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Perfect Multiple Error-Correcting Arithmetic Codes

By Daniel M. Gordon*

Abstract. An arithmetic code is a subgroup of Zr., ±1, with the arithmetic distance d(x, y) =

min, x - y m £¡._, c,r"0) (modr" ± 1), for \c¡\ < r, n(i) > 0 for 1 ^ i ^ t. A perfect e-

error-correcting code is one from which all x e Zf» ± í are within distance e of exactly one

codeword. Necessary and sufficient (assuming the Generalized Riemann Hypothesis) condi-

tions for the existence of infinitely many perfect single error-correcting codes for a given r are

known. In this paper some conditions for the existence of perfect multiple error-correcting

codes are given, as well as the results of a computer search for examples.

1. Introduction. The most general definition of a code is a set X (usually thought

of as messages), a subset C (codewords) and a distance function (number of errors),

with C chosen so that the codewords are far apart in the given metric. In the

Hamming metric, X is the set of all strings of O's and l's of a given length, and the

distance is the number of different digits. In this paper, we deal with a different type

of code:

Definition. For x e Zm, the ring of integers modm, the arithmetic weight of x is

the minimal number of nonzero entries in any representation x = E°l0c,/-' (mod m),

with |c,| < r for all i.

Every x has many different representations. One example is the base r representa-

tion of x, although that is in general not minimal.

The reason for this definition is that, when doing computer arithmetic in rLm with

radix r, an error consists of changing a digit, i.e., adding or subtracting a multiple of

r'. The arithmetic weight gives a lower bound on the number of changed digits in a

number.

Definition. For x, y e Zm, the arithmetic distance d(x, y) is the arithmetic weight

of x - y.

For the purposes of arithmetic codes, m is always taken to be r" ± 1, for several

reasons. In these cases the arithmetic distance is a sensible measure of the number of

errors, which is not true in general. Also, arithmetic mod r" ± 1 is easy to do on a

computer (see [4]). Since r" = ±1 (modm), we need only take n digits in a

representation. For notational convenience, a representation x = E"JoC,r' will be

written as (cn_x,cn_2,.. .,cx,c0).

Definition. Let m = r" ± 1 = AB, for some A, B e Z+. An arithmetic code is a

subgroup C= [AN\0^N < B}ofZm.
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From this definition, B is the number of codewords in C, which is the ideal

generated by A. To use this code, a number N is encoded as AN, and an addition

would be done: ANX + AN2 = A(NX + N2) + error. Since A(NX + N2) is a code-

word, the result can be decoded if few enough errors have been made, and the sum

recovered.

If m = r" - 1, the code is called cyclic, because any cyclic shift of a codeword is

also a codeword: If x = (cn_x,..., c0) is in a code C, then

rx = (c„_2,...,c0,cn_x) (modrn - 1)

is also in the code. If m = r" + 1, the code is called negacyclic, for similar reasons:

rx= (cn_2,...,c0,-c„_x)(modr" + 1).

Definition. An e-error-correcting code (e-code for short) is a code for which every

element of Zm is distance < e from at most one codeword. Equivalently, any two

codewords are distance > 2e + 1 apart. A code is called perfect if every element is

distance < e from exactly one codeword.

Perfect codes are good in the sense that they have no wasted space (errors which

cannot be decoded). Also, perfect codes tend to be nice mathematical structures. For

Hamming codes the existence of perfect codes is more or less solved. For arithmetic

codes, only the case of single error-correcting codes is well understood. Lenstra, in

[5], finds necessary and sufficient conditions for an infinite number of perfect

1-error-correcting codes to exist for a given r and n, assuming the Generalized

Riemann Hypothesis.

As an example, take r = 3, n = 3 and m = r" — 1 = 26. Then A = 13 generates

a perfect 1-error-correcting code with two codewords, 0 and 13. The sphere of radius

1 around zero has thirteen elements: {0, +1, ±2, ±3, ±6, ±9, +18}. The other

thirteen elements of Z26 form a 1-sphere around 13, which has weight 3.

In this paper we examine the existence of perfect e-error-correcting arithmetic

codes for e > 1. In Section 2 an explicit version of the sphere-packing condition is

developed to give a powerful necessary condition on the existence of these codes. A

table of all cases passing this condition for A < 241 is given. To eliminate most of

the entries in this table, more necessary conditions are derived in Section 3, using

some combinatorial arguments and some elementary number theory.

In Section 4 we give the only known family of perfect codes, one for each e. Each

of these codes has only two codewords and is analogous to the repetition codes in

the Hamming metric (where the two codewords are the vector of all zeros and the

vector of all ones). Despite a fairly extensive computer search, no other perfect codes

were found.

The last part of the paper is devoted to a heuristic argument that other perfect

multiple error-correcting arithmetic codes, if any exist, are very rare, and would

involve huge numbers. This argument uses some sieve theory and a reasonable, if

unprovable, assumption.

2. The Sphere-Packing Condition. From now on we will only consider perfect

codes. A starting point for any investigation of perfect codes is the sphere-packing

condition: Since the space Zm is partitioned into a union of <?-spheres, the size of the

sphere (denoted \S (r, n)\) must divide the size of the whole space.
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m = (# of codewords) • \Se(r, n)\ = B • \Se(r, n)\. But m = AB by the definition

of the code, so A = \Se(r, n)\. For convenience we will refer to A as the size of any

e-sphere, not writing out its dependence on e, r and n, and whether m is r" + 1 or

r" - 1.

In the case of arithmetic codes, the size of the e-sphere is not obvious. Different

error patterns give the same result; for instance, 3 = 21 + 2° = 22 - 2°. To calculate

it, the following results from van Lint [6] are needed:

Definition. The pair (b, c) is admissible if any one of the following hold:

(2.1a) (i)     be = 0,

(2.1b) (ii)     bc> 0   and    \b + c\<r,

(2.1c) (iii)     be < 0   and    |6|>|c|.

Definition. A representation x = T.^L0c,r', with c¡ e Z, \c¡\ < r for all ;' and

c¡ = 0 for all large /' is called an NAF (nonadjacent form), if for every i > 0 the pair

(ci+x, c¡) is admissible.

Theorem 1. Every integer x has exactly one NAF. If this is

00

x = £ c,r',

i=0

//it?« (is arithmetic weight is

w(x)=\{i\i>0,Ci*0}\.

Proof. See [6]. van Lint gives an algorithm which turns any representation into an

NAF of lesser or equal weight. Then he shows that the NAF is unique, completing

the proof.   D

The reason for the name "nonadjacent form" is that, for r = 2, an admissible pair

(b, c) must satisfy be = 0. Thus, in an NAF in radix 2, there are no adjacent nonzero

digits.

Definition. A representation

71-1

x =  £ cir' (modm)

i=0

is called a CNAF (cyclic NAF) if (c, + 1, c¡) is admissible for i = 0,1,..., n — 2, and

(cO'C77-i) is admissible if m = r" — 1, or (-c0, c„_x) is admissible if m = r" + 1.

Theorem 2. £t;erv x e Zm has a unique CNAF, unless (r + l)x = 0 # x (mod m).

/« i/ze exceptional cases, x either has two CNAFS (m = r" - 1) or none (m = r" + 1).

Proof. This theorem was given in [2] and [6] for the m = r" — 1 case without

proof. We will give the proof for m = r" + 1, which is substantially the same as the

other case.

Let 1 < x < r" (the negative of a CNAF is a CNAF, and x = 1 is obvious). The

CNAF for x is also an NAF for some number congruent to x (modr" + 1). The

absolute value of a CNAF is less than r", since each of the c,'s are < r,

and TJ¡Zl(r - \)r' = r" - 1. Thus the CNAF of x is the NAF for x itself or x -

(r" + 1).
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Let y = r" + 1 - x. Then to determine whether x has a unique CNAF, we must

determine whether the NAF's for x and y can both be CNAF's or both not be. For

an NAF to be a CNAF it must have c, = 0 for i > n - 1 and (-c0, cn_x) admissible.

To help with this, we have the following lemma from van Lint [6]:

Lemma 2.1. If we denote the maximal value of i for which c¡ ¥= 0 in an NAF for x by

i(x) and define i(0):= -1 then

rk + 2

i(x) ^ k x  <
r+ 1

From this follows:

Lemma 2.2. Ifcn_x is the largest nonzero digit in the NAF of x, for x > 0, then

(r± l)x
C_, =

Now let the NAF of x be E°=0c,r', and the NAF of y be E<¡L0d¡r'. Suppose both

of these are CNAF's. Then, since i(x) < n,

(2.2) (r+ l)x < r" + l,

(2.3) ^..[ili^o.

(2.4) c0 = x (modr).

Let x be the least positive residue of x mod r, i.e., 0 < x < r. Then, since (-c0, c„_x)

is admissible, we get two possibilities from Eqs. (2.1):

(2.5a) c0 > 0 => x > c„

c0<0

LH-1>

+ r — x < r.(2.5b)

But these implications are the same. Similarly, looking at the CNAF for y, we get

x < r + I — dn_x. Putting these together, we have

(2.6) c„_! < x < r + 1 - d„_v

Now since

(2.7) d,

Eq. (2.6) becomes

(2.8) \{r+l)x

and so

(2.9)

(r+l)y]
r+ 1 -

(r+l)(x-l)

< x < r + 1 r + 1
(r+l)(x-l)

(r+ l)(x- 1)      _     (r+\)x
-—- > x >-—

This is clearly impossible, so at most one of the NAF's can be a CNAF.

Next suppose that neither NAF is a CNAF. This can happen because c„ or dn are

not zero, or when cn = dn = 0, but (-c0,c„_,) and (-d0,dn_x) are both not

admissible. Both cases are similar, so we will only do the latter case.

Since now we are assuming both pairs are nonadmissible, we get Eq. (2.8) turned

around:

(2.10)
(r + 1):

> x > r + 1 r+ 1
(r + l)(x-l)
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and this gives Eq. (2.9) with the inequalities reversed. After multiplying through by

r",

(2.11) (r + l)x > xr" > (r + l)(x - 1),

and we get

(2.12) Jcr"< (r+ l)x^xr" + r+ 1.

Since (r + l)x = x (mod /•), we get

(2.13) (r+ l)x = xr" + x = x(r"+ 1).

All that is left to complete the proof is to show that the weights of the exceptional

cases are as given. This is easily done by writing down the NAF's of these numbers

and seeing that they have the proper weights:

NAF^y^l) = (1,0,1 - r,0,...,0,l - r),

NAFÍry^) = (1,0,1 - r,0,...,l - r,0),

NAf(/<^tM = (k, 1 - k,k + 2 -/",...,l-k,k + 2 - r).

It is easy to verify that these are the NAF's of the given numbers, and that they have

the right weights.   D

Corollary 2.1. The arithmetic weight of x e Zm is equal to the number of nonzero

digits in its CNAF. In the exceptional cases mentioned in the last theorem, the weight

of x is [(n + l)/2] if x = ±m/(r + 1), andn otherwise.

The exceptional cases are a nuisance, but for a fixed e they only matter for

[(« + l)/2] < e. But any nonzero codeword in a perfect e-code must have weight

> 2e + 1, so clearly n must be at least 2e + 1. Thus, if we exclude trivial codes

(where zero is the only codeword), [(n + l)/2] > [(2e + 2)/2] > e, so the excep-

tional cases do not affect the search for perfect codes. From now on, we will assume

that n > 2e + 1.

Let Be(r,n) be the ball of radius e, for a given r and n, i.e., all x such that

d(0, x) = e. From the above results we obtain the main enumeration theorem:

Theorem 3.

Proof. Consider any CNAF of weight e. It has e nonzero digits, broken up by

zeros into some number of blocks. We will prove the theorem by counting the

number of ways to break up the nonzero digits, and then count the number of blocks

of each length.

A k-composition of « is a set of positive integers \x,\2,...,\k such that

X, + ••• +\k = n. These are also known as ordered partitions. The total number of

/^-compositions of « is ("kz\).

Any weight e CNAF may be thought of as a /^-composition of e, for some k. We

need to figure out how many ways a given /c-composition may be arranged among

the n digits, and how many admissible strings of each block length exist.
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Lemma 2.3. The number of ways to position the blocks of a k-composition \x,...,Xk

ofe among n digits is (""/) + ("~kSx)Xk.

Proof. The number of arrangements with the last position zero is (n~ke), since there

are n - e zeros in the word, and a single block may be placed to the left of any of

these zeros.

If the last position is nonzero, then the kth block must be at the end, and the

other k - 1 blocks may be placed to the left of any of the zeros except the first

(because then the first and last blocks would cyclically coincide, and become one

block). There are ("¿i-/) ways to position these blocks. Then the final block may be

cyclically "wrapped around" by 0,1,..., Xk — 1 digits, giving (""k-7x1)Xk possibil-

ities in total.   D

Lemma 2.4. The number of admissible blocks of length X, is 2(r — l)(r — 2)x,~1.

Proof. Call an admissible block (ax, ...,ax). ax is nonzero and between -(r - 1)

and r — 1, a total of 2(r - 1) possibilities.

Now look at üj, for j = 2,...,\¡. If a7_, is negative, aJe{-r-aJ_1 +

1,..., -1,1,..., -fl/_i - 1), by Eqs. (2.1). If aj_x is positive, then ay- e {-aj_l +

1,...,-1,1,...,/•-a _,-1}. In either case, there are exactly r — 2 possible

values for a¡, j = 2,3,... ,X¡. Thus the total number of admissible blocks is

2(r- l)(r- 2)x<"1.    D

Proof of Theorem 3. Using Lemmas 2.3 and 2.4, we have
e

\Be{r,n) | = Yé Y, (# of ways to position X)
k = l      k-comps of e

A = (\i.K)
k

(2.14) ' 11 (# of admissible blocks of length X,)
7 = 1

è.çKvMvi'W
k = l     X   L

• 2*(r- i)*(r_2)A'-1+x>-1+ •+x*-1.

But X, — 1 + ■ ■ ■ +Xk — 1 = e — k, since X is a ^-composition of e. Now the Xk

term is the only term depending on X. Since (X,,..., Xk_x) is a (k - l)-composition

of e — Xk, we can rewrite Eq. (2.14) as

,k, ,,f-t
\Be(r,n)\= E 2*(r-l)*(r-2)'

A = l

(2.15) e-k + l

(vr-lHv:1) i   £>
\jt = l     (k-l)-comps

ofe-\k

Since no terms depend on the (k - l)-composition of (e - Xk), we can replace that

sum by the total number of such compositions, (e~kxJ:2l), to get

\Be(r,n)\= Í 2k(r-l)k(r-2)e-k
A = l

rV)(r-!H";iTTCr/-2~>>
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It is nonobvious how to simplify this further. The following lemma was determined

empirically:

Lemma 2.5.
e-k + l

I
X»-l k-2

-(Í)-
Proof. There probably is a good combinatorial reason for this, but it is not

obvious, so a proof by induction will suffice. For e < k the equation is trivially true,

and calling the sum S(e,k), it is easy to show that it obeys the recurrence

S(<?, k) = S(e - 1, k) + S(e -l,k- 1), so it must be (ek).   D

Using this lemma, Eq. (2.16) becomes

\B.(r.n)\- i 2k(r-ï)k(r-2)e-k

(2.17)

(2.18)

Theorem 4.

A = l

vHîiîHvï1)«)
-E2*(r-l)*(r-2)-*5(j-

1
D

|S.(r,»)|-l+E   I 2*(/--l)A(r-2)'
i-knll-1

k\k-l
n-l-1

k- 1
/=1     7C = 1

Proof. The e-sphere is just a union of balls of radius  < e, so sum the formula in

the last theorem to get this one.   D

Corollary 2.2. \S2(r, n)\ = 2(r - \)2n(n - 2) + 1.

Corollary 2.3. |52(2, n)\ = 2«2 - 4n + 1.

This theorem is a very strong necessary condition. For e = 2 there are only 13

cases where \S2(r,n)\ = A\r" ± \JorA < 241:

Table 1

Cases satisfying the sphere-packing condition

27

12

33

65

90

513

16385

262145

325098

47

112

1008

2354

241

2047

8191

15841

524287

536870911

137438953471

211376118817

121

16921

1207361

129798145

7485494017

Comment

3 | n (Corollary 3.3)

31 n (Corollary 3.3)

2" = 1 (mod A)

245 = l(mod/0

219 = l(mod/4)

229 = l(mod/4)

1 (mod A )

n 2 (mod 4) (Corollary 3.5)

Perfect 2-code

317 + 2*3i X' Q(moáA)

*0.172*8 -1 (mod A)

916* ■ 1 (mod A)

27-- -1 (mod/i)
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Most of the comments give reasons for the nonexistence of a perfect code for the

given r, n, and A, using either nonexistence results proved in the next section, or the

fact that A must be a primitive divisor of r" ± 1 (if 2k = 1 (mod A) for k < n, then

2k — 1 is a codeword of weight 2, which cannot happen in an e-error-correcting code

for e > 1).

The most difficult case is where r = 3 and n = 47. Computations revealed the

weight 4 codeword shown in Table 1, so the code generated by A corrects only one

error and therefore is not perfect, but no theorem is known which explains why this

happens. Such a theorem might help in proving stronger general nonexistence

results.

Most of the r = 2 cases are part of an infinite family: When n = 2m + 1, then

(2.19) |S2(2, n) | = 2«2 - 4« + 1 = 22m + 1 - 1,

and, if 2m + l|2m+ 1,

(2.20) |52(2,«)|= 22m+1 - 112" — 1 = 22"' + 1 - 1,

and so the sphere-packing condition is satisfied. Whenever 2m + 1 is prime, this will

happen if (2 \(2m + 1)) = -1, which is true when 2m + 1 = ±3 (mod8). None of

these give perfect codes, since in these cases 22m+1 = 1 (mod ,4), and so 1 has two

different weight 1 CNAF's (mod A).

For e = 3, a search for all A < 250 found only the case r = 3, n = 7, which is a

perfect 3-code.

3. Nonexistence Results. Stronger necessary conditions are needed, and the ones

for e = 1 are not true in general. The following results are true for all e:

Theorem 5. p \ A impliesp = 1 (mod 2n/lcm(e, e — 1,..., 2)).

Proof. Zm/C = ZA, by the definition of a code. But for a perfect code, every

element can be written as a unique codeword plus an error vector, so Zm/C = {errors

of weight < e}. Thus, for a perfect code to exist, there must be exactly A CNAF's of

weight < e (as stated after Corollary 2.1; since n > 2e + 1 there are no exceptional

cases, and each error in the e-sphere corresponds to a unique CNAF by Theorem 2).

This set of CNAF's is acted on by multiplication by the group {±rJ}, j =

0,1, — n — 1. Multiplying by r has the effect of shifting the digits of the CNAF

cyclically, sending(c„_x,...,c0) to(cn_2,...,c0, ±c„_x), the sign being changed for

negacyclic codes. Thus this group action can be thought of as all cyclic shifts and

negations of the set of CNAF's.

This group action splits the nonzero CNAF's into orbits. It is a basic combina-

torial lemma that the size of the orbit containing an object equals the size of the

group acting on the object divided by the number of group elements which fix that

object. Since our group of cycle shifts and negations has order 2«, each orbit will

have size 2n/f, for some /.

In particular, each orbit has order a multiple of 2n/f, where / is the number of

nonzero entries in the CNAF. For instance, for 2-error-correcting codes, the CNAF's

consist of 0, and all weight one and two admissible representations. Each of the

weight one orbits has size 2« (only the identity fixes both the position and sign of

the nonzero entry). All of the weight 2 orbits also have 2« elements, unless n is even,
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in which case the orbit represented by

cn/2 + c = (0,...,0,c,0,...,0,c)

has only n elements. Each member of the orbit is fixed by multiplication by rn/2, a

cyclic shift of n/2 digits.

Similarly, orbits of size 2n/f may be created if /1 n, by spacing a number c evenly

/ times through the n digits of a CNAF. This does not work for a negacyclic code,

since the sign changes when a number is wrapped around. To get an orbit of size

2n/f for a negacyclic code, / must be odd, and the sign of c must be alternated. For

example, the orbit represented by

c2"/3 - c"/3 + c= (0,...,0,c,0,...,0,-c,0,...,0,c)

has 2n/3 elements. Each member of the orbit is fixed by multiplication by -r"/3, a

cyclic shift of n/3 digits and a negation, as well as the identity and multiplication by

r2"/3.

In general, the possible sizes of orbits in a cyclic code are multiples of 2n/f, for

any / < e. This is true because each orbit consists of CNAF's of weight ^ e, and as

described above, all orbits of weight / have size a multiple of 2n/f.

So if A =/>!> ••• pf, let Q, = A/Pi. Then [Q„2Ql,...,(p1 - l)ß,.} is closed
under multiplication by ±r, so it is a union of orbits, each of which having size 2n/f

for some / < e. So for some integral kj's:

Íkf^\\Q,,...,(p,-l)Q,\
/=i      J

and so

(2n/\cm(e,...,2))\(Pl-l).   D

If we restrict the theorem to negacyclic codes, then it may be strengthened by only

taking the least common multiple of the odd numbers < e.

Let ti(A) be the number of prime factors of A, counted with multiplicity. In other

words,

n(K',---,^) = «i + ••• +«,.

Corollary 3.1. For a fixed e and r, Q(A) > e for at most a finite number of

perfect codes.

For e = 2, this gives a weakened version of the results for e = 1 :

Corollary 3.2. For e = 2 and a fixed r, any A generating a perfect code is prime,

with at most finitely many exceptions.

Proof. By Theorem 5, for a perfect code we have

The left-hand side is a polynomial of degree e, by Theorem 4, so if / > e, and n is

sufficiently large, there will be no solutions to the equation. If / = e, there are only a

finite number of {&,} and n which will give solutions, unless for some choice of k's

the polynomials are identical. But this can never happen, because the coefficients in
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the polynomial on the right-hand side are all clearly positive, while from the formula

for \Se(r, n)\ given in Theorem 4 it can easily be shown that the coefficient of ne_1

is always negative.

Aside from these finite number of solutions, the sphere-packing bound cannot be

met unless I < e.   D

For an example, look at e = r = 2, so A = 2n2 - 4n + 1. For r = 2, the only

possible composite A would be (n + \)(n + 1), since (2/i + 1)(« + 1) and (n + l)3

are greater than A for all n > 5. Setting (n + I)2 = 2n2 — 4« + 1, we get n = 6, so

A = 49. But 49 does not divide 26 + 1, so no such code exists. Thus, in this case A

must be prime.

Theorem 6. For e = 2, r ^ 81, A must be prime, except for the case where r = 3,

A = 121.

Proof. A computer search for solutions to A = 2(r - l)2n(n - 2) + I =

(an + \)(bn + 1), done exactly as the r = 2 case above, revealed only a few cases

[see Table 1], with only one actual perfect code. Checking higher-degree equations is

harder, but unnecessary if all n such that 2(r - l)2n(n — 2) + 1 ^ (n + l)3 have

been checked. Another computer search checked the sphere-packing condition

for A < 241, which includes n < 13100 for r < 81. For n > 13100 and r < 81,

2(r - \)2n(n - 2) + 1 < (n + l)3, so all possible cases have been covered.   D

Once the composite cases have been dealt with, as above, the primality of A gives

more conditions on possible perfect codes. For instance:

Corollary 3.3. No perfect e-code exists with e > 2,31 n and A prime.

Proof. Depending on m, we use one of the factorizations:

r3»_ i   = (-,.«_ 1^r2n + rn+  ^

r3" + 1 = (/•" + l)(r2" - r" + 1).

In either case, A | m implies one of the factors on the right-hand side is a multiple of

A, since A is prime. But the arithmetic weight of those factors is clearly < 3,

contradicting the fact that weight(AN) ^ 2e + 1 for all nonzero codewords AN of

the code.   D

Corollary 3.4. No perfect e-code exists with e > 2, 21 n, A prime and m = r" — 1.

Proof. As above, using r2" - 1 = (r" - l)(r" + 1).    D

Corollary 3.5. No perfect e-code exists with e > 2, n = 2 (mod 4), A prime,

r = 2 and m = 2" + 1.

Proof. Use the Aurifeuillian factorization

24/c + 2 + j  = (22A + 1 + 2* + l + 1)(22*+1 _ 2k + l + 1).     D

These results are helpful for doing computer searches, but do not exclude the

existence of perfect codes for any e or r. The only such theorem we have is a

generalization of one by Lenstra:

Theorem 7. No perfect cyclic code exists with r a square.
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Proof. Suppose s2 = r. We know that 2n\<j>(A), since [±rJ] is a subgroup of Z*A

of order 2n. Define a = <¡>(A)/2n. Then:

sHA)/a  = s2n = r« =  J  (m0d,4).

So s is an ath power in Z*A. This implies s is the identity element in ZA'/{±rJ},

since the order of this group is a. But 1 < s < r, and each of 1,2,...,(r — 1) are the

representatives of different cosets, so we get a contradiction, and r cannot be a

square.   D

4. Existence Results and Computer Searches. A search for perfect e-codes for

e = 2,3 and 4 was done on a Cray supercomputer. The only perfect codes that were

found are trivial ones and the following family of perfect codes:

Theorem 8. For r = 3, n = 2e + 1, {0,(3« - l)/2} /omz a perfect e-code in

Zr_x.

Proof. It suffices to show that the nonzero codeword has weight 2e + 1, and that

exactly half of the elements of Zr_x haveweight < e. The CNAF's of (32e+1 - l)/2

are (1,..., 1) and (-1,..., -1), proving the first point.

The second is demonstrated by a bijection between CNAF's of weight < e and

those of weight > e. To construct the bijection, let w, denote any string of zero

digits, and vt denote any admissible string of nonzero digits. Then any CNAF may

be decomposed uniquely as either (ux, vx,..., uk, vk), or (vx, «,,..., vk, uk), depend-

ing on whether the CNAF starts with a zero or not. If the last digit and the first digit

are both either zero or nonzero, then ux or vx is considered to "wrap around".

The crucial thing to note is that for r = 3 there are only four possible admissible

strings of a given length:

(1,1,. ..,1),    (-1,-1,...,-1),    (2,-1.-1),    (-2,1,...,1).

Also note that the first digit of a string determines the whole string. The bijection

consists of interchanging the w,'s and v,'s: Each string of nonzero digits is changed

to zeros, and the corresponding string of zeros is changed to a nonzero string with

the same first digit as the old nonzero string had.

The only exceptions to this decomposition are a CNAF with only zero digits or

only nonzero digits. But these are just (0,...,0) and (1,...,1) (or equivalently

(-1,..., -1)), the two codewords, so it is natural to have the mapping interchange

these.

It is not hard to check that this mapping is in fact a bijection. Also, if a CNAF has

weight w, then its image has weight 2e + 1 - w, since the arithmetic weight is just

the number of nonzero digits of a CNAF. Thus CNAF's of weight < e are mapped

to those of weight > e, and vice versa, so there are the same number of each, and

the theorem is proven.   D

These codes were known before, in a sense that they are a special case of the

Mandelbaum-Barrows codes (see [6] for a definition of these codes). They suffer the

usual problem of these codes: far too few codewords to be useful in practice.

Aside from the empirical evidence of the searches, a heuristic argument suggests

that perfect codes are rare for e > 2:
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Conjecture. For any fixed r and e ^ 2, the number of perfect <?-codes with n < x

is O(loglogx).

Heuristic Argument. Assume Q,(A) < e, since the number of perfect codes for

which A has e or more prime factors has been shown to be finite. Then for a fixed r,

A =/(«), where / is the polynomial given in Theorem 4. Define

(4.1) T(x) - "<J[-'t'>-n<*W."-.2)*'

where each factor in the product is prime. Then we have

Lemma 4.1. T(x) = 0(x/logx).

Proof. This lemma is a special case of Theorem 5.3 of [3], in the case where

A =/(«) is prime. The proof given there also works for any A; the only necessary

condition is that the prime factors of f(n) are bounded from below, and in this case

each prime factor is » n.

Let ordA(r) be the order of r mod A, i.e., the smallest exponent / for which

r1 = I (mod A). For a given A, if a perfect code exists, ord^r) = n (for m = r" + 1

this is 2n, but the argument is otherwise unchanged). We need to estimate the

probability that this happens.

For e = 2, for which A is prime, the analysis is easy: Z% is a cyclic group of order

A - 1 = 2(r - l)2(n - 2)n. Exactly 2(r - \)2(n - 2) elements in the group have

order n, so the probability that r has order n is heuristically

(4.2) -\-«-.
2(r-l)\n-2)       "

In general, the analysis is more difficult. For A composite, Z*A is no longer cyclic.

The group is isomorphic to a direct product of cyclic groups, the largest of which has

order X(A), where X is Carmichael's universal exponent function (see [4] for details

about X(n)).

If

then

2n*■ ^i^Ö + 1

X{A} » km[{k'km(T...,2)-'- l.'}) - lcm(<.2"..,2) •lcra(i:'.*'»■

The fraction of elements which have order n depends on this number and the

length of the other cycles which make up Z*A. For the purposes of this argument we

will assume that the common factors of the k's are not very important, so we can

approximate the length of the cycle by

_2J1_Uk
lcm(e,...,2)M"

and so the probability of an element having order n by

(4.3) lcm(e'---'2)«l,

211-!*,
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The inequality follows from the fact that, for n sufficiently large, the leading

coefficient of

n(^lcm(,,...,2) + 1

must be » ne~', since A = /(«) is a polynomial in n of degree e, and / < e — 1.

From Eq. (4.3) we get

Exp(|(«<x,ord/4(/-) = «}|)<<      E      I

which, by the definition of T(n), equals

E n«)^--^«      n + 1
7i = 2e+l

7i = 2e+l     "
B(/(n))<e

«

)! = 2e +
j log« n(n + 1)

«   E
'   , ,  « log « '

where the last two relations follow from Lemma 4.1.

This sum is O(loglogx). The assumption made is not provable, but it does give

the right order for e = 1, and it has been used before for empirically supported

arguments, such as Artin's Conjecture (see [8]).

This argument does not support the conjecture that infinitely many perfect

e-codes exist. There are cases which satisfy the sphere-packing condition and are not

excluded by any of the nonexistence results of Section 3, but for which no perfect

code exists. When r = 3 and « = 47, A = 169211347 + 1, and none of the nonex-

istence theorems apply, but some codewords have weight 4. Without more evidence

it is impossible to conjecture either way, but the argument does indicate that any

further examples will be extremely large.
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