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Abstract. We construct and analyze efficient, high-order accurate methods for approx-

imating the smooth solutions of a class of nonlinear, second-order hyperbolic equations.

The methods are based on Galerkin type discretizations in space and on a class of fourth-

order accurate two-step schemes in time generated by rational approximations to the

cosine. Extrapolation from previous values in the coefficients of the nonlinear terms

and use of preconditioned iterative techniques yield schemes whose implementation re-

quires solving a number of linear systems at each time step with the same operator. L2

optimal-order error estimates are proved.

1. Introduction. The problem. In this paper we shall study efficient, high-

order accurate methods for approximating the solution of the following initial and

boundary value problem: let Q be a bounded domain in RN {N = 1,2,3) with

smooth boundary dû and let 0 < t* < oo.   We seek a real-valued function u =

u{x, t), {x, íjefix [0, i*] satisfying

N

utt =-L{t,u)u +f{t,u) =  Yj di{üij{x,t,u)d3u) - ao{x,t,u)u

i,j = l

(1.1) + f{x,t,u)    infix[0,i*],

u{x,t) = o on an x [0,i*],

u(z,0) = u°{x)     inn,

ut(i,0) = u°{x)    in n,

where ai3,ao,f,u°,u° are given functions. We shall discretize (1.1) in space by

methods of Galerkin type and base the temporal discretization on a class of fourth-

order accurate, two-step multiderivative schemes generated by rational approxima-

tions to the cosine, [3]. By extrapolating from previous values in the coefficients of

the nonlinear terms we can implement the time-stepping schemes by solving only

linear systems of equations at each time step. These systems may then be solved

approximately by preconditioned iterative techniques, [12], [4], that require solving

a number of linear systems with the same operator at every time step.

Galerkin type methods, coupled with two-step schemes of second-order accuracy

in time, for the numerical solution of nonlinear problems similar to (1.1) have

been analyzed in the past, cf., e.g., [10], [11], [14]; in [14] the linear systems at
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each time step are solved by preconditioned iterative techniques. High-order linear

multistep methods were studied in [1] in the case of a semilinear problem. One of us,

[2], has recently analyzed high-order time-stepping methods (generated by rational

approximations to exp(i'x)) for (1.1) written in first-order system form. In this

paper we shall discretize directly the second-order equation in (1.1). Our analysis

relies in part on existing estimates in the case of the linear hyperbolic problem

with time-dependent coefficients, [3], while some of the techniques of estimating

nonlinear terms are adapted from the analogous techniques for parabolic problems

due to Bramble and Sammon, [5].

For integral s > 0 and p G [l,oo], let Ws'p = WS'P{Q) denote the usual Sobolev

spaces of real functions on n with corresponding norm || • ||SiP and let Hs = Ws'2

with norm || • ||s; (-,•), resp. || • ||, will denote the inner product, resp. norm, on

L2 = L2{ü), while | • I«, will be the norm on L°° = L°°{n). As usual, H1 will

consist of those elements of H1 that vanish on dU in the sense of trace. It is well

known, cf., e.g., [6], [9], that the problem (1.1) has a unique solution, in general for

small enough i*, under appropriate smoothness and compatibility conditions on the

data. Specifically, it is proved in [9] that if, for example, the coefficients üí3, arj, /

are sufficiently smooth functions of their arguments for (x, t, u) G Q = n x R+ x R,

with {üij) symmetric and uniformly positive definite and ao nonnegative in Q, if

the initial data are such that u° GHm,u° G i7m_1 for some m > [N/2] + 2, and if

appropriate compatibility conditions are satisfied at t — 0 (namely, if the functions

u3, j — 0,1,2,...,—where uq = u°, ui = u° and u3, j > 2, denote d3tu{-,t)\t=o

as computed formally in terms of uq and u\ by the differential equation in (1.1)—
o

belong to H1 for 0 < j < m - 1), then, for some i* > 0, there exists a unique

solution u of (1.1) as a Ck map from [0, f\ into Hm~k{ü) for k = 0,1,..., m. By

Sobolev's theorem, the solution will be classical provided m > [N/2] + 3.

We shall assume therefore in the sequel that the data of (1.1) are smooth and

compatible enough and t* is sufficiently small so that a unique smooth solution u

of (1.1) exists as above. As a consequence, we shall assume, for the purposes of

the error analysis of our schemes, that, in addition to u{x,t), temporal derivatives

d(U{x,t) of high enough order also vanish for x G dCl, t > 0. We remark that

the error analysis will not require any artificial compatibility conditions on the

nonhomogeneous term of the type, e.g., that f{x, t, u) = 0 for x G dU, t > 0.

To introduce some more notation, suppose that u G [rrai,m2] for (x,t) G n x

[0, t*\. We shall assume that, for some fixed 8 > 0, <Hj, ao and / are defined and

are smooth functions of their arguments (x, t,u) in Qs = Q x [0, í*] x Ms, where

Mg = [mi — 6,m2 + 6}. In particular, we shall repeatedly make use of the fact

that the Oiy, ao, / and some of their partial derivatives satisfy Lipschitz conditions

with respect to the variable u in Ms, uniformly with respect to (x,i) G n x [0, t*].

We assume that (a¿j) is symmetric and uniformly positive definite and that ao is

nonnegative in Qs-

Following the notation of [5], we let Y = {g G W1'00 : g{x) G Ms, x G ñ}. For

t G [0, £*] and g EY, the operators L{t, g) defined by (1.1) form a smooth family of
o

selfadjoint elliptic operators on L2 with domain Dl — H2 fl H1. For such t and g,

given w G L2, the boundary value problem L{t, g)v = w in n, v = 0 on dQ, has a



NONLINEAR SECOND-ORDER HYPERBOLIC EQUATIONS 301

unique solution v G Dl which we represent as v = T{t, g)w in terms of the solution
o

operator T{t, g): L2 —* DL defined by a{t, g){Tw, <p) — {w, <p) V<p G H1, where, for

ÍG[0,í*], geY,

N

a{t,g){ip,i>) = /
Ju

^2 ai3{x,t,g)di<pd3ip + a0{x,t,g)iptp
i,3 = l

dx,        <p,îp G H1,

is a bilinear, symmetric and coercive form on H1 xH1. If u is the solution of (1.1),

we shall use the notation L{t) = L{t,u{t)), T{t) = T{t,u{t)) for t G [0,í*] and

regard L{t), T{t) as smooth families of bounded linear operators from Hm+2 f) Dl

into Hm, resp. Hm into Hm+2 n DL.

Quasi-Discrete Operators. For 0 < h < 1, let Sh be a family of finite-dimensional

subspaces of W1'00 in which approximations to the solution of (1.1) will be sought.

For t G [0, t*] let Th{t): L2 —► Sh be a family of linear, bounded 'quasi-discrete' (in

the sense that they depend on u{t), the solution of (1.1)) operators, that approxi-

mate T{t). Following, e.g., [4], [5], [2], we shall assume that Sh and Th satisfy the

following list of properties, that will be used in the sequel, usually without special

reference. (Also, henceforth, c, c,, etc. will denote, as is customary, positive generic

constants, not necessarily the same in any two places, possibly depending on u, t*

and the data of (1.1), but not on discretization parameters such as h and the time

step, or elements of Sh, the fully discrete approximations, etc.)

(i) Tk{t) is a family of selfadjoint operators, positive semidefinite on L2, positive

definite on Sh uniformly in t G [0, f*].

(ii) There exists an integer r > 2 and, for j = 0,1,2,..., constants c3 such that

for 2 < s < r

(a)    H(rW(t)-3Í°(*))/« <«¿W(U~2,
for all / G Hs~2. (In general, for a vector- or operator-valued function u(i), we put

uO') = D3tu{t).) Moreover, there exists c such that

(b)    \{T{t) - Th{t))f\oo < chr\ log(ft)|f||27||ri0o,

where f = 0 if r > 2 and 0<f<ooifr = 2, provided Tf G WT'°°.

(iii) If Lh{t) = Th{t)~~1 on Sh, 0 < t < t*, assume that there exist constants c3,

j = 1,2,..., such that

\{Lh3){t)v,<p\<c3{Lh{s)<p,<p)   VpeSh, t,se[0,t*}.

(iv) Assume that there exists a constant c such that the following inverse as-

sumptions hold on Sh (for a justification of (c) cf. Section 5):

(a) {Lh{t)<p,<p) < ch-2\\<p\\2 V<p eSh,te [0,t*].

(b) Moo<c7r"/2|M| V^gS/».

(c) Moo < C7(/i)||Lh(0)1/Vll V<P 6 Sh, where 0 < 7(/i) < h~1/2 for h small

enough.

(v) For t G [0, í*], g G Y, we postulate the existence of a symmetric bilinear

form ah{t, g){-, ■) on Wl'°° x Wl'°°, which is positive definite on Sh, and of a linear

operator Lh{t,g): Sh —> Sh such that

(a) Lh{t,u(t))=Lh{t),        ÍG[0,Í*],

(b) ak(t,g){<p,il>) = {Lk{t,g)<p,i¡>),        f..i> G Sh, t G [0,i*].
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Moreover, assume that there exists c such that for <p,tp G Sk, g,gi G F, s,t G [0, £*]:

(c) \{{Lh{t) - Lh{t,g))vM < c\u{t) - gU\Lh/2{t)<p\\ Il4/2(*MI,

(d) \{{Lh{t) - Lh{t,g))vM < c\\u{t) - g\\ |M|i,oo||LÍ/2(íMI,

(e) \{ah{t,gi) -ah{t,g2) - ah{s,gz) + ah{s,g4)){<p,ip)\

< C[\\gi - 02 - 03 + 04 ||(1 + I S3 - 04|oo)

+ |0l - 03|oo||03 - 04 || + \t - s\ ||03 - 04||]||^||i,oo|| V   (í)^||-

An example of a pair Sk, Th{t) which satisfies the above properties (and from

which this list of assumptions is motivated) is furnished by the standard Galerkin
o

method in which Sh C H1 (1 W1'co is endowed with the approximation property

inf (||u-xl| + Ä||u-xl|i) <c/is||u||s,        l<s<r, for u G Hr HH1,
xesh

where the Tk(t): L2 -* Sh are defined for / G L2 by a{t,u{t)){Th{t)f,X) = {f,X)

Vx G Sh and where the bilinear form a^ coincides with a. For verification of (i)-(iv)

in this case, cf., e.g., [2]-[4] and their references. For (iv.c), cf. Section 5. Properties

(v.c,d,e) follow easily from the smoothness of the coefficients üí3,üq in Qs and the

definition of ak.

A number of important inequalities now follow from the above list, cf. [3], [4].

We let in the sequel P: L2 —* Sh denote the L2 projection operator onto Sh- Then

there exist constants c3, j = 0,1,2,..., such that for t, s G [0, t*], <p, ip G Sk:

\\L^{t)Tk{s)\\,\\Th{s)Lhj){t)P\\<c3,

(1.2) |(4^(i)^,^)|<c,||4/2(S)^||||Li/2(i)V||,

\\Lh]){t)<p\\<c3\\Lh{sM.

Also, as a consequence of (ii.a), there exists c such that

(1.3) ll«-^«ll <chs\\v\\s    if2< s<r andveHsDDL.

Moreover, we shall assume (for a justification, cf. Section 5) that for each v G L°°,

there exists a constant c(v) such that

(1.4) h\\Pvh.oo<e(v).

If u{t) is the solution of (1.1), we let W{t) = Pi{t)u{t) = Th{t)L{t)u{t) denote the

elliptic projection of u. As a consequence of our assumptions (i)-(iv), the elliptic

projection will satisfy, cf. [3],[4], the following properties, some of which are just

restatements, for convenience in referencing, of previously listed ones: there exist

constants c, ct, c%3 such that for t,t' G [0,í*]

(1.5) \\v - Pi{t)v\\ < chs\\v\\s,        2<s<r, veDLnHs,

(1.6) \\u{m)(t)-W{m](t)\\ <cmhs, 2<s<r, m>0,

(1.7) \\L{hl){t)W^{t')\\<cv,        t,y > 0,

(1.8) N0-W(0l°o <chr\\oghf,        fasin(ii.b).
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We shall also need the property that for constants c3

(1.9) llw^WHi.«, <<•,-,     i = 0,1, ÍG[0,Í*],

which we shall justify under some additional assumptions in Section 5.

Full Discretizations. For the purpose of introducing the fully discrete approxi-

mations, we consider the 'quasi-discrete' problem, i.e., define Wh'- [0, t*] —► Sh such

that

(1.10) wh2){t)+Lh{t)wh{t)=Pf{t),        0<t<t*,

where f{t) = f(t,u{t)). As Wh{t) will play no role in the analysis and the proofs,

other than that of motivating the construction of the fully discrete schemes, we

shall assume that supplementing (1.10) with initial conditions Wh{0), Wh,t{0) will

produce a unique, sufficiently smooth solution Wh{t), 0 < t < t*.

Our time-stepping procedures will be based on fourth-order accurate rational

approximations r(x) to cos(x), [3], of the form

r(x) = (1 + Pix2 + p2x4)/(l + oix2 + g2x4)

with gi, q2 > 0. We shall assume for accuracy and stability purposes that Pi = gi -

1/2, p2 = g2-gi/2+l/24, and that the pair (gi, g2) belongs to the stability region^1

of the gi,g2 > 0 quarterplane, [3]. Let k > 0 denote the time step, let tn = nk, n —

0,1,2,..., J, and assume that t* = Jk. In the sequel we shall employ the following

notation: Ln = Lh{tn), L(nj) = Lh3\tn), Tn = Th{tn), Ú3) = T[h3\tn), /" =

Pf{tn), f(3)n = Pf{3){tn) = Pf^{tn,u{tn)),wn = wh{tn), u,ú> = wh3\tn). As

in [3], approximating cosh(¿) = cos{iz) by r{iz) in the formal relation wn+1 +

u>"_1 = 2cosh(fc£>t)u)n, Dt = d/dt, we have, for Wh smooth enough,

(/ - qik2D2 + q2k4D4){wn+x + /"')

= 2(7 - pifc2.D2 + p2k4D4)wn + 0{k6wh6)).

Differentiating now (1.10), we obtain

w(h4){t) = - Lh{t){-Lh{t)wh{t) + Pf{t)) - Lh2\t)wh{t) - 2Lhl\t)whl\t)

+ Pf(2){t).

Substituting this in the above relation and using the notations q(r) = l + g1r + g2r2,

p{r) = 1 +pir + p2r2, Qn = q{k2Ln), Pn = p(k2Ln), yields the following temporal

discretization of (1.10):

Qn+lWn+1 - 2Pnwn + Qn-ywn-1

= k2(q1fn+1-2p1r+q1fn-1)

+ k4{q2Ln+1fn+1 - 2p2Lnfn + q.Ln.J*1-1)

+ q2k4{L(2)+lwn+l - 2L^wn + 42V"_1) + 2(g2 - p2)k4L^wn

+ 2q2k4(L<n1l1w^n+l - 2L^w^n + L^w™»-1)

+ 4(g2-P2)A;441)u>(1)n

- g2fc4(/(2)n+1 - 2/(2)" + Z«2'"-1) - 2(g2 - P2)fc4/(2)n + 0{k6).

Since we are interested in fourth-order methods, we put q2 - p2 = (gi - l/12)/2

and drop the (presumably of 0(fc6)) second-order central differences in the right-

hand side of the above.   We also replace the derivative w^n, using the relation
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w(i)n _ k-i(wn _ w"-i) + kwWn/2 + 0{k2) and computing w^n by (1.10). The

resulting relation yields that up to presumably 0{k6) terms,

Qn+1wn+1 - 2Pnwn + Qn-iw"'1

= k2{qifn+1-2Plr+qifn'1)

(1.11) + k4{q2Ln+1fn+1 - 2p2Lnfn + ftLn-i/""1)

+ (gi - l/12)fc4{42>u>n + 2L^[k~1{wn - w^1)

+ (k/2){-Lnwn + fn)]-fWn}.

Motivated by (1.11), we can now state the fully discrete scheme. We shall seek

Un G Sh approximating u" = u{tn) for 0 < n < J. To avoid solving nonlinear sys-

tems of equations at every time step, when called upon to evaluate the coefficients

and the right-hand side at the advanced time level n + 1, we shall substitute (as

was done in the parabolic case in [5]) for Un+1 an approximation Un+1 to un+1

obtained by suitable extrapolation from values of Um, m <n. The precise formulas

for the Un+1 will be specified in Section 3. We shall also replace the derivatives

Ln , f^n in (1.11) by appropriate difference quotients. To this end, we use the

notations

62Ln{Ûn+1,Un,U"-1) = k~2{Ln+1{Ûn+1) - 2Ln{Un) + Ln-^U"-1)),

(1.12) oin((7"+1,L7«-1) = (2A;)-1(L„+1(i/"+1)-L„_1((7"-1)),

62fn{Ûn+1,Un, Un~l) s k~2{fn+1{Ûn+1) - 2fn{Un) + /"-^t/"-1)),

where, for gn G Y, 0 < n < J, we put Ln{gn) = Lh{tn,gn) and fn{gn) =

Pf{tn,gn). Letting Ân = q{k2Ln{Ûn)), An = q{k2Ln{Un)), Bn = p{k2Ln{Un)),

we can finally state our fully discrete method, which we shall refer to as the base

scheme:

Ân+1Un+1 - 2BnUn + An-iC/"-1 = Q{(ln+\Un,Un-1)

= k2{qifn+1{Ûn+1) - 2Plfn{Un) + qiP-^U"-1))

(1.13) + fc4(g2Ln+1(f/"+1)/"+1(i7"+1) - 2p2Ln{Un)fn{Un)

+ q2Ln-1{Un-1)fn-1{Un-1))

+ (gi - l/12)k4{62Ln{Ûn+1,Un, Un-x)Un + 26Ln{Ûn+l,Un~l)

■ [k-^U" - Un~l) + {k/2){-Ln{Un)Un + fn{Un))\

-o2/n({7n+1,i/n,C/n-1)}.

We shall compute Un+1 for 1 < n < J -1 from this scheme. In Section 3 we shall

specify our starting procedure, i.e., the definitions of t/°, U1 and the 'lagged' term

Un+1, 1 < n < J — 1. In the same section we shall show that, under appropriate

stability restrictions (in general that kh~l remain arbitrary but bounded as k, h —► 0

and, for some choices of the parameters qi,q2, that kh~l remain small), there exists
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a constant c such that

max  \\un -Un\\ <c{k4 + hr),
0<n<J

i.e., that an optimal-order in space and time L2 error estimate holds. However,

solving for Un+1 by (1.13) necessitates solving linear systems with the operators

A„+i that change with each time step. Using preconditioned iterative techniques

following [12], [4], [3], we show in Section 4 how to modify the base scheme so

that the resulting fully discrete methods require solving 0{\ log(fc)|) linear systems

at each time step with the same matrix and preserve the stability and accuracy

of the base scheme. These results are preceded by a series of technical lemmata

and 'a priori' stability and convergence estimates, which we present in Section 2.

The paper closes with an appendix (Section 5) in which we collect evidence of the

validity of several technical inequalities that are assumed in the previous sections.

The proofs of the main result of Section 2, of some results of Section 3, and all of

Section 5 can be found in the Supplement to the paper in the supplements section

of this issue in Sections S2, S3, S5, respectively.

2. Consistency and Preliminary Error Estimates. In this section we shall

study the problem of existence of solutions and the consistency of the base scheme

(1.13) and derive several preliminary error estimates and a priori stability results

that will prepare the way for the main convergence theorem of Section 3. The

proofs of many intermediate results can be found in detail in the Supplement to

the paper in the supplements section of this issue.

We begin with a technical lemma that supplements the inequalities of the type

(v.c, d) in Section 1.

LEMMA 2.1.   There exists a constant c > 0 such that for g G Y, t G [0,t*]:

f   c/l-1|uW-0|oo||4/2WV'||

fortpeSh,

. c/i-MIM«)-g||||V'||i,oc

(2.1)        \\(Lk(t)-Lk(t,g))rp\\<{

\((L2(t)-L2h(t,g))iP,<p)\

(2.2) < ch-'Ht) - ffUII^WV-H \\Lk(t)<p\\ + \\Lk(t)r/,\\ \\Lh/2 (t)<p\\)

+ ch-2\u{t) - gW^L^mW ||L¿/a(í)*>ll,    for <p, j, G Sk.

Proof. The estimate (2.1) follows from (v.c,d) and (iv.a). Using, for p,^€ Sk,

{{L2h{t) - L2h{t,g))TP,<p) = {{Lh{t) - Lk[t,g))xl>, Lh{t)<p)

+ {Lh{t,g)iJ}, {Lh{t)-Lh{t,g))v)

and noting that \\Lk{t,g)r¡>\\ < \\{Lh{t,g) - Lk{t))ip\\ + \\Lk(t)ip\\, we obtain (2.2)

from (v.c), (iv.a) and (2.1).    G

The next result concerns the invertibility of the linear operator An+i on Sk. In

the sequel we denote en = un - Un, ên = u" - Un.
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LEMMA  2.2.   Suppose that 1 < n < J - 1 and Ûn+1 G Sh H Y.   Then there

exists a constant c such that for <p,ip G Sh

\{{Qn+i - Ân+1)rl>,<p)\

<cqik2h-1\en+1U\L1£im<P\\

+ cg2fc4/î-1|ê"+1|0O(||4/+V|| ||Z,n+1p|| + ||Ln+^|| WLl/ÏMl)

+ cq2k4h-2\ên+1\l\\Ll/2in\\L1J2Ml

If in addition there exists a > 0 such that kh~l < a, and 2/|ên+1|oo is sufficiently

small {or if |ên+1|oo < ch and k is sufficiently small), then j4„+i is invertible on

Sh, and Un+i, defined by (1.13), exists uniquely, given Un,Un~1,Un+1.

Proof. Since

Qn+1 - in+1 = qik2{Ln+l - Ln+1{Ûn+1))+q2k4{L2n+1 - L2 + 1(l>+1)),

(2.3) follows from (v.c), (iv.a), (2.2). Putting V = <P in (2.3) and using the

arithmetic-geometric mean (agm) inequality gives

|((Qn+1 - in+1 W)| < c{kh-1\ên+1\00 + k2h-2\ên+1\l)

■{M2 + k2\\Ll/2lP\\2 + <l2k4\\Ln+M\2).

Letting Qn+i — I + k2Ln+\ + q2k4{Ln+i)2, one may easily see, cf. [4], that for

positive constants ct there holds ci{Qn+i<p,tp) < {Qn+lip,ip) < c2{Qn+\<p,tp) for

every ¡p G Sh- Hence,

(2.4) |((Q„+1-in+1)¥:,^)|<C(fc/l-1|ê"+1|0O + /e2/l-2|è"+1|2X))(Qn+1^^)

for <p G Sh, and the invertibility of An+\ follows from that of <2n+i(gi, qi > 0).    G

Assuming that 1 < n < J - 1, that Un, f/n_1, Ûn+1 exist in Sh and that the

hypotheses of Lemma 2.2 hold, we let En = Un - Wn, where Wn = W{tn) =

Pi{tn)un- For <p3 G Sh, j = n — 1,n, n + 1, we define

(2.5) Sn£>n = {Qn+l - Â„+i)^>n+i - 2(P„ - Bn)<pn + {Qn-l - An-i)(pn-x

and obtain, using (1.13), the error equation

Qn+iEn+1 - 2Pn£" + Qn-iEn~l

(2.6) =Sn/íri + SnVl/" + e(í7n+1,í/",[/n-1)

- {Qn+iWn+1 - 2PnWn + Qn-iW"-1).

The next lemma is a consistency result for the scheme (1.13). (In the sequel we let

U(>> =«(i)(In).)

LEMMA 2.3.   Let 1 < n < J — 1 and suppose that the solution u and the data

of (1.1) are sufficiently smooth.  Then

Qn+1Wn+1 - 2PnWn + Qn-jVK""1

= yri + fc2(g1/n+i-2Plr+g1r-1)

+ k4{q2Ln+1fn+1 - 2p2Lnfn + g2£n-i/n-1)

+ k4{qi - l/12)(PL(2)(i„)un + 2PL<1)(in)u(1'n - /<2>"),
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where for some constant c

(2.8) |(F",^)|<cfc2(fc4 + /i'-)(||^|| + fc2||L„^||)    V^GS„.

Proof. See Section S2 in the Supplement to the paper.     G

Defining now, for 1 < n < J — 1,

A{Ûn+1 ,Un ,Un~l)

(2 16) = e(i)n+1'U"' Un'l) ~ k2{qifn+1 ~~ 2pifn + 9l/n_1)

- k4{q2Ln+1fn+1 - 2P2Lnfn + g2i„-i/n_1)

- k4{Ql - l/12){PL^{tn)un +2PL^{tn)u^n - f^n),

we see that the error equation (2.6) may be written as

Qn+1En+1 -2PnEn -r-Qn-iE"-1

= SnEn + SnWn + A(l>+1 , Un, f/"-1) - Yn,

with Yn as in (2.7)-(2.8). Taking the L2 inner product of both sides of this equation

with En+l — En~1, and using the symmetry of Qn,Pm we obtain

{Qn+1En+1,En+1) - {Qn.lEn-\En~l)

(2 17) " 2í(P"+ií;n+1'£;ri) - {PnEn,En~1)}

= {{Qn+i-Qn-i)En+1,En-1)-2{{Pn+1-Pn)En+\En)

+ {SnEn + SnWn + A{Ûn+1,Un, Un-1) - Yn,En+1 - E"-1).

A basic error inequality is given in the following

LEMMA 2.4.   Suppose that 1 < m < I < J - 1, that Un, m- 1 < n < l + l

and Un+1, m < n < I, exist uniquely in Sh {i.e, that the An+i are invertible for

m < n < I).  Then

Vi+i < ritt + ck2(k4 + hr)2((l - m + l)k)

i

+ ck J2(\\En+1 -E"-1^

(2.18)
+ fc2(||Ly2£n+1||2 + \\LJ/2En\\2 + WL^ET-'f)

+ fc4(||Ln£"+1||2 + ||L„£"||2 + WLnE^f

+ \\Ln{En+1-En-1)\\2}

i
+ ^2 (S«£n + S"iyn + HÙn+1, Un, Un~l),En+l - En-1),

where

„W = he3 - E3~l\\2 + k2{{Ql - Pl)/2)\\Lf{E3 + E>-

(219) +fc2((g1+p1)/2)||L;/2(^-^-1)||2

+ fc4((g2-p2)/2)||L,(^+^-1)||2

+ fc4((02+P2)/2)||L,(^-^-1)||2.

lM|2
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Proof. The proof follows by summing both sides of (2.17) from n = m to n = I,

proceeding as in the proof of Theorem 2.1 of [3]—noting that the analogs of (2.30)

and (2.32) of [3] hold here too—and making use of the estimate, cf. (2.8):

i
Y^(Yn,En+1 -En~l)

n=m

I

< c ^2 {k3{k4 + hr)2 + k\\En+1 - En~l\\2 + fc5||L„(£n+1 - £n_1)||2).   G

n=m

We must now estimate the last three sums in the right-hand side of (2.18).

This is carried out in Section S2 of the Supplement to the paper. Specifically, in

Lemma 2.5 in the Supplement, we estimate the term ^2n{SnEn,En+1 — En~l)

in a straightforward way, following estimates analogous to those that led to (2.3).

The term £n(S„Wn, En+1 - £n_1) is estimated piecemeal in Lemmata 2.6, 2.7

and 2.8 in the Supplement. (It turns out that further use of these estimates will

be made in Section 3 in the cases I > m + 2 and I = m. Lemmata 2.6-2.8 deal

with the case I > m + 2, while the term with I = m is easily estimated in (2.40),

cf. Section S2.) Finally, the term ^2n{A{Ûn+1,Un,Un-1),En+1 - En~l) is broken

into five parts which are then estimated in Lemmata 2.9-2.13 in the Supplement

and complete the a priori estimation of all terms in the right-hand side of (2.18).

For convenience in later use we collect below, summarize and simplify the results

of Lemmata 2.4-2.13, distinguishing between the cases I >m + 2 and / = m.

PROPOSITION 2.1. Suppose that 1 < m,l < J - 1 and I > m + 2, that U3,

m - 1 < j < I exist in ShC\Y, that Ul+l exists in Sh, that U3,m+l<j<l+l

exist in Sh f~l Y, that (1.4) and (1.9) hold and that there exists a > 0 such that

kh~l < a. Then, with r?^', j = 1,2,3, defined by (2.19), (2.24), (2.54) {cf. Section

S2), respectively, given £i,£2 > 0, there exists a constant c(ei,e2) > 0 such that

H^+i _ e1\\2 + fc2((9l - Pl)/2)\\L¡i21{El+l + El)\\2

+ k2{{q1+Pl)/2)\\L¡i\{El+1-El)\\2

(2.88) +k4{{q2 -p2)/2)\\Ll+1{El+i +El)\\2

i

+ fc4((g2+p2)/2)||L¡+1(/í,+1-/íí)||2<^F;,

7=1

where

F2 = e^iWLll2^ + E<)\\2 + ||L/1f1(^+1 - El)\\2)

+ £2fc4(||L(+1(£,+1 + £')||2 + ||Li+i(£,+1 - ¿?')ll2)

+ c(c:i,c:2)A;2 EPjII2(i + I^I2»)+ ¿ H«*da(i + |e*lL)
3=1 3=1-2
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F3 = ck2{k4 + hry{l - m + l)k,

i

F4 = ck  Y, {||£n+1-£nll2 + fc2(l|£y+i(£n+1+£n)
n=m—1

+ \\Lln/21{En+1-En)\\2)

+ k4{\\Ln+1{En+1 + £")||2 + ||L„+i(£n+1 - En)\\2)},

i-i

F5 = ck ^2 {\en~1\l0\\En+1-En~1\\2 + \en-2\l0\\En-En-2\\2}
n=m+l

+cfc¿{/l-2(|e"+ii2c + n2K) + |e'i-ii2X))
n=m

x {\\En+1 - E"-1]]2 + \\E" - £"-2||2)

+ ft-Hl«""1"1!« + Hoc + |en-1loo)ll^B+1 - En-l\\2

+ A;2/t-1(|ê"+1|oo||^/+21£n+1||2 + |en|oo||^/2^n||2

+ |e"-1|oo||^/_21^"-1||2)

+ fcafc-1(|é"+1|oo + Hoc + \en-l\oo)\\L1n/^{En+1 - En)\\2

+*3Ä-2(icn+ii^iiLy+21^+iii2+icni2x>ii^/2^nii2

+ kn-1|2.ll¿n/-2l^n-1H2)

+ rt-^'lî. + knl2o + p-^W&iiP*1 - £n_1)ll2

+ k4h-1{\ën+%\\Ln+1En+1\\2 + \en\o0\\LnEn\\2

+ |e"-1|ooP„-i£"-1||2)

+ k'h-Wê^U + |e"|oo + |en-1|oo)||¿n+i(^+1 - £n-1)H2}

+ ck   £    |*afc-a[|*"+alL + l^la.+   J2   \é¡t 1 \\Ln/2E-f
n=m+l   y y j=n-2 J

+ k2h2r{\en-l\200+\e»-2\200)\,

i

F6 = cfc^fc2(||ê"+1||2 + ||en||2 + ||e"-1||2),

n = m

l-l

F7 = ck   ¿2   PB+3-éBll3(l + |éBlL)-    D
n = m + 1

We also examine for later use the case I = m, I < m < J — I. Assuming that

for such m, U3 exist in Sh D Y for m — 1 < j < m and in Sh for j = m + 1, that

Um+l G Sh n Y, that (1.4) and (1.9) hold and that there exists a > 0 such that

kh~l < a, then, with n.    defined by (2.19), we have that, given e, > 0, 1 < i < 4,
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there exists a constant ce = c{ei,£2,£z,e4) > 0 such that

•ß* < r,m)+eik2{\\Llil1E^\\2 + WL^E^f)

+ e2k4{\\Lm+1Em+1\\2 + \\Lm+1Em-1\\2)

+ e3k2\\L1r¡2Em+1\\2+e4k2\\LU2Em-1\\2

m

+c£k2 ||ê-+in2(i + r+ii2,)+ ¿2 \w\\^ + w\l)
j=m-l

+ ck3{k4 + hr)2 + ck\\Em+l - Em~l\\2

(   m + l

+ ck3\    Y,   \\l)'2e3W2 + \\LU2{Em+1 - Em)f

(2.89)

. j=m — 1

m + l

i   \\t1/2( jr,m        Tpm — 1
+ \\Lm  {E    - E

+ ck5 £   UL^f + ||Lm(
i j=m—1

-l/|=m+l|

-2¡\¿m-rl |2     i   i  mi2     .   i  m-l|2
loo   'Ie    loo   '   Ie loo

+ ckh~\\e

+ ckh~2{\ê

x {\\Em+1 - Em\f     \\E

+ ck3h~l{\ë

+ e
m — l

m + l

m-l||2

E m-l||2-|

M|ool|Lil/a.1í;m+1||2 + |emui£™/2£m|l2

„m-l|2
^li-iE

m — l i|2\

+ cfc3/i-1(|êm+1|0O + |em|oo + |em-1|oo)||¿Íí/2(Am+1-£;m-1)||2

+ cfc4^-2(|ê™+1|2X)ll^/+i^m+1ll2 + kml2»ll^/2JBmll2

h|em-1l2n||Li,/!1£r-1||2)

-2/\-m + l\2+ ck4h-*{\èr>

;.5j,-l/|sm + l|

|emlL + |em-112

loo Il    m-

1/2   i jpm+1
loo

+ CK  h      (\e |oo||I>m-|-l£/ I    + \e    looH-km-fr

00     '    I" IOO

m+l||2

LT+ï{Em+l-

mil 2

m—l \

„m-1
oo\\Lm-lET

-l/\¿m+l\+ ckbh-1{\ë

u3/|i;m+l||2

e"1"1^)|oo   1   |C    loo

^ + l|em||2 + ||em-1||2)

\Lm{E
m+l -E

-1||2>

m — lM|2

3. Starting and Convergence of the Scheme. In this section we shall com-

plete the base scheme (1.13) by specifying U°,U1, and the formulas for computing

f/n+i \Ye shall then prove, in Theorem 3.1, an optimal-order L2-error estimate for

the base scheme. The starting will be done in two phases: first we specify U° and

compute Ul using a single-step method; we also prove some associated error esti-

mates. The values U3 ,j > 2, will be computed using the base scheme. It turns out

that it is necessary to analyze the error of the approximation U3, 2 < j < 5 (and

compute the associated U3 ) in a special way. Finally, we specify U3 for j > 5 and

prove the main stability-convergence result. The proofs and statements of many

intermediate results appear in the Supplement to the paper.
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Computing U0,7/1. We shall take

(3.1) U° = W°= ToL{0)u°.

To define U1, let S2 = Sh x Sh and, adopting the notation of [3, Section 3] or [2],

introduce the inner product (($,*))„ = {<pi,ipi) + (^^2,^2) for $ = {<Pi,<P2)T,

v¡> = {il)i,ip2)T G Si, and the associated norm |$|n = (($, $))«/2. Let f{z) be the

(2,2)-Padé approximant to ez, i.e., let

(3.2) ?{z) = (1 + z/2 + z2/l2)/{l - z/2 + z2/l2) = p{z)/q{z).

Defining

Lm — L/i(£m) = (

Lm(g) = Lh{tm,9)=(_L°m{g)   J),      geY,

and U° G S2, as

(3.3) U° = (C/", cT2°)T = {W°, W^°)T = W°

(so that U° = C/° = W°), compute for j = 1,2,3, Û{ G Sh by

(3.4) t/? = U° + P[jku^° + {jk)2uW°/2\ + {jk)3u^°ß\}.

It is assumed that in (3.3), (3.4), u^°, u^° and W^° = (ï\(f)L(t)«(i))(1)|t=o

will be evaluated using the differential equation in (1.1) at t = 0. As U1 we shall

then take

(3.5) Ul = V\,

where U1 = {U},U2)T G S2 is the solution of the linear system

(3.6) A1U1=B0U° + F°

with

(3.7)

(3.8)

A^g^L^C/i))

+ (fc2/12)[(6fc)-1(-L3(f>13) + 6L2(f/12)-3L1(L>11) - 2L0{U0))},

Bo = p(fcL0(cT°))

+ (fc2/12)[(6fc)-1(2L3(t>13) - 9L2({/2) + lSLxíí/^-llLoíC/0))],

(3.9)

F° = {k2{f°-f1{U¡))/12,

kf°/2 + {k2/12)[2f3{Û3) - 9f2{Û2) + ÍS/^Í/Í) - ll/°]/6fc

+ kf1{Ûl)/2

-{k2/12)[-f3{Û3) + 6f2{Û2)-3f1{Û11)-2f°{U°))/Qk)T.

For the proof of convergence of the overall scheme we shall need error estimates for

U1 in a special norm. For this purpose we state and prove some preliminary results

in the Lemmata 3.1 and 3.2 of the Supplement. These results lead to Proposition

3.1 and (3.29) (see Supplement), which summarize the error analysis at the time

levels t3, j = 0,1.
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Computing U3, Û3, 2 < j < 5. We then compute (and estimate the errors of)

a few steps (2 < j < 5) of the numerical solution U3 using the cosine base scheme

(1.13). To do this, we must also provide the necessary Û3, 2 < j < 5. It turns

out that the error analysis must be done in a special way for these first few steps.

We start with the preparatory Lemma 3.3, the heart of the step-by-step estimation

argument, albeit good only for a few time steps. Its statement and proof can be

found in the Supplement.

Then we define in an inductive fashion Û3+1 for j — 1,..., 4 as follows:

(3.38.2) Û2 = 8771 - 7/7° - 6kPu^° - 2k2Pu^°,

(3.38.3) Û3 = (9/2)C/2 - 9J71 + (ll/2)C/° + 3fcPu(1)0,

(3.38.4) Û4 = W3 -W2+W1 -U°,

(3.38.5) Û5 = 4U4 - W3 + 4U2 - U1.

In these formulas, the U3, 2 < j < 4, are computed successively by (1.13), once

the required Ul,i< j and U3 have been computed.

For the motivation behind this special choice of U3+1 for 1 < j < 4 and the

relevant error estimation we refer the reader to the Supplement. Here, for purposes

of easy reference, summarizing the results of Proposition 3.1, Lemma 3.3 and the

subsequent discussion in the Supplement, we state:

PROPOSITION 3.2. Suppose that there exists a > 0 such that kh"1 < a, that

k, h are sufficiently small and assume the stability conditions on (gi,g2) of Lemma

3.3. Suppose also that (1.4), (1.7), (1.9) hold and let U°, U°, Û3, 1 < j < 3, be

given by (3.1), (3.3), (3.4). Then U1, the solution of (3.6), exists uniquely. Define

U1 6w(3.5). Then

for j = 1,...,4:

define Û3+1 by (3.38-i + 1),
then U3 + l, the solution of (1.13) for n = j, exists uniquely.

Moreover, U3 G Sh H Y, 0 < j < 5, Û3 G Sh n Y, 2 < j < 5.  // E3 = U3 - W3

{E° = 0), if E3t3-i is defined by (3.31) and if e3 = u3 - U3, ê3 — u3 - Û3 as usual,

we have

(a) Ejj-i <c3k2{k4 + hr)2,        1 < j < 5,

(b) \\È>\\ <c3k{k4 + hr), 0<j<5,

(c) \\e3\\<c3{k4 + hr), 0<i<5,

(d) |eí'|oo<A, 0<¿<5,

(e) ||êJ+1||<c,(A;4 + /ir), l<i<4,

(f) \è3+lU<h, 1 < i < 4.

Stability and Convergence of the Base Scheme. We now proceed to the central

result of this section. Having already defined and estimated Un, 0 < n < 5, and

Ûn+1, 1 < n < 4, we shall let, for 5 < n < J - 1, provided of course that the U3,

j < n exist,

(3.39)

(3.40) C/n+1 = J2a3Un+1-3 = 4Un - 6Í/""1 + 4Un~2 - UTrn-3
■jtju - = tu     — uu -r tu — L

3 = 1

and compute Un+1 as the solution of (1.13).
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THEOREM 3.1. Assume all hypotheses and definitions of Proposition 3.2. Then,

with Ûn+1 defined by (3.38.n + 1) for 1 < n < 4 and by (3.40) for 5 < n < J - 1,
i/ie £/", 2 <n < J, exist uniquely as solutions of (1.13). Let En = Un - Wn and

let E3j-i be given for j > 1 by

Ejj-i = \\E3 - E3'-1]]2 + k2\\L),2{E3 - E3-1)^

(3-41) + k2\\L)/2{E3 + E>~x)f + k4\\L3{E3 - E3~l)\\2

+ k4\\L3{E3+E3~l)\\2.

Then there exists a positive c, independent of h and k, such that

(3.42) omax_/ ( \\En\\ + ¿(i^)1/* J < c(A;4 + ft'),
3 = 1

(3.43) max \\un-Un\\ <c{k4 + hr).
0<n<J

Proof (by induction). Let I be an integer such that 5 < / < J — 1. We make the

following induction hypothesis on /:

(a) Un, 0 < n < I exist (as solutions of (1.13) for n > 2) in Sh D Y,

(b) ||£n||+En=i(^',i-i)1/2<^t"(fc4 + ft'-),        0<n</,

(3.44) (c)    |e"|oo < h,        0 < n < I,

(d) Ûn+1,1 < n < I, belong to Sh n F,

(e) |ê"+1|oo<ft,        l<n<l.

(In (3.44.b), a is a finite positive constant, independent of k, n, h or /, whose value

will be specified in the proof.) Obviously, the hypothesis holds for / = 5, cf. (3.39).

Also, if k is sufficiently small, (2.4) shows that A;+i is invertible, i.e., that Ul+1,

the solution of (1.13) for n — l, exists uniquely in Sk. We now turn to Proposition

2.1 which we shall use for m = 3. All its hypotheses are fulfilled and therefore,

for any £i,£2 > 0, there exists a constant c{e\,e2) > 0 such that (2.88) holds for

m = 3 and our current / (> m + 2 = 5), or any other /' such that 5 < I' < I. As a

preliminary note we remark that the induction hypothesis (3.44.b) gives

(3.45) ||e"|| < ||£n||-r-||un-W"|| <oe°u{k4 + hT) + chr,        0<n<l.

Consequently, in view of (3.44.d), (3.40), we have, for 5 < n < I,

4
2«+l|

<
£^"+1

-3

3 = 1

+ un+1-J2a3un+1-

3 = 1

< c{k4 + hr) J2{aeat"+¡-') + c{k4 + hT).

3 = 1

Combining with (3.39.e), we have

(3.46)
l.sn+11 <c{k4 + hT)    ¿fTeCTt"+1-^     +c{k4 + hr),        \<n<l.

J=i
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We now embark upon estimating the terms F¿ of the right-hand side of (2.88).

We immediately conclude by (3.39a, c-f) that

(3.47) Fi = ri{3l) + n(2) + i¿8) < ck2{k4 + hr)2.

Now, using the L°° bounds (3.44.c,e), we shall estimate for the time being

F2 < E^ttlLJl^E1*1 + El)\\2 + \\L¡í]{El+1 - El)\\2)

(3.48)

+ E2k4{\\Ll+1{El+l + El)\\2 + \\Ll+l{El-

+ c(£l,c-2)fc2(X>J||2+  É  \\e3\\2
\J = 1 3=1-2

We also immediately note that

(3.49)

(3.50)

1.2/1.4   ,   ur\2F3<ck¿{k4 + hry

I

F4 < ck^En + i^.

n=2

Using (3.44.c,e), it is straightforward to see that

(3.51) F5 <ckJ2En+Un+ck2h2r.
n=2

Then, using (3.44.b) and (3.45), (3.46), we obtain

(3.52)      F6 < ck2{k4 + hr)2 + ck3{k4 + hr)2o-2e2,7^{e2ok(l-l) - \)/(e2ak - 1).

For the purpose of estimating F7, note that by (3.38.4,5) and (3.40) we have for

4<n</-l

|¿n+a_éni| <

+

+

u"+2 - ¿2a3un+2-j    - U" - J2aiun'

j=i J    V      3=1
4

^2a3[{un+2-3 - Wn+2~3) - {un~3 - Wn~3)}

3 = 1

4

Y,a3[{Un+2-3 - Wn+2~3) - {Un'3 - Wn~3)}

3 = 1

< ck5 + ckhr + c^2 \\En+2-3 - En~3\

3 = 1

Hence, using (3.44.c) and (3.39.a), we obtain

l-i

(3.53) F7 < ck2(k4 + hr)2 + ck J2 \\En+l - En\
n=2
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Collecting terms, we see that from (3.47)-(3.53) and (2.88) there follows that, with
(i)

I

ny> defined by (2.19),

V¡1\ < ck2{k4 + hr)2 + ckJ2 En+i,n
n=2

+ e1fc2(||Lí1/2(í;¡+1 + í;í)ll2 + ll^21(£'+1-Fi)||2)

(3.54) + E2k4{\\Ll+1{El+1 + e1)\\2 + \\l1+1{e1+1 - e1)\\2)

+ c(s1,£2)fc2[X:i|^||2+   ¿   ||el2

\3=l 3=1-2

+ ck3{k4 + hr)2a2e2a^{e2ak^-^ - \)¡{e2°k - 1).

(Let us remark again that, e.g., (3.54) holds if we replace I by any integer /' such

that 5 < /' < /.) At this stage, the stability assumptions on gi,g2 yield—basically

as in the proof of Theorem 2.1 of [3]—that it is possible, by taking k and £i,£2

sufficiently small, to hide the third and fourth term in the right-hand side of the

above in analogous terms of the left-hand side, which may be subsequently bounded

below by a positive constant times F/+i,/. Hence we obtain for k sufficiently small

El+u<ck2{k4 + hr)2+ck2\Y,\\è3\\2 +  ¿   ||el2

\j=l ]=l-2

(3-55) + c/t3(fc4 + hr)2a2e2at3[e2ak(l-l) _ ^¿¡ak _ ,)

Í-1

+ cfc^] £n+i,n.

n=2

Inserting now the assumed (by (3.45) and (3.46)) bounds for ||êJ ||, / < j < I + 1,

||eJ||, I-2 < j < I, we see, in view of (3.39.a), that for all /', 0 < /' < /, there holds

C-i

(3.56) Ev+U. < ck2{k4 + hr)2Av +ckJ2 En+i,n,
n=0

where

Av = 1 + o-2e2at'> + ka2e2^(e2ak(l'-l) - \)/{e2ak - 1).

By Gronwall's lemma we conclude therefore, since for x > 0, x{ex — 1)_1 < 1, that

(3.57) (F„+1,n)1/2 <ck(k4 + hr)(l+o-eat"+^/c}e'7t"+2),        0<n<l,

where c is independent of a. We shall eventually choose a > 1; hence

||£n+1 - £n|| + (Fn+1,n)1/2 < ck{k4 + hT)aeat"+\        0<n<l.

Since E° = 0, summation yields

i

(3.58) \\El+1\\ + J2(E"+^1/2 < {k4 + hr){c*e2fThVtl+i,

n=0

where the positive constant c, is independent of a; we assume c* > 1. Now—with

20/20 hindsight    choosing a = 2c* and picking k small enough so that e4c"k < 2,
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gives c*e2<rfc < a, i.e., that in the above

i

(3.59) \\El+1\\ + J2{E3J-1)1/2 < ae^'^^k4 + hr),

3=1

which is (3.44.b) for n = / + 1. With this choice of a, (3.57) implies

(3.60) ||Li1{2F1+1|| <c{k4 + hr),

i.e., in view of (iv.c), that |£i+1|oo < ch3l2.  Hence, |e'+1|oo < ch3'2 < ft for ft

sufficiently small. This is (3.44.c) for n = 1 +1; the fact that Ul+l G Y also follows.

Finally, if / + 1 = J, we are done. lîl + KJ, define Ûl+2 = £4=1 a3Ul+2-3

and obtain, by (3.57), (3.60) for ft sufficiently small, that

Iê,+2U < ul+2-Y,a3u'+2-3

j=i

+ J2a3{ul+2-3-W'+2-3)

j=i

+ E^E'+2-
j=i

< c{k2 + h3'2 + 7(ft)(fc4 + ftr)) < ft,

which establishes (3.44.d,e) for n = I + 1. The inductive step is complete; (3.42)

and (3.43) follow from (3.44.b).    G

4. Preconditioned Iterative Methods. The implementation of the base

scheme (1.13) requires, at each time step n, the solution of a linear system with

operator A„+i, which changes from step to step. Following [12], [4], [3], we shall

use preconditioned iterative techniques with suitable starting values to approximate

r/n+l jn a gtabie and accurate way by solving a number of linear systems per step

with an operator that does not change with n. Most of the required estimates are

similar to those of Section 3 and follow in general lines the analogous estimates

in [3]. Hence we shall just state here the relevant algorithms and results without

proofs.

We shall denote by Vn, n > 0, the new fully discrete approximations to be

computed, to distinguish them from Un, the solutions of the base scheme (1.13).

To establish notation, following [4], let H be a finite-dimensional Hubert space
1/2

equipped with inner product (•,•)# and norm || • ||# = (-, -)¿ .To approximate the

solution x G H of a linear system Ax = 6, 6 G H, where A is a selfadjoint, positive

definite operator on H, we suppose that there exists a positive definite, selfadjoint,

easily invertible operator pA (the preconditioner) and constants 0 < Ao < Ai, such

that

(4-1) \0{pAz,z)H < {Az,z)H < \l{pAz,z)H, zeH.

Then, there are iterative methods, for solving the system Ax = b, which, given an

initial guess x'0' G H, generate a sequence x^3\ j > 1, of approximations to x in

such a way that calculating x^3+1\ given x^1', 0 < i < j, only requires multiplying

A with vectors, solving systems with operator pA and computing inner products

and linear combinations of vectors. Moreover, there is a smooth decreasing function
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a: (0,1] -> [0,1) with a{\) = 0 and a constant c such that \\pA1/2(x - x^)\\H <

c[rj(Ao/Ai)],||pA1/2(x - x(°')||/f. In our applications we shall perform at each step

n, 1 < n < J, jn iterations, sufficiently many so as to achieve, with x = x^3n\

\\pAi/2{x-x)\\H<ßn\\pAi/2{x-x™)\\H,

where ßn > 0 are small preassigned tolerances. We shall always take ßn = 0{ku),

v > 1, so that, as a consequence of the geometric convergence of the iterative

method, jn = 0{\ log(fc)|).

We follow the structure and notation of Section 3. As a first step we seek

yi 2 u3\ j = 0,1. We let Vo = U°, V( = Û{, 1 < j < 3, where U°, Û( are given

by (3.3), (3.4), respectively. Suppose that V   G S% is the exact solution of

A1V1=B0V° + F°,

i.e., let V1 =U1,cf. (3.6). We now let H = S¿, (•, )H be the L2 xL2 inner product

on H, A* be the associated adjoint of Ai and To be the operator diag(/,Xó) on

Si- T0 is a selfadjoint positive definite operator on H, but Ai is not. For our

purposes we regard V   as the exact solution of the problem

(AÎTqAOV1 = A*T0(BoV° + F°),

which will be the system on H to be solved by iterative techniques. As precondi-

tioner we use, with ß > 0, the operator

PA = diag((/ + ßk2L0)2, {I + ßk2L0)T0{I + ßk2L0))

(it satisfies (4.1)) and compute, by a preconditioned iterative method satisfying our

stated general properties, V1 = [Vj1, Vj1]7 as an approximation to V   satisfying

ifA^iV1 - V1)!!« < ÄlfA^fV1 - vci^Ih,

where we take ßi = min(7, fc4) for some constant 0 < 7 < 1 and where V'0^1 = Vo.

We set V1 =V11.

For the rest of this section we let H = Sh and (•, ■)# be the L2 inner product

on Sh- We compute first V3, 2 < j < 5, (and the needed extrapolated values V-',

2 < J < 5) as approximations to the exact solutions V3, 2 < j < 5, of the cosine

scheme, cf. (1.13),

Â„+i^+1 - 2BnVn + An-iV"-1 = Q{Vn+1,Vn,Vn-1),        n > 1,

where, although we use the same notation An+i, An, Bn as before, we mean of

course that in+1 = q{k2Ln+1{Vn+1)), Bn = p{k2Ln{Vn)), An = q{k2Ln{Vn))

etc. The operator An+i will now play the role of A. As preconditioner we shall

choose the time-independent operator

pQ = {I + ßk2L0)2,        ß>0,

for which (4.1) is satisfied, cf. [3]. The approximations V3+1, 1 < j < 4, to V3

are then computed so that

^PQl/2{Vn+l _ F„+1)|| ^ ^+i||/>i?1/2(r+l _ yron+ljn

holds for n = j, 1 < j < 4. We take ßn+1 = min(7,fc4) and V^(°)n+1 = Vn;

the V3, 2 < j < 5, are given by the formulas (3.38j), replacing U3 by V3.  We
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continue for n > 5 by computing Vn+1 by (3.40) with U3 = V3, and Un+1 as
_n+l

the approximation to the solution V of (4.8), so that (4.10) is satisfied, where

now ßn+1 = min(7, k) and V^n+1 = 5V" - lOV"1"1 + lOV""2 - Wn~3 + Vn~4.

It may be proved, under the assumptions of Theorem 3.1, that all intermediate

approximations exist uniquely; moreover, there exists a constant c > 0 such that

||Vn - un|| < c{k4 + hr), i.e., that Vn asymptotically satisfies the same type of L2

optimal-order error estimate as does Un.
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S2. CONSISTENCV AND PRELIDINRRV ERROR ESTIMATES

Proof of Lena 2.3. For f e S , using (1.6) we haue

(2.9) (U"*l-2U"*U"-|,,)-<Un*l-u"*,-2(U,,-u")*U"",-u''-1,,)

»<u""-2u"*u"-',,)<.ck2hr|l9||-(u''*l-2u"*u""1,») .

Since   LnUn-PL(ln)u"-f"-Pu(2,n by   (1.1),    ne   haue

(2.10) k2(g|Ln.|U""-2p1LrU"-g1Ln|U"-|).k2(q|fn"-2p1f"*q|f"-1)

-k2P(q|U(2""l-2p1u(2»"*,,ul2)"-1).

Fro.   (1.1)   »e   haue   that   um--L ( -Lu- f ) -2l< ' V '-L<2>u» f<21 .

Hence

(2.11) k,(q2Ln.12U"*'-2p2Ln2U"*q2Lo_12U"",>

■k1{g2tLa.|»U"*,-FL(l..I)(L<tl).|)u",,-f(lIl.|))]

-2p2[Ln2U"-PL(tri)(L(tn)u"-f(ln))]

•a2[Ln_|2Un-'-PL(ln_,)(L(tn_|)u"-,-f(tn.,))])

♦ k1P(q2u<.-2p2u""'»g!u<"-')

.2k,q2P(Lll,(tn,1)ul,,""-2Ll"<l„)u","-L",(tn.,)u"1"-')

♦ 2<q|-1/12)k',PLln(tii)u",n

•k,q¡P(L<2>(tnM)u"-'-2L121(ln)u".L<21(tn.1)un-1)

*(q,-l/l2)k1PL<2)(ln)un

-k-,q2(fl2l"-|-2fl2)"»f<2)n-,)-k1(q,-1/12)fl2,r'.

No«   note   thot    by   (1.1)
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