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Bi-Cyclide and Flat-Ring Cyclide Coordinate Surfaces:

Correction of Two Expressions

By Philip W. Kuchel. Brian T. Bulliman, and Edward D. Fackerell

Abstract. Bi-cvclide and flat-ring cyclide coordinates are three-dimensional rotational coordi-

nate systems based on conformai transformations using the Jacobian elliptic function sn. We

have checked the previously published formulae of these systems (P. Moon and D. E. Spencer.

Field Theory Handbook. Springer-Verlag, Berlin, 1971). In both cases the expression for the

rotation-cvclide surfaces was incorrect: thus we present rederivations. The expressions were

verified with the symbolic-algebraic computation package MACSYMA.

1. Introduction. Novel orthogonal coordinate systems in two dimensions can be

generated by conformai transformations using analytic functions of complex varia-

bles; three-dimensional systems follow by rotation about either the real or the

imaginary axes [8], [9], Our interest in these systems is related to the calculation of

the magnetic potential in and around nonspherical objects introduced into a uniform

magnetic field; of particular interest are the biconcave-disc shapes of some red blood

cells [3], Among the analytic functions that yield coordinate curves that are similar

to the cross section of biconcave discs is the Jacobian elliptic function z = x + iy =

asn(w, k) [6], [7], where a is real and the complex numbers w = it + iv and k are

the argument and modulus, respectively [1], Separation of the real and imaginary

parts of the elliptic function yields two coordinate-transformation equations, in x

and v [6]-[9]:

(1.1) x = -r snjudn/.

(1.2) v = -7- cn/tdnjusni^'cn v',

(1.3) A = 1 - dn2/xsnV.

(1.4) 0<|i<i.       0 «?<#',

where K and K ' are the definite elliptic integrals of the first kind with respect to k

and its complement k', respectively [2], [5]; and the prime on v' specifies that k' is

used in the elliptic function. The series of coordinate curves shown in Figure 1.1

were drawn for three different values of k in order to emphasize the effects of

changes in k on the concavity of the v = constant curves. Moon and Spencer have

already presented similar curves, but only for k2 = 0.5 [6]-[9].
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Figure 1.1

Orthogonal closed-curve coordinate system described by (1.1)—(1.4). The following values of

real a and k1 were used: A, 30, 0.1; B, 30, 0.5; C, 30, 0.9. K and K' were calculated by

computer using the hypergeometric series expression [2, p. 298] and sn was evaluated using the

series expression [5, p. 13] programmed in BASIC. The scale-values of p and v are fractions of

K and K', respectively. The curves were plotted using a Hewlett-Packard Series 9000 model

220 computer and a 7475A plotter.

When the maps of Figure 1.1 are rotated about the jc-axis, we obtain an

orthogonal family of surfaces [6], [7]. The Cartesian transformations are given in

terms of the bi-cyclide coordinates (¡u, v, \p);

(1.5) x = -r- cnftdn/xsn e'en v'cos \¡>,

(1.6) y = -r en /x dn ¡jl sn v' en v' sin ^,

(1.7) z = -r- sn/t dn/,

(1.8) O^n^K,   0<,v<K',   0 < \p < 277,    Aasin(1.3).

Expressions for the three families of coordinate surfaces (bi-cyclides, /x = constant;

rotation cyclides, v = constant; meridional half-planes, \p = constant) are obtained

by elimination of two of the three bi-cyclide variables from (1.5) to (1.7).
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2. Derivation of Expressions for Coordinate Surfaces. The process of variable-

elimination from (1.5) to (1.7) was as follows. Let,

s = sn(n,k), c = cn(n,k),      d=dn(n,k).

S = sn(v,k'), C = cn(v,k'),    D = dn{v,k'),    k'2 = l-k2,

2 2   ,       ~>    i       ~>
r   = x   + y   + z .

2.1. v = constant. The Cartesian coordinate surface for this condition was derived

by eliminating t// and ¡u, from (1.5) and (1.6); \p was eliminated by squaring these

equations followed by addition and using cos2 ̂  + sin2 ̂  = 1. Thus, from (1.3),

(2.1) A = 1 - d2S2 = C2 + k2S2s2,

from (1.7),

(2.2) Az/a = sD,

and from (1.5) to (1.7),

(2.3) A2(r2-z2)/a2 = c2¿2S2C2.

Squaring both sides of (2.2) and using D2 = I - k'2S2 = C2 + k2S2 gives

A2z2A2 = s2(C2 + k2S2) = (1 - c2)C2 +(l - d2)S2 = 1 - c2C2 - d2S2.

Adding this to (2.3) gives

A2r2/a2 = (1 - c2C2)(l - d2S2) = (1 - c2C2)A.
(2.4)

Ar2/a2 = 1 - c2C2 = S2 + s2C2 = s2 + c2S2.

We now have

(2.5) A2 = (C2 + k2S2s2)2,

(2.6) A2z2/a2 = D2s2,

(2.7) A2r2/a2 = S2C2 +(C4 + k2S4)s2 + k2S2C2s4,

(2.8) AV/a4=(S2 + C2s2)2.

The right-hand sides are four linear combinations of the three quantities s4, 52, and

s°, which can be eliminated to yield a linear homogeneous relation between the four

left sides. Using the identity C4 - k2S4 = C2 - S2D2 and cancellation of A2 gives

1      ' a4       \     S2C2     ¡a2 S2C2D2       a2

To obtain the basic equation-form given by Moon and Spencer [6], [7], [9], we

expand the coefficients of (2.9) in sn v' only:

(2.10) (-v2 + v2 + z2)2 - P(x2+y2) - Qz2 - R = 0,
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where

(2.11)

(2.12)

k2

Q = P-

k2

(I + k2)sn4v' - 2snV + 1

(1 - sn2f') sn2?'

(C2-S2D2)2 a2 _ a2

k2     k2S2C2D2

S2C2D4 + A:2S2C2

52C2£>2

(k2 - l)2snV + 2(k2 - l)snV +(k2 + 1)

(k2 - l)snV + 1

(2.13) R = -—.
k2

Expression (2.10) and its coefficients differs from that given by Moon and Spencer

[9, p. 124]. The expressions were, in fact, first derived here using the symbolic-alge-

braic computation package MACSYMA [4]. Batch-mode procedure files used for

computations relating to this and other sections are available from the authors.

2.2. ^t = constant. The right-hand sides of (2.5) to (2.8) can be re-expressed as

linear combinations of S4, S2, and S° with coefficients depending on the lower-case

letters. Elimination of these capitals yielded the coordinate surfaces defined by Eq.

If/// /   /   /

If!i ¡

Figure 2.1

Two-dimensional projection of a rotation cyclide coordinate surface of the bi-cyclide coordi-

nate system. The parameter values used in Eqs. (2.10) to (2.13) for this computer-based

drawing were a = 3.0, k2 = 0.1, v = 0.8/C'. The curves were plotted using a Hewlett-Packard

Think Jet printer from a screen dump from the computer mentioned in the caption of Figure

1.1.
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(2.10) with the following coefficients:

(2.14)

(2.15)

(2.16)

P= -

Q =

k - en /t + dn ¡ti

en2 ju dn2 jlc

1
k¿sn¿¡x +

sn2ju

R =
a

k~2

These expressions, after some rearrangement, are the same as Moon and Spencer's

[9, p. 124].
2.3. i// = constant. This coordinate surface is simply the half-plane given by

tan \p = y/x [9].

2.4. Graphical Representation of Surfaces. Figure 2.1 is a two-dimensional projec-

tion of a rotation cyclide obtained using computer graphics which relied on the

expressions (2.10) to (2.13).

3. Flat-Ring Cyclide Coordinates (¡i, v, ip). The Cartesian transformations for this

coordinate system are [7], [8],

(3.1)

(3.2)

(3.3)

x = -r- sn n dn p' cos \p,

y = -r sn ¡i dn v' sin i//,

a A ' '
z = — en /x dn /x sn v enc ,

where A and the ranges of the variables are as in (1.3) and (1.8).

The equations of the coordinate surfaces were derived in the same way as the

bi-cyclide cases, after noting that (2.8) still holds, although the roles of z2 and

r2 — z2 are interchanged in the derivation. We confirmed the correctness of Moon

and Spencer's expression [8, p. 127] for the flat ring-cyclides (/x = constant).

However, the formula for the rotation cyclides (v = constant) was shown to be

wrong. The correct expressions for the coefficients in (2.10) are,

(3.4)

(3.5)

(3.6)

P=a-

k2

«-P

R =

(k2 - 1) snV + 2(k2 - l)snV +(k2 + 1)

(k2- l)snV + 1

(1 + Â:2)snV - 2snV + 1

= (2.12),

,2../
(1 - sn v') sn v

- (2.11),

4. Discussion. That the earlier versions of the expressions for the coordinate

surfaces, v = constant, are incorrect can be demonstrated readily by choosing values

of v and substituting the corresponding values of the relevant elliptic functions into

them. Fortuitously, if A:2 has the value 0.5 (as was used by Moon and Spencer [7],

[8]), then, for a wide range of v and a values the previous 'equality' is satisfied to

within < 0.01a. However, if k2 i= 0.5, a much larger error can appear with the

previously published equations; this is not the case with our expressions. We are
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uncertain whether a systematic error arose in the earlier derivations of the formulae;

but we have excluded, by use of MACSYMA [4], the suggestion that k instead of k'

was used in the expressions containing v.

Acknowledgments. The financial assistance of the Australian National Health and

Medical Research Council and the Australian Research Grants Scheme is gratefully

acknowledged. Mr. Adam Hudson is thanked for assistance with MACSYMA.

Department of Biochemistry

University of Sydney

Sydney, NSW 2006, Australia

Department of Applied Mathematics

University of Sydney

Sydney, NSW 2006, Australia

1. F. Bowman, Introduction to Elliptic Functions with Applications, Dover, New York, 1961.

2. P. F. Byrd & M. D. FRIEDMAN, Handbook of Elliptic Integrals for Engineers and Scientists,

Springer-Verlag, Berlin, 1971.

3. Z. H. Endre, P. W. Kuchel & B. E. Chapman, "Cell volume dependence of lH spin-echo NMR

signals in human erythrocyte suspensions: The influence of in situ field gradients," Biochim. Biophys.

A eta, v. 803, 1984, pp. 137-144.

4. Mathlab Group, Laboratory for Computer Science, MACSYMA Reference Manual, Version

10, Massachusetts Institute of Technology, Cambridge, Mass., 1983.

5. L. M. Milne-Thomson, Jacobian Elliptic Function Tables: A Guide to Practical Computation with

Elliptic Functions and Integrals together with Tables of sn/x, cn/i, dnji, Z(u), Macmillan, London, 1970.

6. P. Moon & D. E. Spencer, "Cylindrical and rotational coordinate systems," J. Franklin Inst., v.

252, 1951, pp. 327-344.

7. P. Moon & D. E. Spencer, "Some coordinate systems associated with elliptic functions," J.

Franklin Inst., v. 255,1953, pp. 531-543.
8. P. Moon & D. E. Spencer, Field Theory for Engineers, Van Nostrand, Princeton, N. J., 1961.

9. P. MOON & D. E. Spencer, Field Theory Handbook Including Coordinate Systems, Differential

Equations und Their Solutions, Springer-Verlag, Berlin, 1971.


