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Integer Sets with Distinct Subset-Sums

By W.F. Lunnon

Abstract. In Section 1 we introduce the problem of finding minimal-height sets of n natural

numbers with distinct subset-sums (SSD), and in Section 2 review the well-known Conway-Guy

sequence u, conjectured to yield a minimal SSD set for every n. We go on (Section 3) to prove

that u certainly cannot be improved upon by any "greedy" sequence, to verify numerically

(Section 4) that it does yield SSD sets for n < 80, and (Section 5) by direct search to show

that these are minimal for n < 8. There is a brief interlude (Section 6) on the problem of

decoding the subset from its sum. In Section 7 generalizations of u are constructed which are

asymptotically smaller: Defining the Limit Ratio of a sequence w to be a = hm„_00 wn/l"~l,

the Atkinson-Negro-Santoro sequence v (known to give SSD sets) has a = 0.6334, Conway-

Guy (conjectured to) has a = 0.4703, and our best generalization has a = 0.4419. We also

(Section 8) discuss when such sequences have the same a, and (Section 9) how « may

efficiently be computed to high accuracy.

1. The Distinct Subset-Sum Problem. A well-known problem in combinatorial

number theory [2, pp. 64-65] involves the construction for given n of a set

P = {/>;}> i = 1,•••,«, of natural numbers possessing the property we shall call

Subset-Sum Distinctness, or SSD for short: That is,

(l.i) E/>,= E/»i- 5 = tc{i,...,«},

or, distinct subsets of p have distinct sums. Evidently, choosing p¡ = 2'"1 satisfies

(1.1); the interest lies in how much the maximum element pn can be reduced below

2»-i
In order to explore the SSD property, it is convenient to consider a more general

concept: We say that x has a representation by p, with length k and signature /,

when for some S and T as before

(1.2) x-Ea-Ea.
/es /er

where S n T = 0, \S\ + \T\ = k, \S\ - \T\ = /; that is, x is the difference of two

disjoint subset-sums, of which the first has / terms more than the second, and the

two together have k terms. Alternatively,

n

(1.3) x = £ elPi,
;=i
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298 W. F. LUNNON

where e, e (-1,0, +1}, T.ei = l, X|e,| = k. In terms of this notation, p is SSD when

there is no nonempty representation of zero.

Interesting sets turn out to be associated with certain infinite sequences w = (wn),

n = 0,1,2,..., in the following fashion: Given w and n, set

(1.4) Pi = wn-w„_i,        1 = 1,...,/!.

The significance of this definition is that the «th set p" is obtained from p""1 by

attaching a zero, then incrementing every element by the same quantity wn - wn_v

Evidently, the maximum pn equals wn.

One such sequence is the Atkinson-Negro-Santoro sequence v [12], whose first few

values are

,,«012345      6      7      8       9       10      11       12

"■5>    vn    0     1     2    4    7    13    24    46    88    172    337    667     1321

and which is defined by the recurrence

(1.6) v0 = 0,    vx = l,    vn+x = 2vn - vn_m    for/i>l,

where m = [\n + 1] is the greatest integer not exceeding \n + 1.

Example. If we take n = 6 in (1.4), from (1.5) we get the SSD set

(1.7) p= {11,17,20,22,23,24},

which is the unique, optimal solution to the recreational problem posed in [3, no. 5].

(1.8) Theorem. Relation (1.4) produces a SSD set p from v for all n.

Proof. In fact, p has the further property that only positive numbers x can be

represented by positive signatures. This will plainly be true if it is true for the largest

T and smallest (longer, disjoint) S possible, that is, if

[5«- Il

E p¡-    E   /»/>i.
'-I i-lkn + li]

Rewriting in terms of v, and remarking that equality gives us the smallest possible

sequence, we get

«-1 [í»-i|]

(1-9) v„=    E   v,-     E    v, + l.
/-[I*] i-0

This is easily seen to hold for the sequence (1.6). Now suppose the theorem to be

false, and n to be the first for which it fails. By the foregoing, p must represent zero

with signature 0, that is T.¡eSv¡ = T.ieTv¡ where \S\ = \T\, 0 € S (say), and n £

SUT. But then {vn_x - i>„-1 -,} would not be SSD, contrary to hypothesis.   D

Dividing by 2"_1 and iterating (1.6), it may further be shown that v possesses a

limit ratio,

(1.10) vn/2n~x -* av   where av = 0.63336835 ... ;

the computation of this and similar constants is pursued in Section 9. Finally,

observe that if we have any particular SSD set p of size n0 and its corresponding w,

then for n > nQ Eq. (1.9) of the construction above may be used to extend w

indefinitely, yielding arbitrarily large SSD sets. The resulting limit ratio will indeed
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be smaller than at n0, although the improvement (of order 2~~2"0) is in practice

negligible.

Rather more intriguing is the Conway-Guy sequence u, whose first few values are

«012345678       9       10      11       12
(1.11) w-12233344       4        4        5 5

u„    0     1     2    4    7    13    24    44    84    161     309    594    1164

and which may be defined by

(1.12) w0 = 0,    ux = l,    u„ + 1 = 2un- un_m    foxn^l,

where m = [7 + -Jlñ]. This choice of m ensures that Tm_x < n < Tm for n > 0,

where

(1.13) Tm=\m(m + l)

is the rath triangular number.

In [1] is advanced the following

(1.14) Conjecture. Relation (1.4) produces a SSD set from u for all n. We

christen this the Conway-Guy conjecture, and Sections 3-5 comprise some investiga-

tions into the matter. The limit ratio of u is

un/2"'1 - «u   where au = 0.47025057....

Finally, in [1] and [2, pp. 64-65] is further proposed the

(1.15) Conjecture, u and au are "in essence" best possible; though the author

appears to have something relatively weak in mind, we choose to interpret this as

doubting whether sets with smaller a are possible. In Section 7 we shall consider

generalizations of u which contradict (1.15), whether or not they also satisfy (1.14).

2. The Conway-Guy Sequence. There follows a more succinct presentation of the

material in Theorems 5-8 of [1]. We assume implicitly n > 0, and un and m defined

as in (1.12). Summation is implicitly over 1.

(2.1) Lemma. We have un > 0, un + x - u„ > 0, /„ = un + 2 - un+x - u„ > 0.

Proof. By induction using (1.12): For the last part, note that f0 = 1, and for

n 5* 2,

A/„-2 = "„+1  - 2un + Un-2

= un_2-u„_m   by (1.12)

> 0   by the previous parts, noting m > 2 if n > 2.   D

If a sequence w has no nonempty representation of zero with signature 0, we

christen it SSD0. It turns out that this property is equivalent to the associated sets p

being SSD, at any rate when w is the Conway-Guy sequence: for

(2.2) Theorem. Let the set p be associated with the sequence w = u by (1.4) for

some fixed n. Then p is SSD when u is SSD0.

Proof. Suppose Lsp¡ = Lr/»,-, with \S\ - |7| = / > 0, say. Then by (1.4),

(2-3) u„l - E "„-, + E "„-, = 0.
S T
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Taking the greatest possible number of large terms in the first sum and small in the

second, the left-hand side of this is

n-l [\(n-l-2)\

>u„l-       E      «/ +       E      ", = c?„>   say.
[i(»-/+l)] o

But g, = E'0-1(w/ - «,) > 0 by (2.1), provided / > 1; and for n > I,

Ag„ = l(un+x - u„) -u„ + uc_(n_l+2)]

(2.4)
= (/ - 2)(«n+1 - «J + 2un+x - 3un + W[i(„-,+2)]

= (l- 2)(m„+1 - «„) + u„ - 2un_m + W[i(„-/+2)]

> 0,   provided / > 2 and m > 2 by (2.1).

In fact, if n > / > 2, then we must have ra > 2, so (2.3) is impossible unless / = 0,1.

If / = 1 we can make it 0 simply by attaching i = n to T; so finally / = 0. The

argument is easily reversible.   D

Notice that (2.2) would hold for any w provided only that it satisfied the relatively

weak condition g¡ > 0 for / > 1 established above (2.4) for u.

As it happens, there are rather a lot of representations of zero by u with signatures

other than 0. With Tm as in (1.13), we have

Lemma. IfTm_x^n^Tm then

m—l m—1

(2.5) 1+   E  "„-, = "„+!+   E  uTil.
0 0

Proof. Observe that Eq. (2.5) is immediately equivalent to (1.12), then invoke the

uniqueness of u. [Notice that n = Tm_x is included here, in contrast to (1.12): In this

instance the terms ; = ra - 1 cancel from both sides, reducing to the previous

situation.]   D

For ra > 3 the 1 and the uT cancel from both sides, giving representations of zero

whose size 2ra - 2 increases with n. For fixed size the search for a counterexample

to property SSD0 is indeed effectively bounded by

(2.6) Theorem. If there is a representation of zero with signature 0 and size 2k by

(u0,..., un), then we can take n = Tk + 1.

Proof. Let u„+x be the largest term occurring in such a representation, and

suppose the corresponding m > 3. Then

m— 1 m — l

««+i = E "„-, + i- E «r,.,  °y (2-5)
0 0

m-2 m-1

=     E    "„-,+ «„-m + l-     E    "!•_,
0 3

m-2

> E "„-,+
0

m-1

Ut     _ Ml   ~ E    UT,-i

If ra = 3, the bracketed quantity [...] = m2 > 0; and if ra > 3,

Amt • • • I = "rm_2+i- ut„_2 - "rm_3+i > 0   by (2.1).
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Therefore,
m-2

«n+i > E «„-,-;
0

and since the right-hand side is the maximum possible sum of ra - 1 terms whose

largest is un, it follows that the size 2k of the representation is at least 2ra; that is,

given k, the maximum possible value of n + 1 is Tk + 1. The cases m < 3, i.e.,

n + 1 < 4, are easily disposed of by inspection.   D

3. The Local Optimality of u. As we have remarked, it is not known that u is SSDO

for all n. However, we can show that no number smaller than un may be attached to

the previous members of the sequence. In pursuit of this end, we define a pair of

functions a = anl, b = b„¡, such that the entire open interval (b, a) turns out to be

representable by {u0,...,un_x} with signature /. [For this purpose we include the

empty representation of zero, with k = / = 0.] As before, Tm_x < n < Tm, and

summation is over i. We make use of a directed sum convention, similar to that for

integrals: I«"1» -Zpq~\

Definition. For |/| < ra,
/-i t+i

(3.1) anl= u„_,+i + £ u„_¡;       b„,= -wB+/+1 + £ «»+/+!-<■
i i

Each of these is equivalent to the other, by virtue of directed sums and the symmetry

relation

(3-2) bnl = -a„_,

following from the obvious fact that, when x is representable with signature /, then

-x is also with -/.

Below in (3.3) is a short tabí'e of (bnl, anl), for / > 0 only, in view of (3.2).

n/l 0 1 2 3

0 (-1,1)

1 (-1,1)        (-1,1)

„,v 2        (-2,2) (-1,2) (0,2)
K     ' 3        (-3,3)        (-2,4)        (0,4)

4 (-6,6)        (-4,7)        (0,8)       (4,8)

5 (-11,11)     (-7,13)     (-3,14)     (4,15)

6 (-20,20)     (-16,24)     (-9,26)     (4,27)

(3.4) Lemma. The endpoints of the interval are consistent, that is, anl > bnl.

Proof. Relation (3.2) takes care of / < 0, so we assume 0 ^ / < ra. Then,
/-i

anl=un_l+x+  £ «„_,    by (3.1)
i

/-i

- »n-l+l -«»+    E   "„-,
0

m—l m—l

= "»+1 - «■ + Un-t+i - 1 -   E  «„-, -   E  "r,.,
/ 0

by (2.5) and rearranging.
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In a similar fashion,

/+i

1

1-1

= -«„-w+i + »„ + E "„+/-
0

m' - 1 m' - 1

= «B - 1 -    E   "„+/-; +    E   «r,_x.
/ 0

where w' is chosen so that 7]„,_j < « + / < 7m-. There are now two cases to

consider: Since n^n + l^n + m and Tm_x + m = Tm, either ra' = ra or ra' =

m + 1. In the first case,

m-l

anl-Kl=  ["« + 1 - 2"„+  «„-/+1J +     E    [«■ + /-/ -«»-il
/

m-l

= [«,-/+! - M«-m] +     E    [«« + /-/-«■-*]

> 0   by (2.1), the bracketed terms being nonnegative.

In the second case, the right-hand side contains the extra term [un+l_m - uT ],

which is nonnegative since n + I - m > Tm - m = Tm_x.   D

(3.5) Corollary. Setting n = Tm — 1,  I = m in the above expression (second

case), we have in this instance a nl - bnl = uT _l - u(T    _X) = uT  - uT _x by (1.12).

I i
Lemma. Adjacent intervals "overlap" for the purposes of (3.8) in the sense that

(3.6) <!„,_! + un>anl > b„,_l + u„>bnl     forl>-m,

(3-7) anl > a„J+i -u„>b„,> ¿>„/+1 - u„    forl<m.

Proof. First observe that (3.7) is obtained from (3.6) by substituting / + 1 for /

and subtracting u„. For the first inequality of (3.6),

1-2 1-1

<*n,l-l + U« - °nl = ««-/+2 +    E   "„-, + U„ - U„^,+ x  -    E   «„-/      by (3.1)
1 1

= »n-l+2- 2u«-l+l + Un

n-un_m        if Tm_x<n- I + I,

un-un_m+x     if Tm_i >n-l+l

The third is proved similarly, or we can use (3.2) and directed sums. The second is

attacked along the lines of (3.4): To begin with, we assume that / > 0, and

« + / - 1 < T„. Then

m-l

a„,-bnJ_i -«„ = «„_/+! +["„+/_„, -«„-«]+   E   ["»+/-/-«»-;]

> 0    since 0 < / < ra.
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As in the proof of (3.4), if instead n + I — I > Tm then the right-hand side gains the

extra nonnegative term [un+l_x_m - uTm ]. Finally, if -ra < / < 0 we can use (3.2)

to transform (3.6) into the equivalent (3.7) with / > 0.   D

Lemma. For 0 < / < m, (b, a) satisfies the recursion

aoo = _"oo = 1»

an+l,l= an,l-\  + "»'

(3.8) (V/-1 + ».    >fTi-i = »>
bn+1J=lbnl ifT,_x<n<T„

\b„,,+i-un    ifT,<n.

For -ra <; / < 0 we may apply (3.2) to the above.

Proof. The first, second and fifth lines are immediate from Definition (3.1). For

the others, we transform (3.1) via (2.5) as before to get

m-l

b„m = E "r   - l;
0

for the fourth line, ra is the same when n is replaced by n + 1 ; for the third line, ra

increases by 1 and the extra term required on the right-hand side is just uT     = un.

U

(3.9) Theorem. For bnl < x < anl, x is representable with signature I by

{u0,...,u„_x}.

Proof. By induction on n. From definition (1.3), x is representable with signature

/ by the larger set {u0,..., u„} when there is some y representable by {w0,.. .,u„_x}

such that either (i) x = y + un and y has signature / - 1; or (ii) x = y and y has

signature /; or (iii) x = y - un and y has signature / + 1. If the theorem is assumed

for all / and some given n, we can build up a consecutive interval (b, a) of such x

from some combination of these three cases, provided the intervals in question exist,

(3.4), and are sufficiently close to one another, (3.6). For example, provided I < m

(so that n > 7}+1), by (3.4) all three smaller intervals exist, and by (3.6) the interval

(bn,i-i>an,i-i) + un includes the top endpoint of (b„„anl), and by (3.7) (bnl,anl)

includes the top of (bn ¡+x,an /+1) - un; therefore their union (bn /+1 - un, an ,_, +

w„) is representable, and by (3.8) that is exactly (bn+x „ an+x ¡). The various special

cases for / = ra may be verified similarly. Finally, at n = 0 we have (bœ, a^) =

(-1, +1) by (3.3) or (3.8), which is correct since zero is representable by the null set.

D

(3.10) Lemma. Forn > 0, anX = un and bnX < 0.

Proof. Use (3.1), (2.1).   D

(3.11) Theorem. The set {u0,...,un_x,x}failstobeSSDOifx < un.

Proof. By (3.9), (3.10), if 0 < x < u„ then x is representable with signature 1 by

{«0,...,u„_i},say

x=  E ",-   E «/    where |S|-|7| = 1.
íes ye T
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So

0= E «i-(*+ E «,■)
íes V ieT      *

is a representation of zero with signature 0 by the extended set.   D

The natural way to present the results of this section would be to start from the

conditions (3.4), (3.6), (3.8) on (b,a), then derive from the formulae (3.1) as a

consequence, thus avoiding the "rabbit from a hat" atmosphere surrounding our

present treatment; a similar criticism can be leveled at the very definition (1.12) of

un, which structurally ought to follow from the final theorem (3.11). However, the

exigency of mathematical proof appears to preclude this intuitive approach, which is

unfortunate for more than merely pedagogic reasons since it hampers the investiga-

tion of the generalized Conway-Guy sequences discussed in Section 7.

Another direction in which (3.11) may be extended is to consider a spectrum

vector of exceptional values (..., b2, bl = b, a = a1, a2,... ) which are not known

to be representable with given n, I, rather than just the pair (b, a) dealt with

previously. A useful subsidiary quantity in this connection is

7-1

(3.12) /„,=  E [«t-,..,.,,-«^.,.,,-!]    far;-1,...,m-l,
i=i

where ra = [\ + i/ln] as before. In terms of this quantity, the extended result is

(3.13) Theorem. If x is small and {u0„...,un_x,x} is SSDO, then x belongs to the

spectrum set {un + t }, the range of j being as above. [Here "small" means not

exceeding the largest spectrum element un + tn m_x].

For example, for n = 11, m = 5, the four possible small candidates x < 608 for

attachment to (0,1,..., 309} are

594 = Un,   605 = 594 + u6 - u5,   607 = 605 + u3 - u2,   608 = 607 + ux - u0,

all of which do in practice yield SSDO sets. A natural extension to the first

Conway-Guy conjecture is to suggest that all the sets (3.13) are SSDO for any n.

The proof of (3.13) is tedious rather than particularly difficult, most of the hard

work having already been done above; we content ourselves with sketching the ideas.

The vector version of the definition (3.1) of (b, a) is

(3.14) ajnl = anl + tm_,+lJ,       H¡ = b„, + t„+l+1J,

where ; runs from 1 to the ra-value (less unity) appropriate to « — /, n + I + I,

respectively. The recursion turns out to run more smoothly if we extend the domain

of definition (3.1) to include also

K¡ = ~an,-t = a»-w-i + ««-i  for n = Tt-i only;

otherwise, the n- and /-domains of both versions are the same. The symmetry lemma

(3.2) becomes

(3.15) b¿,= -ai_,    for; in range;
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the induction lemma (3.8) becomes, for / > 0,

(¿4,0 = (-i,o),

(3.16) aJn+XJ = aJ„j_x + u„    for n > T„

'b¿;±i + u„    iîn = T,_i-lmdj>l,

a»,/-i + »n    if « = T/_,and ;= 1,

¿>¿ if r,.! < « < r„

M.i+i~un     Ü T,<n.

H+u

The only nontrivial idea in this intimidating concoction lies concealed in the case

n = Tt_x — I. Here a fresh spectrum, consisting only of 6's, is constructed induc-

tively (with respect to n), by shifting one place to the left (with respect to /). As a

result, all new intervals created are actually old (b, a)-style intervals, detached by

shifting at some previous n and subsequently merely translated, without any further

merging taking place. Consistency (3.4) and overlapping (3.6) are now trivial, and we

arrive at the vector version of Theorem (3.9):

Theorem. Given a value x such that b™¡ < x < a™/, for x not to be representable by

[u0,...,u„_x) with signature I, it is necessary that x lies in the spectrum set

(3.17) {b¿¡'}u{ai',},

where

I </ <m' =[{- + /2(«-/+ 1)],       1 </' < ra" = [\ + /2(/i + /+ 1)].

Proof. Where a new interval is created (at n = T/_x), the translation

~\an-\.l-l  — "n-lj-l)

is added to all existing intervals (bJ,s only, if /> 0). By (3.5), this reduces to

-(uT - uT^ _,); and the inductive accumulation of these translations, coupled

with symmetry (3.15), leads to the formulae of (3.14).   D

Finally, (3.13) follows straightforwardly from (3.17) just as does (3.11) from (3.9).

4. Numerical Verification of SSD Property. The algorithms described below make

heavy use of backtracking, a process during which a vector e is made to take every

value in turn from some predetermined set, while we search for a value with some

particular property [4, Chapter 30]. In the present situation particularly, it is fruitful

to regard the components of the vector as the individual digits of a number, written

in some exotic number base: The value x of the number is then given by the scalar

product x = e • p, where p is some fixed vector defining the values of the digit

positions, and the property sought is that x should take some given subset of values.

As x counts systematically through each possible value, the most-significant (high-

index) digits of e will vary most slowly, while the least-significant (low-index) vary

most rapidly. Impasse-avoidance involves choosing the most-significant digit values

so as to avoid partial vectors which can never lead to any desired jc.
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An obvious algorithm for the verification of the SSD property, given a set p (now

regarded as a vector with n components in ascending order of magnitude), runs as

follows:

(4.1) Algorithm. Maintain a binary flag vector f(x), setting f(x) = 1 initially for

all x. Let e backtrack over all binary vectors, and for each value x = e • p in

turn set f(x) = 0; unless it is already zero, in which case we have detected a

collision and p cannot be SSD. Otherwise, on termination, p is SSD.

Since it essentially backtracks over all binary «-digit numbers, the time and space

costs of this algorithm are plainly both of order 0(2"); we need discuss it no further.

An improvement is afforded by the classical divide-and-conquer paradigm:

(4.2) Algorithm. Partition p into pr = (/>,,..., p^n]), p2 = (p{in]+x,..., pn), and

generate lists [x] and [y] of (natural) numbers represented by p1 and p2,

respectively, in the sense of (1.2). The two lists (which incidentally will contain

many repetitions) are sorted separately, and then compared; when they contain

no common value (a collision whose difference would represent zero), p is SSD.

[It is necessary to ignore a collision between empty representations of zero\

Generation of representations by an «-vector is essentially equivalent to back-

tracking through all ternary «-digit numbers e, so the space cost is s = 0(^3"), and

the time (for sorting, [4, Chapters 8 and 9]) s log s = 0(n]/3").

For the sets p discussed in Section 3, we could instead utilize (2.2) and test

u = (u0,...,«„) for SSDO-hood. At first sight, this is scarcely an improvement:

Since we are now only interested in collisions between the values of representations

with equal signature / when using the divide-and-conquer approach, the backtracker

must generate, separately for each /, only those « + 1-digit ternary numbers whose

digit-sum is exactly /. (The construction of an efficient algorithm to achieve this last

is an unexpectedly diverting exercise!) It is true that the sets of values generated are

now somewhat smaller than before, though in practice most of the time and space

requirement is concentrated around / = «/4.

More importantly though, u has a convenient property not shared by p: Its

elements are of widely differing sizes, indeed by (1.11) very roughly u¡ = 0(2'). This

suggests the new

(4.3) Algorithm. Generate the set [y] represented by the larger half u2 of u, while

immediately discarding any value y outside the interval (xmin, xmax) of values

representable by the smaller half u1. We may expect to be left with a very short

list {y'}, which is now sorted alone; then as each value x represented by u1 is

generated, a collision with x is immediately sought among the {y'}.

This modification reduces the space requirement substantially: Experimentally, it

now appears to be roughly 0(ßy"), where ß = 10 and y = 1.07.

A further refinement is to utilize impasse-avoidance in the backtracker. Let

w = (wx,...,wm) denote the set of base elements (e.g., u2) and (r) the set of

target-values (e.g., ( y')) to be represented with signature /. Define

m [\(m-j)]

cij= E wk-     E     ">k>        dlj=-cj_i,
A: = [l(m-y + 3)J *~1
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to be the largest and smallest values which are representable with signature ; by the

/ least-significant base elements (wx,..., w¡); and let

m

h = E wk<>k
k-i

be the (partial) value represented by the current most-significant end of the (ternary)

backtrack vector e.

(4.4) Algorithm. Suppose the backtracker has just incremented e¡. If none of the t

lies within the current interval (zi + d¡_i,_,, z, + c,-_u ■) of reachable values,

then it would be futile to proceed further down e; so ei is at once incremented

again, as if all the intermediate vectors had been generated and discarded.

Should i actually reach 1, z = zx can be output.

Notice that the output set ( z} is probably almost sorted as it stands. We might hope

that the time requirement is now also reduced to around 0(y"), but in practice

something more like 0(y2") is observed.

By a happy accident, combined with the judicious placing of -oo and +00

sentinels at the beginning and end of {t}, the effect of a whole interval of target

values can be obtained simply by presenting its endpoints in reverse (descending)

order as elements of the sorted target list (r). Finally, applying this impasse-detec-

tion to the earlier algorithm, we have

(4.5) Algorithm. For the first stage of (4.3) use (4.4) with

w = («fim+i» ••-,«„),

{t) = {-<x>,xmax,Xmin, +00),

{z) = {y) on output;

and for the second stage with

w = (i/0,...,M[in]),

{t} = {-00} U{j} U{ + oo} sorted,

{z) = {x} Ç {y} on output.

As before, when {x} is empty, u is SSDO; notice that this in turn implies the

analogous result for all smaller n.

Using these methods we have verified computationally the following

(4.6) Theorem, u is SSDO, and hence p of Section 3 is SSD, for all « < 79.

This extends the calculation for « < 40 reported, but not described, in [2]. The

programming language used was ALGOL68, the computer the SWURCC ICL 2980

with quadruple-precision (128-bit) REAL arithmetic, and the time approx. 6000 sees.

By (2.6) it is unnecessary to examine representations of size 2 A: in which the

largest subscript occurring exceeds Tk + 1. This observation is of no practical value

in deciding SSDO-hood for given «, for which relatively few representations are that

short; however, we can modify (4.5) to restrict the signature / of representations

generated to / < w and choose « = Tm + 1, where m is now given. This economizes
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on time and storage (now roughly 0(1.65m)?), and we have further established

(using w = 13, « = 92) the following

(4.7) Theorem. There are no representations of zero by u with signature zero and

size 2k for k < 13 and any « whatsoever.

[The original divide-and-conquer algorithm (4.2) has by (4.5) developed a marked

asymmetry in its treatment of the two halves of u, suggesting that some division ratio

other than half-and-half might be more efficient; but this seems not to be the case.

The c and d functions utilized in (4.4) could be computed in-line, by constantly

updating current values; it is however simpler to precompute them into a triangular

2« X « matrix. This initialization dominates the time for « < 50.]

5. Numerical Search for Optimal Solutions. A simple-minded exhaustive-search

algorithm to find the best p for given « (i.e., those with smallest pn) might be:

(5.1) Algorithm. Backtrack over all increasing natural vectors p for which pn < un

as defined by (1.12), subjecting each to a verification algorithm such as (4.1), or

perhaps (4.2) if n is large enough. Few will in practice pass, and these can be

output for inspection.

This crude approach may immediately be improved using impasse-detection, since

there is no point in choosing a value for pi which is representable (see (1.2)) by

previously chosen, more significant elements:

(5.2) Algorithm. At each level i of the backtrack, compute a flag vector f ' such that

f'x = 0 when x is representable by (pl+1,...,/»„). Permissible values x for p¡

correspond to flags fx = I with x < pj+v Flag vectors are generated recursively

using logical shift and conjuction operations, as follows:

f'^f'+1&(f' + 1î/>,)&(f' + 1i/>,).

Should the bottom level / = 1  be reached,   a good SSD set   p has been

constructed and is output.

The program speed is enhanced if these are programmed to take advantage of the

computer's built-in bit-parallel logical operators, e.g., the 36-bit word BITS type of

ALGOL 68 on the Honeywell.

An equally important but less obvious improvement involves the lengths of these

flag vectors, that is, the « such that f'x is defined for all |jc| < «. A naive

implementation would use

h=    E   Pj.
j-t+i

which has the severe disadvantage that for small i—where most of the computation

takes place—the length is at its largest. Instead, we set

«=¿,<+1

7 = 1
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where sj denotes the ;th largest value available for p¡, calculated from f ' as above;

should there be less than i such values available, we have reached an impasse and

must back up (increase /'). With this definition, h decreases with i, while still

maintaining flag vectors long enough to indicate available values of all subsequent

Pj, j < i-
The final touch concerns rapid detection of l's in the flag vector when searching

for available x. Serial element-by-element search would be inefficient: For « = 8 the

average number of x (5.3) is about 1^ per 36-bit word. We utilize divide-and-con-

quer once more. Each nonzero word of the flag vector in turn is split in half, and the

highest nonzero half is again split in half, and so on until a small enough subword

length is reached to make practicable a direct table look-up for the position of the

highest 1. This is deleted and the whole word scanned again for the next 1. The

present implementation splits twice to lookup on 9 bits out of 36.

The overall effect on speed of these modifications increases with «, and is about

5:1 for « = 8. The computation eventually took about 20 hours on the UCC

Honeywell level-16, producing the following tuning statistics:

size of set « = 8

average no. of x available = 1.49

(5.3) average available value x = 18.7

average flag half-length « = 31.1

average backtrack level i = 5.93

The result is that the Conway-Guy set (1.4), (1.12) is optimal for « «i 8. It is not,

however, always unique. For « = 3, 5, 8 (and n = Tm_x + 2 in general?) the triad

{2v,3v,4v} occurs amongst the elements of this set, where v = !(«„ - un_x). The

3v may be replaced by v while preserving SSD-hood: e.g., for « = 3 we have

{2,3,4} and {1,2,4}. Apart from these, the only other optimal set found is for

« = 8:

(5.4) p= {39,59,70,77,78,79,81,84},

a curiosity to which we shall return in Section 7. For « = 9 the computation would

take 18 months; clearly, some other approach is called for.

[One striking curiosity observed is that, starting from pn = un, the backtracker

finds the Conway-Guy set at once. This is explained by Theorem (3.11), which

implies that the impasse-avoidance mechanism (4.2) generates it by choosing the first

available x at each level /.]

6. The Decoding Problem. In the situation where we originally encountered this

subject [3, no. 5], the various subsets S of an «-set were to be uniquely encoded by

the sum x = Y,imSp¡, for which it is requisite that p be SSD. This raises the converse

problem: Given an integer x and a weight vector p, how efficiently can it be

determined whether x is a sum of distinct weights of p, and (if so) of which weights

— that is, what is the binary selection vector e in (1.3)? [The problem is known

elsewhere [11] as Knapsack Decoding, one variation of which — oddly

enough—makes use of an MDCF algorithm such as we apply in Section 9 for an

entirely different purpose.] Here the obvious approach is to modify (4.1) or (4.2) to



310 W. F. LUNNON

test for the required x, maintaining along with each value a (packed) record of its

corresponding e, in time 0(2") or 0(JJ").

However, where p is based on the Conway-Guy sequence u (or a generalization),

we can again improve on this performance by transforming the problem to one

involving u rather than p. Taking the size (which we do not at this stage know) to be

/, for each / from 1 to « in turn we have to find a binary e such that

n-l n-1

y = lun- x = E *,"<>    with  E ei = /. «,■ G {0,1} •
i=0 i-O

The e are generated by impasse-avoiding backtrack as in (4.4), except that—since e

is binary rather than ternary—the c and d functions are now given by

i j

c¡j=     E     "*>      d,j= E «*•
k-i-j+1 k=l

The w of (4.4) is replaced by « + 1, w by u, and the target set {t} contains the

single (finite) value y.

When choosing ei (in the notation of (4.4)), there are three possibilities:

(6.1) y £ [z,+1 + d,_Xj, zi+x + Ci_u],    when e, = 1;

(6.2) y <£ [zi+x + m, + d¡_u_i, zl+l + u, + ci_Xj_x),   when <?,. = 0;

(6.3) y e [z,+1 + «, + dt_ltJ_x, z,+1 + c,_w],

when either e¡ = 1, ei_1 = ■ • • = e¡_k = 0 or

e¡ = 0, e,_i = ••• =ei_k = I,

where Tk_x < i — 1 < Tk. This follows essentially from (2.5) with « + 1 and ra

replaced by / and k, and the smaller terms ignored; what we are saying here is that a

1 in position /' is equivalent to l's in the subsequent \/2i positions, and either both

are possible, (6.3), or the situation is unambiguous, (6.1), (6.2).

It follows that the time taken is at worst

(number of choices possible for /) X 2<maximum number of ambiguous position^

and since Tm is just the sum of the first ra positive integers, this is just 0(n2m) =

0(n2*2n). It seems improbable that this can be improved to time polynomial in «.

7. Generalized Conway-Guy Sequences. The fundamental idea behind the con-

struction of u (1.12) is exposed by Theorem (3.11): Given the first « elements w0,

wl,...,wn_1of a. sequence w, set wn equal to the smallest natural number which has

no representation with signature 1 by the previous elements. Initialized with w0 = 0,

this procedure generates a SSDO sequence w which is apparently (as we saw in

Section 4) identical with u. The occurrence of an optimal SSD set (5.4) unrelated to u

alerts us to the possibility that other initializations might also generate interesting w,

in particular some which may improve on (have elements eventually smaller than) u:
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Some of these sequences are shown in Table 1. The first is u itself, established in

Section 5 to be best possible for small «. w° almost achieves glory for « = 8, where

it produces (5.4), but then bounces back above u and deteriorates, w1 actually

improves on u for all « > 12—in particular, tv12 = 1159 < 1164 = u12—and w2 is

better still for « > 13.

[Notice that although the sequences w are SSDO, the corresponding sets p may

exceptionally fail to be SSD. This unruly behavior occurs in w° for « = 4, where

p = (1,2,4,7) with the collision 7 = 4 + 2 + 1; but it invariably dies out for large

«, once some condition strong enough to establish (2.2) asserts itself, such as (2.1).]

In nearly all these instances, as well as in many others we have observed, a most

striking property is evident:

(7.1) Conjecture. After an initial settling-down region, of length nx possibly

exceeding the length «0 of the initializing segment, there is established a recurrence of

the form

"Wl " 2wn - wn-m     for n > nl>

where ra = [ j + \j2(n - r) ] and the shift constant r depends only on w.

The corresponding values of r and nx are shown below each sequence w in Table

1, together with the appropriate limit ratio a defined as in (1.10). Using the methods

of Section 4, it is a straightforward matter to establish that all the w tabulated are in

fact SSDO out to « = 67, when extended by the recurrence (7.1). Sequences

comprising an initial, arbitrary SSDO region followed by a recurrent tail of the form

detailed in (7.1), we christen Generalized Conway-Guy Sequences, or GCGS's. Our

results suggest the following extension of (1.14):

(7.2) Conjecture. Every GCGS is SSDO.

[As r increases, so do the time and space requirements of the backtracker (4.4),

presumably because the resultant bunching of elements of w spoils the performance

of the impasse-avoidance mechanism and produces more representations in a given

interval. Strikingly, for both u and w° the stack lengths are the same for each

signature /, suggesting that the actual representations generated by (4.4) are eventu-

ally dependent only on n and r, but not otherwise on w.]

At this point a concrete result may be extracted from the data. In Section 1 we

remarked that, given any finite SSD «-set p for which p„/2"~l = a, say, an infinite

sequence of longer sets—known to be SSD and with a no worse—may be con-

structed by iterating (1.9). Now w2 is known to give an SSD set at « = 67, with

already a = 0.449236 < 0.470251; our strong interpretation of Conjecture (1.15) is

thereby refuted. In fact, w3 and w4 are ultimately better still, the latter having the

currently smallest known a of 0.441926. The question of bounding a below, or even

of showing that it must be nonzero, remains completely open.

Good sequences all seem to have positive shifts, and indeed the evidence is that

the best attainable a improves with r; however, the final sequence in Table 1 is a

curious object with a large negative shift. These are rare and have no interest from

the point of view of improving a; but they are significant in a computational search,

since the large associated «rvalue makes it difficult to decide the r-value. We

suppose that the 3\ percent of cases for which our search program failed to find any

shift are all of this nature.
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Table 1

« u w° w1 w2 w3 w4 w"6

00000000

1 1 3 2 4 8 16 5

2 2 5 3 5 10 20 9

3 4 6 4 6 11 21 10

4 7 7 8 8 12 22 11

5 13 14 14 16 16 24 18

6 24 25 25 27 32 32 31

7 44 45 47 49 54 64 57

8 84 84 86 92 97 107 104

9 161 162 164 168 183 193 192

10 309 310 314 320 334 364 366

11 594 595 603 613 636 664 701

12 1164 1165 1159 1177 1218 1264 1353

13 2284 2285 2271 2262 2339 2421 2649

14 4484 4486 4456 4432 4495 4649 5194

15 8807 8810 8748 8696 8807 8934 10196

16 17305 17310 17182 17072 17280 17504 20026

17 34301 34310 33761 33531 33924 34344 39686

18 68008 68025 66919 65885 66630 67424 79006

19 13.4582 w 134885 132679 130593 130921 132427 157316
20 267420 267485 263087 258924 259503 260205 313279

r 0 0 1 2 3 4 -6

«,        1 10 7 8 9 10 19

a .470251     .470363    .458713    .447591     .444706    .441926    .569334

The search program which found the above specimens is itself quite involved.

Very briefly, the outer loop backtracks simply over all radix-è, («0 - l)-digit

numbers, each of which is interpreted as specifying the initial segment of an SSDO

sequence: If the «th digit has value k, then wn is the kth value larger than wn_x

which preserves SSDO-hood. [The 0th, «0th and all subsequent digits are taken to be

1.] Then for each n > 0, the value of wn+x is sought using (4.4) among the three

intervals (x, - e, xi + e), i = -1, 0, +1, where x¡ = 2wn - w„_m_,, and e is a

parameter increased (up to a limit of 128) until a value is found, signified by a gap in

the values represented by the previous elements with signature +1. When « reaches

a predetermined setting, which will be increased (up to a limit of 50) until r is

found, an attempt is made to identify r and nx by searching for a long, consistent

sequence of relations of the form (7.1). Finally, if and when this is successful, a is

calculated (see Section 9). Verification of SSDO-hood out to larger « (say 67) is

invoked manually only in interesting cases.

8. Equivalent Sequences. From the (extensive) output of the search program

mentioned in Section 7, it is evident that large numbers of GCGS's have exactly the

same limit ratio. Such sequences we christen equivalent.

(8.1) Lemma. If c0 and cx are natural numbers of opposite parity, and the sequence

w is a GCGS, then so is w' = (2w + cx) U c0, this being the new sequence defined by

v'0 = c0, v'n + i = 2wn + cx for « > 0, and sorted into ascending order of magnitude.
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Proof. If some value x has a representation by w' with signature zero which does

not involve c0, we can at once deduce a representation of \x by w with signature

zero; therefore x # 0. If it does involve c0, x is easily seen to be odd, so again

x # 0.   D

(8.2) Corollary. If cq,..., c0 are natural numbers such that (cl + x - c,)/2' is an

odd integer for all 0 < ; < q, and w is a GCGS with shift r and ratio a, then

m' - (p* + c,)\j(c,_lt...,c0)

is a GCGS with shift r + q and ratio a.

Proof. Induction on (8.1), definitions in (7.1) and (1.10).   D

Plainly, (8.2) allows us to construct indefinitely many equivalent GCGS's from

any given one (such as u), with arbitrarily large shifts; the converse question—whether

arbitrary equivalent GCGS's must necessarily be related in this way to some

common sequence—remains open. [This last would be the unique primitive member

w of its equivalence class such that

HCF(Aw„_m,...,Aw„) = l

for « = nx and m as in (7.1), which implies a similar condition for the infinite tail of

w.]

To explore the converse further, we first specify a basis for tail sequences: These

are all sequences which eventually satisfy a recurrence of the form (7.1), without

necessarily being SSDO or even having integer elements.

(8.3) Definition. Given 0 < i < k, let u*' be the tail sequence w where

wn¡-k =   ■■■   = Wn,-k + i-l = 0, >%-* + , =   ■■•   = WBl = 1,

and wn is given by recurrence (7.1) for r = 0 and n > nx = Tk. Also let

aki =   lim «*'/2"_1,
«-►oo

the existence of which is established in Section 9.

By choosing k suitably large and considering all the sequences involved over the

region initialized in (8.3), one easily sees

(8.4) Lemma. Given any finite set of tail sequences with shift r = 0, there is a k such

that each tail is representable uniquely as a linear combination of the ukl, i = 0,..., k,

for n > nx. Furthermore, if the sequences are integer, then so are the coefficients of the

ukl; and if nondecreasing and nonnegative, then the coefficients are nonnegative.

There follows a short table of the first few of these basis tail sequences. Notice

11    12   a

5     5

.47025057

.56088993/4

.66005617/4

25 49 .63034115/32

29 57 .73839425/32

31 61 .79332993/32

that u11 = u, and u*° = 1 is the constant sequence.

« 012345     6     78     9     10

ra 1223334444

u11 0   1    2   4   7   13   24   44

u21 0   1    1   2   4     7     13   25   48

(8.5)   u22 0   0   1    2   4     8     15   29   56

u31 0   1    1     1     2     4     7     13

u32 0   0   1     1     2     4     8     15

u33 0   0   0     1     2     4     8     16
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As a special case of (8.4), the earlier basis sequences themselves can be expressed as

linear combinations for given k, for instance, u = u11 = u20 + u21 + 2u22. This leads

immediately to linear relations among the basis limit ratios: e.g., for k = 3,

a11 = 3a31 + 6a32 + 11a33,

a21 = a31 + 2a32 + 3a33,

a22 = a31 + 2a32 + 4a33

may also be read off directly from (8.5).

Although the u*' are an integer basis, and one whose properties are readily

apparent, it is a little awkward having to deal with a double sequence of basis

elements. We shall investigate them further with a view of showing that, if we require

only a rational basis, then the u*1 are sufficient.

(8.6) Lemma. Ifn> Tk  x then uk„' > uk'_x.

That is, u*' is monotonie, just as for (2.1). Applying the recurrence to the initial

conditions of (8.3), we have

(8.7) Lemma. For 1 < i < k,

2"-T" forTk^n < Tk + i + 1,

2»-n _ i»-Tk-i-2 + i    /or rt + / + 2 < « < Tk+X.

Manipulating this last, for large enough « we have

(8.8) Lemma. For i ^ 2 only,

A-i-l

u*.'_uft,/-i = u*+u+i+    £    2-'u*+u+2+y,

7 = 0

and similarly for the corresponding akl.

In particular, using (8.6) on the right-hand side shows that for i > 2, ukl > «*''_1.

Regarding (8.8) as linear equations for the o*+1,/, they can always be solved to

give ak+1,i (and ak*1A + 2ak+1-2) in terms of the akj for each / ^ 3. Putting this

result together with (8.4), we have

(8.9) Theorem. The set of sequences comprising u00 with all ukl for k > 1 is a basis

for the GCGS's over the rationals, and similarly the set of akl for k 3s 1 is a rational

basis for the limit ratios of GCGS's.

[It is in practice more convenient to normalize the u*' by shifting downwards

through Tk — 1, so that their ratios approach unity for large k rather than zero. For

u*1 this procedure results in the sequence commencing

0,1,2,4,7,13,25,..., 2"'-' - 2"'-4 + 1,...,

where nx = k + 2, r — -(Tk - 1), and the ratio is 2~rakl. Treated in this way, it

appears numerically that the u*' give sequences which are SSDO. On the other hand,

although the u*1 give a rational basis, they do not give an integer basis in the sense

of (8.4): In fact, the appropriate (k + 1) X (k + 1) determinant—essentially |uj'|

with a row of l's attached—seems to have the value -2*-1.]

,*' —
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Returning now to the converse of (8.2), suppose we have a pair of GCGS's with

equal limit ratios a. Applying (8.2) to the one with smaller shift, we can increase its

shift to the same value r as the other; then shifting the origin of « to « = r, we are

left with two tails w1, w2 of shift zero and ratio a. Now consider the term-by-term

difference w = w1 - w2, which is evidently also an integer tail sequence, with ratio

zero; if we could be sure that it is also nondecreasing, then by (8.4) and (8.6) it

would have to be the constant sequence. Alternatively, if we could prove that the akl

are linearly independent over the rationals for given k, then the fact that w is integer

would do the trick. As things stand, there are oscillatory zero-ratio tails, such as

multiples of a21u22 - a22u21, one of which could conceivably equal the difference w.

We conjecture that this situation is impossible. The question of the linear indepen-

dence of the akl over the rationals is taken up again in Section 9.

Another question raised by (8.2) concerns the precise value of the multiplier.

Specifically, if we have a GCGS w, a set c with |c| = q, and an 5 which does not

divide any value x representable by c, then c is SSD modulo s and w' = sw U c will

be GCGS. It seems plausible that we could choose s < 2q; after all, for large enough

q there are many SSD sets c at our disposal, representing x much more dispersed

and riddled with gaps for potential í than that used above—which is effectively

c = (1,2,...,2q'1). Now we would have constructed a w' with ratio (s/2q)a

actually smaller than a, and might continue thus to reduce it indefinitely. (Of course,

s > 2q is of no interest: a will be worse, and w' will lack the locally minimal

property mentioned in earlier sections.)

Unhappily, we discover

(8.10) Lemma. With the above notation, s > 2q.

qr~
Proof. Otherwise, let ß = \s < 2, and construct a new sequence w" from c alone

via the rule

v'n' = s'cj   where « = iq + ;.

Then

v'n'/ß"< max(c/j8>),
j

and so

i;;y(2n/«)->0    since/3 < 2.

However, if we assume that w" is such that (2.2) can be proved for it, and associate

a set p with it as in (1.4), by (7.2) p should be SSD. Since the 2" subset-sums are

distinct, their maximum is at least 2" - 1, the maximum wn of p is at least

(2" - l)/n, and the above limit must be at least 1.   D

9. Computation of Limit Ratios. In order to carry out a search for linear relations

between certain sets of limit ratios of GCGS's, or to examine whether a particular

ratio (such as au) is algebraic of some given degree, it is first necessary to compute

these quantities to very high accuracy. The simple-minded approach of just calculat-

ing un/2" ~l for some suitably large « is, as we shall see, convergent with order only {- ;

at the cost of some effort, this dismal performance can be improved.
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Suppose then that w is a GCGS with shift r and ratio a, and write an = wn/2"  1.

Let ra and / be defined by

n — r = rm^x + /,   where 1 < / < m.

The fundamental recursion (7.1) may be rewritten in the form

an+1 = a„-an_J2m+\

from which it may immediately be inferred that a = lim an exists, since an is

decreasing and positive. Iterating this recursion, for large ; we find

an+j = a« -(«„—+ ••• +%„_1+r)/2m+1-(ärm_1 + ,+ "• +aTm + r)/2">*2 - ....

Letting ; -> oo, this is easily rearranged to give

r-l

(9.1) an = a+   E  2-'"1E a,
i-0

1-2

1 E flr.
i-0

Finally, the right-hand side of (9.1) may be iteratively substituted for the a's

occurring within it, giving an expansion which will turn out to be of the general form

(9.2) ««/<* =   E  Uk(l,m),
k = 0

where for fixed / the Uk are of the form (polynomial in m)/(2k)m. This expansion is

asymptotic rather than convergent, converging only while k < m and afterwards

diverging. Its first few terms are

aja = 1 +
1

w

m

I

1,\2      82l)   + 3m
5,      37
4/+Î8 25i/ + •

where 6,, = 1 if z = /', 0 otherwise.

To find a recurrence for the Uk, the expansion (9.2) must be substituted into (9.1).

This is complicated by the fact that, in the innermost summation over i in (9.1), the

first term has an ra-value of t — 2, whereas all the rest have t - 1. It is therefore

convenient to define Uk also for / = 0, resulting in the following " unified" recur-

rence:

n
Uk(m- l,m- 1)

if k = 0,
if / = 0,

¿-i

(9.3) Uk(l,m) = {   E 2-MEU'-'-l)
\  t = m / = 0

1-2

_2-m-i ^ Uk_x(i, m-l)     ifk,l>0.
/ = 0

This form is not very convenient computationally, since—on account of the compli-

cation mentioned above— Uk is not polynomial in / for / < k. We therefore split it

apart notationally into Uk(l,m) for / > k, and Ukl(m) for / < k, where now the

functional parentheses indicate polynomial dependence (apart from an easily accom-

modated factor of 2~km). Introducing the intermediate polynomials Vk(m), S'k(l, ra),
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(9.4)

S'k'i(m) for convenience, we write down the "polynomial" recurrence for Uk(l, m),

£47(m):

/l ifk = 0,

K*(W)=     t[S'k'k(t) + S>k(t + l,t)\     ilk>0;
\ t = m

(0 if / > k - 0,

{2—-i   £    l^/.m-l)    if/>/fc>0;
í = A: — 1

Í0 ifJfc>/ = 0,

S¿'/(»0 = < 2—1 £ i4':M(ra - 1)    if k > I > 0;
I /-o

D*C, «) = {n(«) - S«(«) - S'k(l, m)   if / > k > 0;

f/»(m),/C/*(w-1'","l)    if^/ = 0>

* K(m)-S£(m)       if*>/>0.

In this form the recurrence is suitable for programming on a symbolic algebra

package, such as MACSYMA [7] or REDUCE [8]. Setting / = 1 in (9.2) and

noticing that for k > 0, U¿{(m) = Vk(m) = Wk(m)2-km, say, we find

OO

aJa =   E  Wk(m)2-km   where« = Tm_x + 1,
/t=o

and MACSYMA's formal summation and hmit facilities may (if MACSYMA is in a

good mood) deliver the following values for Wk(m) in a few minutes:

Wx = m + l,

,      5 14
W2 = w2 + -ra + —,

u,      4    3      8    2     44 32W3 = ^ra" + yra¿ + —ra + y,

A> ̂     w       8    4 .   16    3 ,   136    2      2768 18368(9.5) ^4 = jm   + Tm3 + —ra2 + —ra + -g-,

128    Sl128    4 ,   1664    3      15488    ,      151808 32768
w*=irm + ^~m + ^Tm +~iWm +-2mTm+lmr>

2048    6      2048    «      10240    4      333824    ,      90112    ,
^ = ~4Tm   + ^TW   + ~lTm   + ~4ÖTm   + -T2Tm

1073152     _ 220921856
8505   m       2679075   '

The general form of these polynomials is not immediately obvious, although the

coefficients have tantalizingly small prime factorizations. However, the leading term

is accessible as a special case of the observation that

(9.6) Uk{l,m) = (ra - \l)k2T"-^km/k\ + (terms in ra, / jointly of degree < k),
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proved easily by substituting the right-hand side into the recurrence (9.3). For any

fixed /, therefore, including / = 1, the error involved in terminating the expansions

(9.2) or (9.5) at the (k - l)th term is essentially

(9.7) mk2k(k-l)/2-km/kl

For example, with k = 10, w = 26, « = 352, and w = u the original Conway-Guy

sequence, we find that the actual error in (9.5) and the estimate of (9.7) are 10"61

times 0.20 and 0.27, respectively.

The special case of (9.7) with k = 1 shows that the error in taking an itself as an

approximation to a is about ra/2m, or roughly 2"^: That is, the obvious method

converges with order \. Setting k = m in (9.7), we see that the error becomes

(roughly) 2~*m mm/m\, or (even more roughly) 2~", so that the convergence of this

method is first-order. It does require us to compute the polynomials (9.6) initially;

on the other hand, this is done once-and-for-all and may then be used to compute

the limit ratio for many different sequences.

A less complex method involves ignoring the details of the Uks using instead only

knowledge of their general form, and employing a modified Richardson extrapola-

tion procedure (as used in Romberg integration; see [6, Chapters 14 and 17]) for

accelerating the convergence of a„ to a. Define

"Om = a(T„+l+r)-

(9.8)
^+i.m = A*+2(2'¿*,m+,)/(2*+1-l)*+2,

where A* denotes A:th order differencing with respect to / (rather than ra). The

algorithm proceeds by increasing ra until a pair of approximations is encountered

whose difference is less than the required accuracy. It is only necessary to store an

advancing "diagonal" of Tk + X values, comprising the current bkm and k inter-

mediate differences for each.

We briefly summarize the error analysis. Suppose that the calculation has pro-

ceeded as far as b0m for ra = m0, and we wish to find the k = kx for which the error

in bk_i m is minimized. Referring to (9.2), all Uk for k < kx will have been

eliminated by the algorithm, and the leading term of the residual error will be of the

form (9.7) as transformed by the algorithm. Referring to (9.8), the effect of each

stage k is crudely to divide the residual error by (2k - l)k, or roughly 2k ; so by

stage k it will have been reduced by a factor of 2Zk~, or roughly 2>k . Ignoring all

but the factor 2~km of (9.7), we need to minimize

j-\k} — km

subject to the constraint arising from the way ra is reduced by k + 1 in going from

stage k - 1 to k: That is, ra + T.k = ra0, or roughly

w + \k2 = ra0.

Solving this simple calculus problem gives the minimum at kx = ^m0, ra,

= \m0. The error at this point is roughly 2~(U/U)m"/, or c"v" for suitable constant

c; so this method is of order |. For 60 significant figures and w = u as before, we

need ra = 45, « = 1036, k = 8.
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Table 2

k akl x 2T«~l

(v) 0.633368347305411640436713144616576659293359908783416689204401

(u) 0.470250569622349731271176348783758019761969039167059197165356

2 0.560889931839105275636384948015840006734260398171595554263428

3 0.630341152953289800442032143698140347343856000669900313548808

4 0.677669268053777242613587345333872800584971863152808709070330

5 0.707664435666270871027823533000164520492533323753898941029982

6 0.725790229709249261978251175393256303351188007190298345209967

7 0.736392117117017642888896676688968317465731121473706835171727

8 0.742451223289530587380718963519922408252517958351565949689771

For aT, au = a11, and a21,..., a81 as defined in Section 8 and suitably normalized,

we find the 60-place values shown in Table 2, using Richardson extrapolation and

MACSYMA's bigfloat arithmetic.

With these, we conducted a Multi-Dimensional Continued Fraction (MDCF)

search for an integer relation satisfied by the first d of the akl, k = 1,..., d, and in

addition for some integer polynomial of degree d—l satisfied by au (1.12), and by

av (1.6). There follow in (9.9) the lower bounds obtained for the height of such an

object, that is, the maximum absolute value of its coefficients. For example, the

entries under d = 2 imply that no equation of the form act11 + ba21 = 0 holds with

height less than 30 digits, nor similarly a + bau = 0 nor a + bav = 0. The method

used to compute these relation height bounds we have christened the Parallelotope

algorithm; we hope to describe it elsewhere [10]. The general topic of MDCF

algorithms is discussed in [9], and a detailed description of the recent "L3"

algorithm is presented in [5, Section 1], For the moment, we content ourselves with

remarking that, for given accuracy 5 (= jlO"60 here), the maximum theoretically

obtainable bound is of order S~l/d.
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