand side. An important example is the (Fredholm)

integral equation of the first kind

(Tx)(t):=   C k(t,s)x(s)ds = y(t),       /e[0,l],

where k is a nondegenerate L2-kernel and X = Y - L2[0,1]. In the ill-posed case,

the crux of the difficulty is that the data are only imprecisely known in general, that

is, only some j8e y is available satisfying

(1-2) Ib-ÄlM,
where S is an a priori known error level. Since T* is unbounded, T*ys is not a

reasonable approximation to Tfy, even if it exists. Because of this, one has to use

"regularization methods" for approximating T^y. A widely used regularization

method is Tikhonov regularization. For a > 0 we denote by xa s the unique solution

of

(1.3) (ai + T*T)x= T*ys.
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It is well known (see, e.g., [3]) that if the "regularization parameter" a is chosen in

dependence of 8 such that limÄ_052a(5)~1 = 0 and lim8_0a(8) = 0, then

lims_>0||jctt(S) s - T^y\\ = 0. If the exact solution fulfills the smoothness property

(1.4) TlyeR((T*T)')

for some 0 < i> < 1, then for an a priori choice of a such as

(1.5) a{8) = C82A2v+1),    C>0,

one obtains the convergence rate

(1.6) \\xa(S),8-T*y\\=0(8W+»)

(see [19]). This convergence rate is best, 0(82/3), for v = 1. A saturation result of

Groetsch [11] says that a higher rate of convergence cannot be expected under higher

smoothness assumptions and other choices of a(8). However, a higher convergence

rate can be obtained by "iterated Tikhonov regularization" (see [14]), which is

defined by the formulas

(1.7) <8:=0;       (aI+T*T)xig=T*yg + axi:g\       j = \,...,n.

If the smoothness condition (1.4) holds for some 0 < v < n, then a parameter choice

according to (1.5) yields a convergence rate

(1.8) kvs-rv|=o(ô2'/(2*+i>)

which is best, 0(52n/<2"+1)), for v = n. Unfortunately, one cannot determine a(8)

by (1.5) in practice, since the number v depends on the unknown solution T*y.

Therefore, many authors suggest a posteriori methods to compute a reasonable value

of a using the input data ys and the error level 8. A favorite choice of a is the

so-called "discrepancy principle" due to Morozov [16], where a — a(8) is computed

as the unique solution of

(1.9) \\Txa,g-ys\\2 = S2.

Arcangeli [1] proposes a = a(8) as solution of

(i-io) II^o-äII2-*2«-1,

while Engl [4] (for a similar method; see Schock [20]) suggests choosing a = a(8) as

the unique root of

(1.11) lT*1bcmt9-T*ya( = 8>a-'

with suitable constants p, q. Engl [5] applied his method also to iterated Tikhonov

regularization.

All these methods do not yield the convergence rates given by (1.6). For Morozov's,

resp. Arcangeli's approach, this is shown in [10], resp. [13]. Engl has to choose the

parameters p and q in (1.11) in dependence of the unknown quantity v to obtain

the rates (1.6).

The aim of this paper is to give an a posteriori method for choosing the

regularization parameter for iterated Tikhonov regularization, where no information

about v is used and the rates (1.8) are achieved, and even improved upon, for v < n.

The difference is the replacement of the capital-0 condition by the little-o condition.
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The basic idea of our method is rather simple. Obviously, the best possible

parameter choice would be such that the squared error \\x^s ~ Tiy\\2 is minimized.

Of course, this criterion is not applicable, but we will find a minimizer of some

upper bound of the squared error.

At the end of Section 2 we investigate convergence rates for Morozov's dis-

crepancy principle (1.9). It is well known (see [12]) that a certain upper bound of the

squared error is minimized precisely when the parameter is chosen according to

(1.9). Using the same technique of proof as for our method, we will show that

Morozov's method yields also the convergence rates (1-6), but only for v < 1/2. In

Section 3 we adapt the theory developed in Section 2 to make it applicable to

practical computations. For this purpose, we consider approximations to the best

approximate solution which lie in a finite-dimensional subspace Vm of X. More

precisely, for each a > 0 and n g N, we define x% s m iteratively by the formulas

(1.12)    <8,m:=0;       {aI+T*Tm)xUm = T*ys + otxi;s)m,       j=l,...,n,

where Tm := TPm and Pm is the orthogonal projector of Xonto Vm. For n = 1, this is

equivalent to the approaches of Groetsch [12], Engl and Neubauer [6] and closely

related to Marti's method [15].

Now the regularization parameter has to be chosen appropriately in dependence

of the noise level 8 and the subspace Vm. So Groetsch [12] applied the discrepancy

principle to this finite-dimensional setting, whereas Engl and Neubauer [6] modified

(1.11) to obtain finite-dimensional approximations. In view of known results, these

methods seem to have the same disadvantages mentioned above for the infinite-

dimensional case.

We give in Section 3 an a posteriori parameter choice a = a(8, Vm, n) such that

for T*y G Ä((r*7y)wehave

(0(Ô2"/(2"+1») + o(y^)      if0<r<l/2,

\\K.s,m - T'y\\ =   o(82^2^) + 0(lm)     if 1/2 < v < n,

\o(82"^2n+l)) + 0(ym)     ifK>«,

where ym = \\T(I — Pm)\\ is a measure of how well Tm approximates T. Again, this

method requires no information about v and is numerically feasible in the sense that

it depends on finitely many numerical parameters.

In Section 4 numerical examples are given which show that theory and practice

agree quite well.

2. Optimal Parameter Choice for Iterated Tikhonov Regularization with Inexact

Data. From now on we assume that y G D(T^), T*y + 0, and we wish to determine

x = T^y, having at our disposal only an approximation ys satisfying

(2.1) IIj-.vJ2<ô2<||ôvJ2/C _

for some C > 1, where Q denotes the orthogonal projector onto R(T). We believe

that condition (2.1) is not a severe restriction. It may be interpreted by saying that

the relative error in the input data, ô/||oy8||, is small. For n g N, z g Y, a > 0 we

define

(2.2) /„(«,*):= a2" + l((aI+TT*y(2" + uQz,Qz).
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We further define the error functions

(2.3) <p„(a):= \\x"tt-T*y(,       <p„,8(a) -||<, - T*y(,

where x"a is given by (1.7) with y instead of ys. The following lemma states some

properties of these functions. Proofs of this and subsequent results are given in

appendices in the Supplements section of this issue.

Lemma 2.1. For each z G Y with Qz ¥= 0 and each n G N, the function a -* f„(a, z)

is continuous, strictly increasing on (0, oo) and lima^Q fn(a, z) = 0, lima^00 /„(a, z)

= \\Qz\\2. For each n G N, the function a -» <p„(a) is continuously differentiable and

strictly increasing on (0, oo). Furthermore, there holds

2

a2<p'n(a) = 2nf„(a,y),     lim <p„(a) = 0,     lim y„(a) = \\Tfy\\ .
a-»0 a—* oo

Proof. Cf. Appendix 2.    D

Application of the first part of Lemma 2.1 and the Intermediate Value Theorem

yields the following corollary.

Corollary 2.2. Suppose that y, ys g Y and 8 > 0 satisfy (2.1) for some C ^ 1.

Then for each « g N i/zere is a unique a > 0 íucA í/iaí

(2-4) /„(«,>>,) = Co2.

From now on, we denote the unique a determined by (2.4) by a(8) (although it

depends also on ys, C, and n). An expression involving a(8) will be understood in

the sense that for fixed C ^ 1 and n G N it holds for all ys satisfying (2.1) and the

corresponding a determined by (2.4).

The next theorem gives some motivation for our proposed parameter choice.

Theorem 2.3. Let n g N he fixed and suppose that y, y$ g Y and 8 > 0 satisfy

(2.1) for some C > 1. Then the function <p„j(a) is strictly increasing for a > ä, where

a > 0 is the unique solution offn(a, ys) = 82.

Proof. Using (2.3) and (1.7), we have

<PnAa) £ a^^al + T*T)~kT*ys - T*y

2

A- = l

It is easy to see that <p„s(a) is continuously differentiable for a > 0 and

<.«(«) = 2/ i akl(al + T*T)~kT*ys - T*y,

n

E [(k-\)ak-2(aI+T*T)kT*ys
k = l

(2-5) -kak-\al+ T*T)-k-1T*yt]

= -2n[ i ct-^al + TT*ykTT*ys - Qy, ot^al + TT*yin+1)Qy)

\ k = 1 /

= 2n(a"(al + TT*y"Qys - Qys + Qy, a-\al + TT*y(n + 1)Qys).
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To prove our theorem, it suffices to show that %_s(ct) > 0 for a > a. But a > a

implies by Lemma 2.1 that fn(a, ys) > fn(a, ys) = 82 and hence

(2.6) /„(«, ys) > 8fn(a, ys)1/2 > \\Q(ys - y) ||/„(a, ys)1/2.

Since ||a1/2(«7 + 7T*)"1/2|| «S 1, we obtain

/„(«,Ä)1/2 = ||«"+1/2(a/+rr*r("+1/2)oÄ|>|«"+1(«/+^*r(n+1)OÄ|.

This, together with (2.6), yields for a > a,

f,i(<x<ys)>\\Qys-Qy\\-h"+1(cti+TT*y("+l)Qys

>{Qys- Qy,et"+1(al + TT*y("+l)Qyi
8

By (2.5) this is equivalent to (a2/2n)tp'„ s(a) > 0, and hence our theorem is

proved.    D

Remark 2.4. Theorem 2.3 and the first part of Lemma 2.1 show that a choice

C = 1 in (2.4) yields the best result among all possible choices of C > 1. However,

for technical reasons, we also have to consider the case C > 1.

Our convergence analysis is mainly based on the following three lemmas, whose

proofs are given in Appendix 2.

Lemma 2.5. Let C> 1, C,:= (C1/2 - l)2, C2:= (1 + C1/2)2. Then for each

8 > 0, y, ys g Y satisfying (2.1), and for each n g N, we have

Cl82^fn(a(8),y)^C282.

Lemma 2.6. Let y > 0. Then for all a > 0 and all n g N there holds

%,s(a) < 2/min(y,l}(2Y«52/a + %(a)).

Lemma 2.7. Let y > 0, 8 > 0, « g N. 7/ie« â « a minimizer for the one-dimen-

sional optimization problem

,     , minimize 2ny82/a + %(a)

subject to a > 0

//a«J oh/f iff„(â, y) = y82 holds.

We are now in a position to derive rates of convergence for our parameter choice.

Theorem 2.8. Let C > 1, n g N be fixed. For each 8 > 0 and ys G y satisfying

(2.1), /eí JC^(S) s ¿e the result of iterated Tikhonov regularization of order n as described

by (1.7), where a(8) is the unique solution of (2.4). Then lims_0x^(S)S = T*y. If,

further, T^y is an element of R((T*T)P) with v > 0, then

\\K(s).8-Tfy\\=o(82^2-'+^)    forv<n

and

\Kt8).8-T^\\=0(82"^2"^)    forv>n.

Proof. First suppose C > 1; let Cx, C2 be as in Lemma 2.5 and set

y- fn(a(8),y)/82. Thus CL < y < C2. By Lemma 2.7, a(8) is a minimizer for

2ny82/a + <p„(a). Thus we obtain, by Lemma 2.6,

<p„,5(a(Ô)) < 2/min{Y,l}(2«y52/a(Ô) + %(a(8)))

(2.8) = 2/min{y,l}min{2«YÔ2/a + <p„(a): a > 0}

< 2/min{C1,l}inf{2«C2ô2/a + %(a): a > 0).
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Using Lemma 2.1 and the Intermediate Value Theorem, it can be easily shown that

for each 8 > 0 the equation

(2.9) <pn(ß) = 2n82/ß

has a unique solution, which we denote by ß„(8). Since ßn(8)q>n(ß„(8)) = 2«S2, we

have, together with Lemma 2.1, lims^0ßn(8) = 0 and also lirn8_,02nr52//?n(5) =

lims _ 0(pn(ß„(8)) = 0. Because of (2.8)

(2.10) tpnS(a) <2/min{Cl,\}{2nC282/ß„(8) + %(ß„(8))),

and hence limÄ_0x^(S)6 = T*y.

Now assume that T*y g R((T*T)") with v > 0 and set p:= min^, «}. Then we

get, from (2.9),

ßn(8)1 + 2» = 2n82ßn(8)2y<pn(ßA8))

and hence

y3„(5) = (2«a2)1/(1+2'"[/8„(ô)27<Pn(/3„(o))]1/(1 + 2'').

Thus we have

2n82/ßn(8) = (2n82)2^1 + 2'i)l%(ß„(S))/ßAS)2"}1/(1 + 2").

We obtain from [18] that <pn(ß) = o(ß2") for ¡i < n, resp. <pn(ß) = 0(ß2") for

H = n. This, together with \im s _ 0 ßn(8) = 0, shows that

2n82/ß„(8) = %(ß„(8)) = o(84"/<1 + 2">)    for r = jti< n,

resp.

2»82/^(o) = q>M8)) = 0(ô4"/<1 + 2^)   for v> n = M.

Because of (2.10) this implies our assertion for C > 1. For C = 1 the result follows

from Remark 2.4.   D

Theorem 2.8 says that the convergence rate can be arbitrarily close to the desirable

rate 0(8) if the data are sufficiently smooth and n is chosen sufficiently large.

However, our upper bound of the squared error, given by Lemma 2.6, involves the

factor n, and so it might be problematic to choose n too large. In particular, for

given ys g Y and 8 > 0, the approximation error ||*â(S),« _ ^Vll rnight become

arbitrarily large if n tends to 00. However, our next theorem shows that this is not

the case.

Theorem 2.9. For C > 1 let C,, C2 be as in Lemma 2.5. Then for each ys g Y,

8 > 0 satisfying (2.1), and for each n G N, there holds

9n s(<*(8)) < 2(C2 + l)/nan{Cl,l}Vm(ßl,(S)),

where ß„(8) is given by (2.9). Further, if m < n, then <pn(ß„(8)) < <pm(ßm(8)) for all

8 > 0.

Proof. Cf. Appendix 2.    D

We now show that Morozov's discrepancy principle (1.9), under the smoothness

assumption Tfy G R((T*T)V), yields the convergence rates o(82"/(2"+1)) for v <

1/2, resp. 0(8i/2) for v > 1/2. More precisely, suppose that

(2.11) y*R{T),
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and that our approximate right-hand side ys satisfies

(2.12) \\y-ys\\<8<\\ys\\.

Then it is well known (see, e.g., [12, Theorem 3.3.1]) that (1.9) has a unique positive

solution, which we denote again by ot(8). Note that

Txa,s-ys = TT*(aI + TT*)'lQys - Qys-(I - Q)ys

(2.13)
= -a(aI+ TT*y1Qys-(l-Q)ys,

and hence T*(ys - TxaS) = axaS. Thus we obtain

K.« - T'yf = \\xaJ2 - 2/a(T*(ys - Txa¿), T^y) + \\T*y\\2

= \\xaJ2-2/a(ys-Txa,s,y) + \\T*y\\2

1 2

= \\xa,s\\   - 2/a(ys- TxaS,ys)+ 2/a(ys- TxaS,ys -y) + ||r1>|| .

Since

-8\\ys- TxaS\\<(ys- TxaS,ys-y)^ 8\\ys- TxaS\\,

we obtain

2

F{ot,ys)-A,8/a\\ys- Txa¿\\ < F„.s " T*y\\   ^E(ot,ys),

where

2 2
E(a,ys):= ||x«,J   - 2/a(ys - Txa s, ys) + 28/a\\ys - TxaS\\-r\\T*y\\ .

Thus,

2 2

\\xa.s- T'VII  <E(a,yt)^\\xa<i-Tfy\\   + 48/a\\ys - TxaS\\.

Because of ||(7 - Q)ys\\ = ||(/ - Q)(Qy - ys)\\ = ||(7 - Q)(y - ys)\\ < 8 and
\\(al + TT*yl(Qys - y)\\ < 8/a, we obtain, together with (2.13),

2 ..2

F«,«-^     < E(a,ys) < \\xaS- T*y\\

(2.14)
+ 4«|(o/+ TT*y y\\+ 882/a.

It is well known ([12, Theorem 3.3.2]) that E(a, ys) is a minimum if and only if

a = a(8). Hence, we may use a similar proof to that of Theorem 2.8 to establish

convergence rates for Morozov's discrepancy principle.

Theorem 2.10. For each 8 > 0 andys g Y satisfying (2.12), let a(8) be the unique

solution of (1.9). IfT*y G R((T*T)P) for some v > 0, then

\Va{8),8-^y\\-o(82^+^)    forv<\/2

and

||*.(.>.a-rt.H|-0(*I/2)    for v> 1/2.

Proof. Cf. Appendix 2.    D
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Remark 2.11. The discrepancy principle (1.9) so far described is only applicable if

y g R(T). However, if a(8) is computed as the unique solution of

\\Txa,s-Qys\\2 = 82,

then Theorem 2.10 also holds for y g R(T) + R(T)1^ = D(Tf).

3. Finite-Dimensional Approximations of Best Approximate Solutions. Let Vl Q V2

cz V3 cz ■ ■ ■ be a sequence of finite-dimensional subspaces of X with U„, e N Vm = X.

For each m g N let

(3.1) Tm:=TPm,    ym:= \\T(I - Pm)\\,    bm:= ¡QmT(I - P„,)\\,

where Pm is the orthogonal projector of X onto Vm and Qm is the orthogonal

projector of Tonto R(Tm), the range of Tm. For given m, n g N, a > 0 and ys G Y

we consider approximations x"aS m given by (1.12), which lie in R(T*) c Vm. In this

finite-dimensional setting we assume that the available data ys satisfies, with an a

priori given noise level 8^0,

(3.2) \\y-ys\\2^s2<\\Qmys\\2/c,

where C > 1. Note that for this finite-dimensional approach also the case 8 = 0 (i.e.,

the data are exactly known) is of interest, because it is not always possible to

guarantee convergence of Tj,y -» T^y if m -» oo (see Seidman [21]).

Our first result shows that T^y is the best possible approximation of T*y by

elements of Vm, if bm = 0.

Theorem 3.1. If b„ = 0, then T¿y = PmT^y.

Proof. By (3.1) we have QmT = QmTPm = Tm. Hence T¿y = T¿QmQy =

TlQmTT*y= T¿TmT*y. T^Tm is the orthogonal projector onto N(Tm)x c Vm,

Pm is the orthogonal projector onto Vm and Tfy e N(T)^ a (N(T) C\ Vm)± =

(N(TJ nVm)\ Therefore, we have T^TJ^y = ?m7V-   □

For convergence rates in the situation of Theorem 3.1, see Theorem 3.6. From

now on we will assume that the number bm and the noise level 8 are not both zero.

Then, for n, m g N and z g Y, we define

(3.3) r(«,z):= «2" + 1((«7 + TmTm*y(2n+1)Qmz,Qmz)    for a > 0.

Lemma 3.2. Let K > 0 ató suppose that y, yQ satisfy (3.2) for some C > 1.

Further, assume that bm and 8 are not both zero. Then for each n G N the equation

(3.4) (1 - K(2n - \)b2Ja)fnm(a, y8) = C82

has a unique solution a > 0.

Proof. Cf. Appendix 2.    D

From now on, we denote the unique solution of (3.4) by am(8). We will show that

a parameter choice a = am(8) yields the convergence rates mentioned in Section 1.

For our convergence analysis we may assume without loss of generality that ym > 0.

For, if ym = 0, then T = Tm, bm = 0, and so we have the same situation as discussed

in Section 2.
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Let x"am be the result of (1.12) with ys replaced by y. Then, analogously to

Lemma 2.6, one can show the following lemma.

Lemma 3.3. Let n > 0. Then for all a > 0 and all n G N there holds

\\K.8,m- rV||2<2/min{r,,l}(2«7,82/a+||<m- T*yf).

To simplify notations, we define for j > \ and a > 0

z>,m := aJ-\aI + T*Tm)-JT*y,       z{ := a^al + T*T)~JT*y.

Lemma 3.4. For all a > 0 and all n g N there holds
n

\\K.m -<H   E (« -J + 1)(1 + ¿ma"1/2/2)||(/ - Pm)zi\\.
7 = 1

Proof. Cf. Appendix 2.    D

Lemma 3.5. Lei« G Nbefixed. Then there exists a function g with lim,_0g(r) = 0

such that for all a > ym,

11*2.«-Jill <g(lÜ-
If further Tfy g R((T*T)v) for some v > 0, r/ie«

*(y)-MYÍ)   /or"<1/2<

"'    \0(yj   /<*•„> 1/2.
Proof. Cf. Appendix 2.    D

The next result gives a convergence rate in terms of ym for the best possible

approximation of T^y by elements of Vm.

Theorem 3.6. // T*y g R((T*T)v) for some v > 0, i/œw

m/ x   ♦  n      ¡o(y2v)    forv < 1/2,
(1-PjT^y   = LV , '

lO(ym)     for p> 1/2.

Proof. Since

|(/-/>m)rV||<|Km-rV|

< IkL.« - *i|| + ||*i - I'V'H    foralla>0
and

„   , x „      fo(a')     for? < 1,
x   — T ' v    = /

11   a y"      \o(a)     for^l

(see [19]), the result follows from Lemma 3.5, if we choose a = y2 in (3.5).   D

In order to present the main convergence theorem, we need the following lemmas.

Lemma 3.7. For each K > 0 and each a > 0, n g N, there holds

\\K.m - T*yf *\xlm - T¿y( + Kb2, E JPj,m(a) +(l/K)\\(I - Pm)T*y(
7 = 1

+ ¡T*y - rV||2 - 2(rmV, rj> - rV)

2 2"-1 2

< ll<m - T*y\\   + 2/Cè2  E jPjJcx)+(2/K)\\(I - Pm)T*y\\ ,
7 = 1

where ohm(a):= a'-\(al + TmT„*y^»Qmy,Qmy).
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Proof. Cf. Appendix 2.    D

Lemma 3.8. Let « g N be fixed. Then there exists a function h with lim,^0«(r) = 0

such that for all a > y2,

2n-l

bl  E JPj,m(a) < MvJ-
7 = 1

If further Tfy G R((T*T)V) for some v > 0, then

v    Mtf)   /«-"<1A
m)      \0(y2)    for v> 1/2.

/Voo/. Cf. Appendix 2.   D

The proof of the following lemma is analogous to that of Lemma 2.5 and is

omitted.

Lemma 3.9. Let K > 0, C > 1, C1 := (C1/2 - l)2, C2:= (C1/2 + l)2. 77ze« /or

each 8 > 0, _y, ys g Y satisfying (3.2), and for each n G N, we ñat;e

Q82 < (1 - tf(2« - l)D2/am(S))r(«m(S), j) < C282,

where am(8) is given by (3.4).

Using Lemma 3.9 and the next lemma, we will see that our parameter choice (3.4)

gives the minimum of an upper bound for the squared error ||x£i8i„, - ^Vll2-

Lemma 3.10. Let r¡ > 0, 8 > 0, K > 0, n g N, and assume that bm and 8 are not

both zero. Then ä is a minimizer for the one-dimensional optimization problem

. ln-1

minimize 2nr¡82/a+\\x"a m - Tj,y\\   + Kb2m E JPj,m(a)
7 = 1

+ (1/K)\\(I - Pm)T*y( - 2(T¿y,T¿y - T^y) +\\T^y - T*y(

subject to a > 0

// and only if

{\ - K(2n - l)b2m/â)f;'(à, y) = r,82.

Proof. Cf. Appendix 2.    D

Theorem 3.11. Let C > 1, n g N, K > 0 be fixed. For each 8 > 0, ys g Y

satisfying (3.2), and for each Vm c X such that bm and 8 are not both zero, let

x"a {S),s.m be given by (1.12), where <xm(8) is the unique positive solution of (3.4). Then

lim s _o.m-» *«m(8).8.m = T*y. If further T*y is an element of R((T*T)V) for some

v > 0, then

/0(ô2,/(2„ + l>) + 0'y2,j        for v < 1/2>

|*«„,(«).8.m - T*y\ = L(8W+») + 0(ym)      for 1/2 < v < n,

\o(82n/V+1)) + 0(ym)    forv^n.

Proof. It follows from Lemma 3.9 that there exists a number t), Cj < tj < C2, such

that

(1 - K(2n - \)b2Jam(8))f,T{am(8), y) = v82.



TIKHONOV REGULARIZARON OF ILL-POSED PROBLEMS 517

Hence we obtain by Lemma 3.2, Lemma 3.7 and Lemma 3.10 that

La,„(8).8,m - rM   < 2/min{i,,l} 2«T,S2/am(S) + \\x" (S,m - T*y

2n-l

< 2/min{r,,l}min\2nn82/a +\\x"am - T*y\\   + Kb2m E JPj.M
\ /-i

+ 1/K\\(I - P„)T*y\ 2(T*y,T*y - T*y)

+ 11^-^11 :«>0

2n-I

<2/min{C1,l}inf 2«C282/a+||<m-TV||   + 27»2  E >,,J«)
7 = 1

+2/A:||(/-pm)rVir:a>o

< 2/min{C1,l} 2«c282//3„,,„(8) + L«mn(S)m-rV

2n-l

+2^„2 E yp7,m(^,„(s)) + 2//c|(/-pm)rV| I

where ßmJ8) := max{ß„(8), y2}, with &(S) given by (2.9). Since

lv" — TU/W    < illy" — y" II  -I-Il y
-*fl       í¿¡>  „, J      y ^ ■*«       /Ä1  „, -*fl       IX\\\ \\Xr..„(S).m

< 2

lßmJ8).m       Aß„,.„(8) I

^„„(«».m        ■*£„,.„(«) I

.(8) - ^j

%(Ä».-(*))

and /Sm „(8) ^ y„2, we obtain by Lemma 3.5 and Lemma 3.8,

n ii2
y" —   Ttv

|| x«,((ä),j, m    *■ y\

(3-6) < 2/min{C1,l}(2«C282//5m,„(S) + 2<p„(ßmj8))

+ 2g2(ym) + 2Kh(ym) + 2/K\\(I - Pm)T*yf).

By the proof of Theorem 2.8 we have lims^0ßn(8) = 0 and \ims^082/ßm „(8) = 0

because of ßm „(8) > ß„{8).

Further, our assumptions on Vm imply \i.vn m _ X\\(I - Pm)T^y\\ = 0 and

limm^00Y„, = 0 (see, e.g., [12, Lemma 2.4.1]). This implies \imm_xS^0ßmn(8) = 0

and hence limOT_OOi8_0(pM()8mi„(8)) = 0 by Lemma 2.1. Hence, all expressions on

the right-hand side of (3.6) tend to zero, which proves convergence for our parameter

choice.
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Now assume T^y g R((T*T)") for some v > 0. By Lemma 3.5, Theorem 3.6 and

Lemma 3.8 we obtain

„2      io(y„4,")     for v< 1/2,

(3.7)    2g2(ym) + 2Kh(yJ+(2/K)\(I-Pm)Ty     = M/"
(0(y„J     for p> 1/2.

Since /3„(8) < ßm,„(8), we obtain by the proof of Theorem 2.8,

( o(84v/{2"+1))      for v < n

Further, the results of Schock [19] imply that

(ia\ I  2\     \°{ym)     lorv<n,
(3-9) «PB(Ym)=      _,   4„.      f ^

\0(y*")     forv>n.

Hence, by (3.6), (3.7), (3.8) and (3.9) we obtain

(o(84vA2r+1)) + o(y4") forO < v < 1/2,

\\<„,8).8,m - Tfy( =    o(84"/<2" + 1') + 0(y2) for 1/2 < , < n,

\o(84"A2" + 1)) + 0(y2) f0Tv>n,

which completes our proof.   D

Remark 3.12. Although convergence rates are expressed in terms of ym, only the

numbers bm are used for the computation of am(8). Note that the numbers bm are

effectively computable (cf. Appendix 3), whereas only estimates for ym are available

in general. Groetsch [12], resp. Engl and Neubauer [6], use information about ym to

compute the regularization parameter. This might be detrimental for actual compu-

tations, since poor estimates for ym could also yield poor convergence rates.

Remark 3.13. For actual computations the choice of K, C and n is of course

important. In view of the proof of Lemma 3.7, it seems to be advantageous to choose

K small, if one has the a priori information that T^y may be approximated well by

elements of Vm, i.e., ||(7 - Pm)T^y\\ is small. More critical is the choice of C and n.

In the infinite-dimensional case, a choice of C = 1 is optimal by Remark 2.4, and

the approximation error remains uniformly bounded for all n by Theorem 2.9. Our

numerical experience suggests that analogous results could also be expected for our

finite-dimensional approximations, but we were not able to prove this.

4. Numerical Results. All examples are Fredholm integral equations of the first

kind on [0,1],

f  k(t,s)x(s)ds=y(t),

where the kernel is given by

r(l - s)    if t < s.
k(t,s):=

'      \s(\-t)     if t>s.

This kernel is the Green's function of the vibrating string with fixed ends. It is well

known (cf. [2]) that {u-, vf, <s¡} with Uj(t) = v/t) = 21/2 sm(jirt), t g [0,1], and

a = ( "7 ) ~2 forms a singular system for this operator.



TIKHONOV REGULARIZATION OF ILL-POSED PROBLEMS 519

In our examples, we chose Vm as a space of linear splines on a uniform grid of

(m + 1) points in [0,1]. For some computational aspects we refer to Appendix 3 in

the Supplements section. We obtained the following results for bm:

m

0.548 X 10"2       0.131 X 10"2

16

0.325 X 10"3

32
0.811 x 10"4

It appears that bm = 0(m 2), which agrees with the fact that ym = 0(m 2) (cf. [9]).

Example   4.1.   (a)   y(t) = (t - /3)/6,   T^y(s) = s.   Since   /d s sin(j<ns) ds =

(-\)i + 1/JTT, we obtain that T*y g R((T*T)v) for  v < 1/8. (Note that T*y G

R((T*T)") if and only if E,a/4"<7V, w;>2 < oo.) Hence, according to theory, we

should obtain a convergence rate o(y2") for v < 1/8, independent of the iteration

number n. For K = 1, the results were as follows:

m

1

e  b~1/4

10

ejb. -1/4

« = 100

e b~1/A*■ mum

16

32

0.167

0.114

0.806 X 10-1

0.570 X 10"1

0.614

0.600

0.600

0.600

0.153

0.104

0.731 X 10"1

0.562

0.547

0.544

0.517 X 10"1      0.544

0.152

0.103

0.723 X 10"1

0.511 X 10"1

0.559

0.541

0.538

0.538

Here, em.= |K'm,m - r+iy||witham:= (2« - l)Kb2,. The columns headed by emb^1/4

show that the convergence seems to be O(b)/4).

Since Tfy g Vm for each m, we should obtain better results for small K,

according to Remark 3.13. The following table shows that for K = 0.05 the absolute

errors are significantly smaller. However, the convergence rates seem to be as before.

= 1

10 -1/4

10

103 e b~l/4

n = 100

e... 104 ■ eh/'*

16

32

0.252 X 10"1

0.159 X 10"1

0.111 X 10"'

0.784 X 10 "2

0.926

0.836

0.830
0.826

0.947 X 10 "J

0.221 x lO"3

0.145 X 10-'

0.102 X 10 --1

3.48

1.16
1.08
1.07

0.245 X 10-'

0.218 X 10-4

0.131 X 10"4

0.925 X 10 ~5

9.00

1.15
0.976

0.975

(b) y as in (a); for each m, y was 30 times randomly perturbed with 8m = bm/2.

Choosing the regularization parameter as the solution of (3.4), the convergence rate

should be o(b£) with ¡u < 0.2. The following results were computed with C = 1.01

and K = 0.01.

m

n = 1

èmK
0.2

n = 10

ë b 0.2

« = 100

ëj>.
-0.2

16

32

0.336

0.242

0.176

0.131

0.952

0.913

0.877

0.862

0.338

0.235

0.175

0.131

0.958

0.886

0.872

0.862

0.339

0.235

0.175

0.130

0.960

0.886

0.872

0.855

Here and below, ë   denotes the maximum error of all tests.
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Example 4.2. (a) y(t) = (l/24)(r - 2/3 + t4), T^y(s) = (l/2)(s - s2). Since

fr}T*y(s) ûn(JTTs)ds = (-\)J/(TTJ)\ we obtain T*y g R((T*T)1') for v < 5/8.

Hence the convergence rate should be 0(ym). For K = 1, we obtain the following

results:

m

n = 1

embm

n = 2

eniK em°m

16

32

0.250 X 10 "2 0.456

0.601 X 10 "3 0.458

0.149 X 10 ̂  0.455

0.367 X 10 "4 0.453

0.242 X 10 "2 0.442

0.594 X 10~3 0.453

0.147 X 10-3 0.452

0.366 X 10"4 0.451

0.240 X 10 "2 0.438

0.592 X 10~3 0.452

0.147 X 10 ~3 0.452

0.365 X 10"4 0.450

The following table gives the errors for the best possible approximation of T^y by

elements of Vm.

16 32

\(I-Pm)T\y\ 0.233 X 10'2   0.582 X 10"3   0.146 X 10"3   0.364 X 10"

(b) y as in (a); y was 30 times randomly perturbed with 8m:= bm for each m.

According to theory, the convergence rate should be o(b^) with ¡u. < 5/9.

m

1 2 n = 4

ë  ¿T5/9
èmbm

5/9 ë   b~5/9
m   m

16

32

0.770 X 10"1

0.272 X ÎO^1

0.971 X 10"2

0.451 X 10"2

1.39

1.09

0.842
0.845

0.746 X 10"1 1.35

0.224 X 10-1 0.895

0.728 X 10"2 0.631

0.372 X 10 "2 0.697

0.731 X 10"1 1.32

0.200 X 10 -1 0.799

0.601 X 10"2 0.521

0.344 X 10 ~2 0.644

Example 4.3. (a) y(t) = (l/30)(3r - 5/3 + 3/5 - tb), T*y(s) = s - 2s3 + s4. In

this example one has T*y G R((T*T)P) for v < 9/8. Hence, the convergence rate

should again be 0(ym). If we choose K = 1, we obtain the following results:

m

n = 1

,,b:} emKl

n = 4

e b-1

16
32

0.536 x 10"2 0.978

0.129 X 10"2 0.985

0.320 X 10"3 0.985

0.798 X 10"4 0.984

0.531 X 10"2 0.969

0.129 X 10"2 0.985

0.320 X 103 0.985

0.798 X 10"4 0.984

0.531 X 10 "2 0.969

0.129 X 10"2 0.985

0.320 X 10"3 0.985

0.798 X 10^4 0.984

Note that our parameter choice yields nearly the best possible approximation

P...Tht...

m 16 32

J-Pm)TM 0.531 X 10"2 0.129 X 10"2 0.320 X 10"3 0.798 X 10"
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(b) y as in (a); y was again 30 times randomly perturbed with 8m := bm for each

m. In this case we should obtain, for n = 1, convergence rate 0(b£) with ¡i = 2/3,

resp., for n > 2, the convergence rate o(b^) with ju < 9/13. A choice C = 1.01,

K = 1 yields:

w

1

x2n

n = 2

ë b~9/u
èmbm

9/13

16

32

0.124

0.353 X 10"1

0.116 X 10"1

0.467 X 10 ~2

3.99

2.95

2.45

2.49

0.112

0.249 X 10 -1

0.662 X 10 "2

0.236 X 10 "2

4.12

2.47

1.72

1.60

0.106

0.201 X 10-1

0.474 X 10 "2

0.165 X 10"2

3.90

1.99

1.23

1.12

Example 4.4. y(t) = (l/tr2)sin('ïït), Tfy(s) = siriirs. In this example, T^y G

R((T*T)") holds for any v > 0. If the data are known exactly, we again obtain

nearly the best possible approximation PmT^y. If the data are randomly perturbed

with 8m = bm, we should obtain, for each n g N, the convergence rate 0(b^n/<2n+1)).

The test was performed 30 times again; the following table shows the maximum

error observed for the choice C = 1.01, K = 1.

m

n = 1

x2n ë b~4/i

n = 4

ë r8/9c mum

16

32

0.170

0.540 X 10"1

0.178 X 10"1

0.693 X 10"2

5.47

4.51

3.77

3.71

0.135

0.336 X 10"1

0.875 X 10"2

0.292 X 10-2

8.70

6.80

5.40
5.47

0.117

0.248 X 10-1

0.572 X 10~2

0.169 X 10 ~2

12.0

9.05
7.21

7.31
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APPENDIX  1.    SINGULAR SYSTEMS

Some of the proofs in Appendix 2 are based on the use of a singular system

{oj.Uj.v.}  for the compact operator T (cf.   [8],  [12]).  We now give a brief

summary of the most important preliminaries used in Appendix 2.

From spectral  theory we know that the nonzero eigenvalues of T*T can be

2 2
enumerated as a sequence o,    i o2    ä ...    which (if infinite) converges to zero.

If we denote by u,,u?,...  an associated sequence of orthonormal eigenvectors and

set v. = Tu./o., then T v. = o. u^.  Moreover,  {u } is a complete orthonormal  set

for R(T*) ■ N(T)J' and {v }  is a complete orthonormal  set for R(T)  = NfT*)1.  In order

t -2 2
that y e D(T ),  it is necessary and sufficient that E o- <y,v,>    < ». Then

j    J J

T+y « E   o'^y.v^u,.  Further, T+y e R((T*T)V)  if and only if E a^(2+4v'<y,v.>2 < -.

For any a,\ > 0 we have for each zEl

(aI+TT*)"*Z = E (o+a12)"X<Z,»,>V1  + a~\l-Q)z,
j J J    J

where Q denotes the orthogonal  projector onto R(T).  Hence

|aA(aI+TT*)-Xz||2 = E a2 Va-iV^Z.v / * Il (1-Q)z|2 S Z <Z,V,>2+ |(I-Q)z|2 .  |z|2

and this implies |aX(aI+TT*)"X| s 1.

Analogously, we have for each x e X

(aI+T*T)"\< = E (a+o 2)~X<x,u,>u . + a"X(I-P)x,

j   j      J J
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