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The Probability that a Random

Probable Prime is Composite*

By Su Hee Kim and Carl Pomerance**

Abstract. Consider a procedure which (1) chooses a random odd number n < x, (2)

chooses a random number 6, 1 < b < n — 1, and (3) accepts n if bn~l = 1 (mod n).

Let P(x) denote the probability that this procedure accepts a composite number. It

is known from work of Erdös and the second author that P(x) —> 0 as x —► oo. In

this paper, explicit inequalities are established for P(x)\ For example, it is shown that

P(10100) < 2.77 x 10~8 and that P(x) < (logx)"197 for x > 101()5.

Introduction. Suppose one wants to produce a random prime p < x, drawn

with the uniform distribution. One possible solution is to choose a random number

n, 1 < n < x, and apply a test to n that can tell if it is prime or composite. This

procedure is repeated independently until a prime is found. By the prime number

theorem, the expected number of trials until a prime is drawn is about log x. If one

wishes to choose an odd prime, the trials n may be restricted to odd numbers. The

expected number of trials is then about ¿ log x.

There are many algorithms which can be used to decide if n is prime or com-

posite. However, using the Fermât congruence is a very cheap test that is usually

recommended as a preliminary procedure before a more time-consuming test is at-

tempted. Namely, one chooses a random number b, 1 < b < n — 1, and checks if

fon-i = j (mod n). If n is prime, then this congruence will hold. If this congruence

holds, then n is called a probable prime to the base b. This procedure can prove an

input n is composite, but cannot establish primality.

How good is this test at producing random primes? Specifically, let P(x) denote

the probability that n is composite given that

(i) n is chosen at random with 1 < n < x, n odd,

(ii) b is chosen at random with 1 < b < n — 1, and

(iii) n is a probable prime to the base b.

It is well known that there are some composite numbers n, namely the Carmichael

numbers, such that (iii) holds for every b coprime to n. However, Carmichael num-

bers are rare, so presumably the odds of choosing one in (i) is small. In fact,

extensive numerical evidence suggests that P(x) is quite small when x is large.

In practice, if a large random number n passes a random probable prime test,

then one strongly conjectures that n is prime. As Henri Cohen has colorfully put

it, such an n can be considered an "industrial grade prime." That is, although n
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has not been proved prime, the probability it is composite is so small that n might

be used as a prime for industrial (cryptographic) purposes.

We do know theoretically that if x is sufficiently large, then P(x) is small. Indeed,

from Theorem 2.2 in Erdös and Pomerance [2], we have that

(1.1) P(x) < exp(-(l + o(l)) log z log log log z/log log z)

as x —* oo. In particular, lim P(x) = 0.

Although we have the strong inequality (1.1) and the practical experience of

many people to draw on, we still do not have any good estimate for P(x) for

various finite values of x. The problem is the "o(l)" in (1.1) which renders the

inequality computationally useless.

In this paper we replace the asymptotic inequality (1.1) with a weaker, but

explicit inequality. The argument is loosely based on the proof in [2] of (1.1) above,

but a number of difficulties are encountered. For delicate estimates involving prime

numbers, we use the results of Rosser and Schoenfeld [5]. However, the rest of our

work is elementary and involves only moderate computation.

We prove that

(1.2) P(x) < (loga;)"197    for x > lO10'.

For smaller values of x, our results are summarized in Table 1. To find an upper

estimate for P(x) for some x not in the table with 1060 < x < 1010 , one can

find the largest xo in the table with xo < x and multiply the estimate at xq by

logx/logxo-

It is highly likely that our upper bounds can be improved upon. To some extent,

it is a matter of how hard one is willing to work. Sometimes we make trivial

estimates for simplicity, but a more careful estimation would give a better result.

One possible way to gain an improvement is to replace the Fermât congruence

with the strong probable prime test of Selfridge. This test is just as easy to perform

and it "lies" less frequently about composite numbers. To describe this test, let

n > 1 be an odd number. First one computes s, t with n — 1 = 2st and t odd. Next,

one chooses a number b, 1 < b <n — 1. The number n passes the test (and is called

a strong probable prime to the base b) if either

(1.3) ft* = 1 (modn)    or    b2 * = -1 (modn)    for some i < s.

Every odd prime must pass this test. Moreover, Monier [3] and Rabin [4] have

shown that if n > 1 is an odd composite, then the probability that it is a strong

probable prime to a random base 6, 1 < 6 < n — 1, is less than 4.

Let Pi{x) denote the same probability as P(x), except that (iii) is changed to

(iii)' n is a strong probable prime to the base b.

Based on the Monier-Rabin theorem, one is tempted to say that Pi(x) < \, but as

pointed out in [1], this reasoning is fallacious. In fact, if a is the probability that a

random odd number up to x is prime and ß is an upper bound for the probability

that an odd composite number up to x passes a random strong probable prime test,

then

a+ (1 - a)ß
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TABLE  1***

Upper bound Upper bound

x      for P(x)       x for P(x)

1.0E + 60   7.16E-2    1.0E + 0300 5.8E - 0029

1.0E + 70   2.87E-3    1.0E + 0400 5.7E - 0042

LOE+ 80   8.46E-5    1.0E + 0500 2.3E - 0055

1.0E + 90   1.70E-6    1.0E + 0600 1.7E - 0068

1.0E + 100  2.77E-8    1.0E + 0700 1.8E - 0082

1.0E + 110  4.03E-10    1.0E + 0800 5.4E - 0096

1.0E + 120  5.28E-12    1.0E + 0900 1.0E - 0109

1.0E + 130  7.54E-14    1.0E+1000 1.2E - 0123

1.0E + 140  1.08E-15    1.0E + 2000 8.6E - 0262

1.0E + 150  1.49E-17    1.0E + 3000 3.8E - 0397

1.0E + 160  1.81E-19    1.0E + 4000 7.8E - 0537

1.0E + 170  2.27E-21    1.0E + 5000 7.6E - 0680

1.0E + 180  2.76E-23    1.0E + 6000 3.9E - 0820

1.0E + 190  3.26E - 25    1.0E + 7000 LIE - 0951

1.0E + 200  3.85E - 27    1.0E + 8000 7.3E - 1081

1.0E + 9000 1.7E-1207

LOE+10000 1.6E-1331

1.0E + 100000 1.3E - 10584

From Monier-Rabin, we have that ß <\. Thus all we get from this theorem is that

1-Q
(1.5) Pi(x) <

1 + 3q'

If x is very large, then a is very small and so (1.5) is a quite weak result.

However, presumably much is lost using the worst case upper bound ß. This is

attained only for very special composites which, like Carmichael numbers, are rare.

The results of this paper also apply to P\(x), since we trivially have P\(x) <

P(x). If one were to concentrate solely on Pi(x), it is possible that considerably

stronger estimates could be obtained. We remark that by using the formulas of

Monier [3] for the number of ft for which n is a probable prime, respectively strong

probable prime, our estimates for P(x) can be multiplied by \ when applied to

Pi(x).

Consider finally a procedure which chooses a random odd number n < x and

then performs k strong probable prime tests on n with k independently drawn

random numbers ft, l<6<n—1.   Let Pk{x) denote the probability that this

***The notation aEn means o x 10".



724 SU HEE KIM AND CARL POMERANCE

procedure accepts a composite number. Combining our results with the Monier-

Rabin theorem, we have

(1.6)        Pk(x) < i-P-Vptä/il - Pi(x)) < A-^-^P(x)/(l - P(x)).

The popularly believed inequality is that Pk(x) < 4~k, but as we have seen, the

reasoning for this is fallacious. However, if we have P(x) < i, then (1.6) does imply

that Pk(x) < 4~k for every k. In particular, from the results of this paper, this

inequality holds for all x > 1060.

2. The Basic Method. Let

F(n) = #{6e(Z/n)*: ft""1 =1 (modn)}.

If n > 1 is odd, then ft = ±1 both satisfy ft"-1 = 1 (mod n). Thus for these n,

F(n) — 2 is the number of ft, 1 < ft < n - 1, with ft"-1 = 1 (mod n). Also note that

by Fermat's theorem, if p is a prime, then F(p) = p — 1. We thus have for x > 5,

p/   \ _ 2-<n<x,n odd, composite^    \n) ~    /

,       , ¿Zl<n<x,n odd(-^(n) ~ 2)

1     ' V F(n)
.  ¿—in<x,n odd, composite     V v

E2<p<x(p-3)

where here and throughout the paper, p denotes a prime.

Hence, to get an upper bound for P(x), we shall be interested in obtaining a lower

bound for £2<p<x(p - 3) and an upper bound for £n<x, n odd compositeF(n).

For this purpose we shall prove two theorems.

THEOREM 2.1.   For x > 37, we have

E (p-3)^
X2

2(2 + log x)"

THEOREM 2.2.   Suppose c,L\ and L are arbitrary real numbers satisfying | <

c < 1, 1 < L\ < L.  Then for any x > L2, we have

E   F(«)
n<x,n odd,
composite

< -£- + ^(1 + logLO + —¿— • ( Ar + 1 ) (2 + logii)4Li      L v B   iy     2(i-l)    V^-l

+ _^jl+CL2(i-c)(1+logLl)    £    l£iMexp(2-7c(m)),
1 — c *—; m

m<L2L¡

where

kc/fc = exp   EEfc_1P
Vp>2fc=2 /

/C(m) = n(l-P"c)"1-
p\m

and tl¡ (m) is the number of divisors of m up to L\.

Before we prove Theorems 2.1 and 2.2, we state a theorem that is an immediate

consequence of them and (2.1). Say that g(x,c,L,L{) is the right member of the

inequality in Theorem 2.2.
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THEOREM 2.3. For all real numbers c,L and L\ with \ < c <l, 1 < L\ < L

and for all x > L2 > 37, we have

P(x)<2(2 + logx)g(x,c,L,L1)/x2.

Thus, our upper bound for P(x) depends on the choices of the variables x, c, L

and L\.

Now let us prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. Let 7r(x) denote the number of primes not exceeding x.

We have

(2.2) tt(x) > x/(log x - \)   for x > 67

and

(2.3) n(x) <x/(logx-§)    for x > e3'2 (x > 4.48169)

by (3.3) and (3.4) in [5, p. 69].

Using partial summation, (2.2) and (2.3), we have

E (p-3) = (x-3)tt(x)- f\(t)dt
(2 4) 2<p'x

>^r-(XAt)dt.
log x - ±      J3

Now for x > 245,

fx r    tdt      f245
/   n(t) dt <   /     --T + /      n(t) dt

J3 J245logi-§     y3

x2 2452

2(logx-§)     2(log245-|)

+ï£.,(k«,-ir*+™4
x2 1   fx    ( 3\~2

2(logx-§)      2j245   \ 2

Let S = \ /2X45 <(logi - |)-2 dt. We have

<r2(logi-|) +\s

because logi - | > 4 for t > 245. Therefore,

5<|x2(logx-|)-2,

so that
[x x2 x2
/   irtt) dt < —-r- + —-=-^

y3     U 2(logx-|)     3(logx-§)2

Putting this estimate in (2.4), we have for x > 245

i2 i2

2<p<x
logx-i      2(logx-|)      3(logx-f)2
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We replace the right side of (2.5) with the simpler expression x2/2(2 + logx) which

is smaller for all x > 20,000. Moreover, we have checked numerically that

En2
(p"3)>2(2 + logn)2<p<n-l \     >      s>    /

for every integer n with 38 < n < 20,000. Thus we have Theorem 2.1.

Proof of Theorem 2.2. Since F(n) is the cardinality of a subgroup of (Z/n)*, we

have that for any n, F(n)\(j>(n), where (j> is Euler's function. That is, F(n) = (f>(n)/k

for some integer fc > 0.

Let Cfc(x) denote the set of odd, composite n < x such that F(n) = (p(n)/k, and

let Ck(x) = #Cfe(x).

For any x > l? where L > L\ > 1,

(2.6)

E   F(n) = E E Fw = E E ^
t)

<fi(n)

X)

ixEçM    i   E(„_2)

n<i,n odd, fc=ln£Ci(i) fc=ln6Ci(i)
composite

= Z{ E *(»)+£  E   k
k<Li      neCk(x) k>LmeCic(x)

k Lx
k<L\ Kn<x

n odd

.       V^   Ck(x)    ,     X2

fc<Li

It will thus be desirable to obtain an upper bound for Ck(x). Three classes are

considered to estimate Cfc(x) for k <L\.

(i) n < x/L,

(ii) n is divisible by some prime p> L,

(iii) n > x/L and every prime p in n is at most L.

Let Cfc,i(x), Ckt2(x) and Cfc,3(x) denote the number of n < x counted by G\(x)

for each class respectively. Thus,

(2.7) Ck(x) < Ck,i(x) + Ck:2(x) + Ck,3(x).

Obviously,

(2.8) Ck,i(x)<x/2L.

We now state a result that will be useful for classes (ii) and (iii). This result is

(2.11) in [2].

LEMMA 2.4. If F(n) = 4>(n)/k, then X(n)\k(n - 1), where X(n) is the Car-

michael universal exponent function; that is, X(n) is the least positive integer with

^A(n) = j (mod n) for all integers ft with (ft, n) = 1.

Let d be a natural number. We consider those n counted by Ck(x) with d\n. If

d\n, then X(d)\X(n), so that the condition X(n)\k(n — 1) from Lemma 2.4 implies

X(d)\k(n — 1). Thus, the number of n counted by Ck(x) with d\n is at most the

number of composite numbers n < x with

(2.9) n = 0    (mod d),        k(n -1)^0 (mod X(d)).
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The latter congruence is equivalent to

n - 1 = 0  I mod
(k,X(d)).

If there is any such n that satisfies (2.9), it is necessary that

X(d)(,     Kd)    \
\ ,(k,X(d))J

= 1.

Thus, by the Chinese remainder theorem, the number of n counted by G\(x) with

d\n is at most

(2.10) 1 +
x(k,X(d))

dX(d)

Further, if d = p is prime, then the solution n = p of (2.9) should not be counted

since it is not composite. Thus for p prime, the number of n counted by Cfc(x) with

p\n is at most

(2.11
x(k,p-\)

[ P(P - 1)

We now estimate Ck,2(x) by using (2.11). For any k < L\ < L,

Ck2{x)<xyilh2^1 = xy   y   -±—

(k,p-l)=d

^E   E
<X^      ?..   m2d

(2.12)

< x

(md + \)md
d\k        p>L        v ; d\k m>(L-l)/d

p—l=md
for some m

£ 3 ((^+ £,,,>)

-E
d\k

+
(L-l)2      (Lhù<

L-l \L-1
+ 1 )r(k),

where r(k) is the number of divisors of k.

Suppose n is in class (iii). Let do be the least divisor of n with do > x/L2. If p

is any prime factor of do and do > x/L, then do/p > do/L > x/L2, which gives a

contradiction. Hence, n must have a divisor d with

(2.13)

Thus by (2.10),

(2.14)

x x
T2<d^T

Cfc,3(x)<E     1
x(fc,A(d))

dA(d)

where J2 denotes a sum over odd d satisfying (2.13).
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We thus have

(k,X(d))
Ck,3(x) <£ + *        E'

2L ¿-r dX(d)
dX(d)<x(k,X(d)) v  '

~2L+X ¿-   m ¿- d
m<L2      X(d)/(k,X(d))=m

(2-15) = ± + xyy L  y   I
2L+X¿f   Lm    ,f*       d

u|fc m<L¡        X(d)=mu
(k,X(d))=u

<^+xy y - y' -.

u\k m<L2      X(d)=mu

Using partial summation for the inner sum in (2.15), we have

X(d)=mu d        X/    X(d)=mu JxlL2 *       d<t
X(d)=mu

We thus shall be interested in obtaining an upper bound for A(t,mu), the number

of odd d < t with X(d) = mu.

LEMMA 2.5.   Let X(m) be the Carmichael universal exponent function. Then,

A(x,n) := #{m < x: m odd, X(m) = n}

<Kcxcexp(2~cfc(n))

for any x > 1, ^ < c < 1, tyftere Kc and fc(n) are defined in Theorem 2.2.

The proof of Lemma 2.5 will be given later. Using it now in (2.16), we have

£'  2-^(îïKceM2~Cfc{mu))
X(d)=mu

rx/L    l

+ /        -^tcKcexp{2-cfc(mu))dt
JxlL2 t

(2-17) = ß)      Kcexp(2-Cfc(mu))

\l)    "II2/
+ /ícexp(2-c/c(mw))

c-1

-T^It)       exP(2_C/c(mU)).

Putting this estimate in (2.15), we have

<?M(*)<¿+*E  E   à   I^(t)1   C^-cUmu))
1R\ u|fc m<L2 V       '

í¿L + r^cXCL2(1~C)^  £   ^xp(2-7cM).
ii|fc m<L2
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Using estimates (2.8), (2.12) and (2.18) in (2.7), we have

C*'si+Pî(è+1)'("

+  ^L^d-IV- y-  Iexp(2-Vt(m«)).
1 — c ^—'  *—'   m

u\k m<L2

Using this estimate in (2.6), we get

E   F^)
n<x, n odd,

composite

(2-19) <# + T E Í + AÍA + 1) E t1

+ ï§-,i+-L«(i-.) E ^E E ¿exp(2-Vc(m«)).
fc<Li       u|fc m<L2

The single sums on the right of (2.19) are dealt with in the following lemma.

LEMMA 2.6.   For any x > 1, we have

k<x k<x

where r(k) is the number of divisors of k.

E^<i+iogz,    E!x<^2+log:

We defer the proof of Lemma 2.6 until later.

We deal with the final triple sum on the right of (2.19) as follows.   We have,

using Lemma 2.6,

E^E  E  ¿exp(2-7c(m«0)
:<Li       u|fc m<L2

= E    E     E    — exp(2~c fc(mu))
«<Li m<L2 v<Li/u

^(1 + logLOE   E  — exp(2-7c(mu))
*   *      '    »    mit.

u<Lj m<L2

<(l + logL1)   E    !ï^exp(2-c/c(/i)),

H<L2LX       P

where T£,(/¿) is the number of divisors of p up to L\.   Using this estimate and

Lemma 2.6 on the right of (2.19) immediately gives the theorem.

We now prove Lemmas 2.5 and 2.6.

Proof of Lemma 2.5. If c > 0,

A(x,n)=    J]   1<ic   J]   m-£<ic     E     m_C
m<x X(m)=n p\m

m odd m odd =^(p-l)|n,
K™)=n p odd

= X" (i-p-T1-
(p-l)|n
p odd
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Hence,

A(x, n) < xc exp

= x exp

E ^-p~c)

(p-l)\n
\       p odd

E    (p-C+2-p-2C+3-p-3C + -'-)
(p-l)\n

\ p odd ;

We have
E p~c< E(d+1)"c< E d-c<2-<yjd-

(p-l)|n
p odd

d\n
d even

d\n
d even

d\n

<2-cn(l-P"C)"1 = 2-c/c(n).

p\n

We recall that Kc = exp(X" >2 YlT=2 \P~kc)-> which is finite for c > j. Thus we

have Lemma 2.5.

Proof of Lemma 2.6. From Euler's summation formula,

y\<\ + ¡x-dt = \+iogx.

k<xK Jl     l

Using partial summation,

fc<x fc<x

We have by the first part of the lemma

k<t

E^) = EE! = E i <EU^+^)-
k<t

Thus,

k<t d\k d<t L    J        d<t

v- r(k)   i   ,   ,   ,   r 1
EV-xx(1+logx)+/ -

+ logi
dt

k<x

= 1 + log X + - log  X + log X

<i(logx + 2)2.

3. The Range x > 10300. In this section we shall use Theorem 2.3 to prove

(1.2) and establish the estimates in Table 1 for x > 10300. For the record, we make

the following formal statement.

THEOREM 3.1.   Ifx > 1010\ then P(x) < l/(logx)197.

We shall prove Theorem 3.1 by choosing

L
(3.1) L = (iogxr\ ¿1 = 7^,
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in Theorem 2.3. However, there is some substantial work to do since the last term

in Theorem 2.2 is not in closed form. The last term in Theorem 2.2 is

(3.2) _^_xi+cL2(i-c)(1 + 1    L)    £    ïiMexp(2-c/c(m)),
1 - c *-i m

m<L2Li

where

Kc=exp\  E Efc_1P~fcC

\podd fc=2

/c(m) = n(l-P"T1,
p|m

and T£,j (m) is the number of divisors of m up to Lj.

To get an upper bound for (3.2), we first get an upper bound for Kc.  Let p,

denote the ¿th prime. We have

EE^fcc^^Ep"2c + 5Ep"3c(1+p"c+^2c + --)

p>2k=2 p>2 p>2

^|^2c(^3(^)+(^3(3^)p|:/-2c-

Now,
0£_      />2fc+l

-2cdi
y/p-2^<y(2k+ir2^<y /    «

p>37 fc=18 k=18J2k

/■37 1o0/   r2fc /-2fc+l\

/■37 i      /-oo

= / t~2cdt + U t-2cdt
J36 2 y37'36 ¿ .737

361_2c - - • :

2c-l
l-2c        1     n^l-2c

Thus, if

*-£**(ï + ï5Fï,)

+ (^T)G + 3(37b))(36,-2l4'371

then

(3.3) tfc < exp(^).

We now obtain an upper bound for Ylm<L2Ll TL\ (m)/m.
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LEMMA 3.2.   Ifl<Lx<L, then

y    IínM<(i + iogLl)(i + iogL2Li)
„ m

m<L2L1

Proof. We have

m<Z,2L, m<L2L! * m<t

Note that by Lemma 2.6

~t
E^(-) = EE1=E
m<t m<t  d\m d<L¡

d<L¡

d

<t E J<*(l + logLi).
d

d<Li

Thus,

£    ^iM<(i + logL1)+ /"L   "^(l + logLOdí
m<LiLi

= (l + logL1)(l + logL2L1).

This completes the proof of Lemma 3.2.

Using Lemma 3.2, we can get an upper bound for

tl1 (m)

m
E    ^exp(2-7c(m)).

^i

We define

(3.4) mi = P1P2 ■ ■ ■ pt,

the product of the first ¿ primes, and let j be an integer such that

(3.5) m,j < L2L\ < mJ+i.

PROPOSITION 3.3.   IfKLi<L, then

v^     rLl(m)

m<I,2Li

■exp(2-c/c(m))

<(l + logL1)(l + logL2L1)exp(2-7c(mJ)).

Proof.    Suppose that m has k distinct prime factors qi,q2,- ■ ■ ,qk and that

Pi,P2, ■ ■ ■ ,Pk are the first k primes. Then

fc(m)=   I]  (1-q-T1^   II  (l-ftT1 =/«("*)■
l<j<fc l<t<fc

Because j is chosen as P1P2 • ■ P> < L2L\ < p\P2 ■ ■ Pj+i, clearly j is the largest

possible value for the number of primes in m < L2Li. Thus fc{mj) is a universal

upper bound for fc(m) for any m < L2L\. Thus,

E     ^exp(2-7c(m))<exp(2-7c(m,))    £    ^

< exp(2-c/cK))(l + logLiXl + logL2L!)

m *—,•        m
m<L2L\ m<L2Li

by Lemma 3.2.
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Now we prove Theorem 3.1.  Assume x > 1010   and L, L\, c are as given

(3.1). From Theorem 2.3 and Proposition 3.3, we have

ni   \    ~ 2-*in<x, n odd, composite     \   I

L2<p<x(P-3)

oif J2(l-c) \

(3.6) +¿-i ■ -j—flog¿)>exp(2-V=(mJ))J

Oft- J2(l-c) \

+rf ■ -^í=F-(log¿)3e^(2-7cK))J .

We shall be interested in getting an upper bound for 2~cfc(m,j). We have

(3.7) 2-7cK) = 2-c n (1 - p-)-1 = -^ f[(l - p-)-1.
p\m3 i=2

Now,

3 i 3 3      oo    1

lognu-prr^-E^a-pD-Epr+EE^-
1=2 ¿=2 t = 2 i=2 fc=2

Hence,

(3-8) nU-pH-'^cexpÍEpA
i=2 \i=2 /

Putting (3.8) in (3.7), we have

(3-9) 2-7cK) < ^jexp [EP,"0] •

Now for j > 16,

3 16 3

(3-10) Epr=Epr+Eprc-
i=2 ¿=2 ¿=17

Using partial summation for Yl3i=nPjc, we have

3

(3 ii)     Ep.~c= E p-c=jpjc-^^-c+cíP,t-c-^(t)dt.

i=n 59<p<pj ,'59

We use the following upper bound for 7r(i):

(3.12) ^^¿(^¿l     f0rí>1'
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which is (3.2) in [5, p. 69]. Thus, for S = ¡^ rc_17r(i) dt, we have

(3.13)
J59  log¿ \

1       tl~c

dt

1 - c    log t

21ogi,
V,■ /3 j      V       rVj     t-c

59

Let I = m (t-°/ log2 i) dt. Assuming p3 > 3481 = 592, we have

J59    log2 t      A,

P>     rc
,   dt+ —2-di

'59     log í J^pjlog t

< ,1-c

log2 59    1 - c

+
1

log  v/pj 1 -c

59

l-c
Pj

Thus,

5<
1    Pi

l-c
1    59l-c

(3.14) [| +

1 — c log Pj      1 — c log 59

1 ,(l-c)/2

2     l-c/ V(l-c)logJ59

Now by (3.12)

(3.15) J = 7I"(Pj) <
P3

+

1 +

(1 - c) log2 59
-59l-c

4   P
(l-c)/2<

1 - c    log2 Pi      l-c log2 Pj

" logPj V* '  21ogPj.

Assembling (3.10), (3.11), (3.14), (3.15), and simplifying with c = 0.75, we have

(3.16) Epr075<4
p1/4

p
1/4

p
1/8

t = 2

+ 67.5-^2—+p.1/8-66   -^2

log Pj log Pi log'pj
3.7.

From (3.5) and Theorems 9 and 10 in [5, p. 71], we have

p3 < 1.04 log L2Li < 3.12 log L    for log L2L1 > 2703.

Putting this in (3.16) and taking L = (logx)200, we get

3

Ep¿~°'75 ^ 4.8(loglogx)1/4    for x > 1010 .

i = 2

From (3.3) with c = 0.75, we have Kc < e° 4. Thus, from the above and (3.9),

we have

(3.17)
exp(2  cfc(mj)) < exp

Kr IexP   E
-0.75

^=2

< exp(2.2exp(4.8(loglogx)1/4)) < x01

for x > 1010''



PROBABILITY THAT A RANDOM PROBABLE PRIME IS COMPOSITE 735

We put (3.17) in (3.6), getting

P(x) < 2(2 +log x)

/5(logL)2

I 4L
(3.18) 75(logL)2 + 41ogL + i80LV2(log¿)3>)

for x > 10105, where L = (logx)200. Since x015 > (logx)1200 for all x > lO10', it is

easy to check that (3.18) implies P(x) < l/(logx)197 for all x > 1010 , which was

to be proved.

To establish the estimates in Table 1 for x > 10300, we use the same values

of the parameters Li,c in Theorem 2.3 as given in (3.1) and then we choose L

optimally. We also use Proposition 3.3 for the sum in the last term in Theorem

2.2, to obtain (3.6). The principal difference between the range x > 1010 and

10300 < x < 101()5 is that instead of using (3.7)-(3.17) to estimate exp(2_c fc(m3)),

we directly compute this quantity, which is not too hard to do when given a finite

value of x that is not too large.

4. A Refinement of the Basic Method. To get good results for smaller

values of x, we shall use a more elaborate version of Theorem 2.2 and Proposition

3.3.

THEOREM 4.1. Suppose c, Li,L,L2 and M are arbitrary real numbers satisfy-

ing \ < c < 1, 10 < Li < L < L2 < M/2, L3/2 < 10M. Then for any x > L2, we

have

^       „, ,       x2      50    x2     /   Li \,      ,     r ,2
£      F^^^ + 99L2^-l{L2^í + 1){2 + l0gLí)

+ 2¿H2 + ̂ Wlog¿i) + ̂ e(l + log£i)2

n<x, n odd
composite

log 10,/ v b   "      99 M

125 x2(l+logL2)2 ,     r ,4     50x2 ,     r,
+ 3564      M-2L2      (4 + l0g¿1)   +99L(1+l0g¿l)

^i-c)Ti0o^-i)-1+CMl"c(i+iog¿i)

.     £    ^exp(2-7c(m)),

m<L2Li

where Kc, fc{m) and r¿, (m) are defined in Theorem 2.2.

Proof. Although the assertion appears to be considerably more complicated, the

proof of Theorem 4.1 follows fairly directly from the same methods used to prove

Theorem 2.2. By the same argument that establishes (2.6), we have

,4.) E FM<,ECtW-tCt(l/""+f      £     (n-2).
x/lQ<n<x k<L\ x/W<n<x

n odd, composite n odd



736 SU HEE KIM AND CARL POMERANCE

To obtain the theorem, we add (4.1) at x,x/10,... ,x/10u, where x/10" > L2 >

x/10u+1. Thus it shall be sufficient to prove that

E G\(x)-Cfc(x/10)

k
k<L¡

4ï^ï(z£ï)<2+1<*£'>2+A<1+1<*£'>°

(4'2)        -h^^^^ll^^
+ L22(l + logL1)

+ 10^,xCMl_c(1 + logLi)    £     !kMexp(2-7c(m)).

m<L2Li

The expression G\(x) - Cfc(x/10) is the cardinality of the set of odd, composite

integers n with x/10 < n < x and F(n) = <fi(n)/k. We let Bk,i(x), Bk,2(x), Bk^(x)

denote the number of such n that satisfy, respectively,

(1) n is divisible by some prime p> L2,

(2) n has a divisor pq > M, where q < p are prime, but n is not counted by

(1),
(3) n is not counted by (1) or (2).

Thus, Ck(x) - Ck(x/10) = Bk>1(x) + ßfcl2(x) + Bk,3(x).

From the argument which gives (2.12) we have immediately that

^Wí¿(¿)'W.

so that from Lemma 2.6, we have

(4.3)
k<L\

\2

To analyze Bfci2(x), we consider separately the case q < p and q = p.   The

contribution to Bjt,2(x) from the case q < p is, by (2.10), at most

x(k, [p- l,q - 1])

pq\p~ 1,9-1]
pq>M

E 1+

(4-4) <1r2+K   V    (kAP-hq-l})
S2L2+2XJ^     pq\p-l,Q-l] ■

pq>M

For this last sum, we write p-1 = md, q — 1 = nd, where (m,n) — 1. Since pq > M

and p,q < L2 imply (p - l)(q — 1) > M - 2L2 := M', we have

IA <\ Y^     (fc,[p- 1,9-1]) ^ ^

(4-5) S     pq\p-l,q-l]    -  If        Xi
(k, mnd)

pq\p— l,o—ll     "  ¿-^       ^—'       m2n2d3 '

PQ>M mn>M'/d2
PÏ1 (m,n) = l
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If we let u\ = (k, m), w2 = (k, n), then the condition (m, n) — 1 implies t¿it¿2|fc. Let

"3 = {k/u\U2,d). Thus, (k,mnd) = U1U2U3. Let U4 be such that k = U1U2U3U4,

and let p, v,6 be such that m = u\ß,n = w2^, d = U36. Thus, from (4.5),

y     (k,[p- 1,0-1])

p¿2  P9[P-1.9-1]
pq>M

p¥=q

<     y       Y" V        _1_
¿-^ ¿-^ ¿-^ u2i>263uiu2ul

,       . uiu2u3u4=fc  6<L2/u3   p>M'/(v62uiu2ul) °
(4.6) (Ul,U2) = l        U<L2/U2

5
< —    V       V   —

3ÍW' ¿-^ ¿-1      vf>
UlU2U3U4=fc    6<L2/U3

V<L2¡U2

<¿(i+iog¿2)2   E   1.
UlU2U3tl4=fc

where we used the inequality

(4.7) Yji<i    for„>0.

n>y ^ "

The proof of (4.7) follows from the facts that

v-  1       v-  1       ^      5       5     ,S^-S^-t^** 'o^0<!'<1•

r^    1 (°°    1    , 1 5        ,

Putting (4.6) into (4.4), we have

El      y^ X(fc, [p- 1,0- 1])

A;    ¿-^ pq\p- l,o-ll
A:<Li       g<p<L2 ™iH '* J

(4.8) P9>Ai

a^d + logLO + ̂ d + logL^E^,
k<L\

where f(,) (fc) is the number of ordered factorizations of k into i positive factors.

It is not hard to prove by induction on i that

(4.9) ^Sjr^+w
k<y

for any natural number i and for any y > 1; in fact, Lemma 2.6 gives the cases

1 = 1,2. We shall use (4.9) with i — 4 in a moment.

We now consider the contribution to Bfc,2(x) when q = p. If p2|n and F(n) =

(¡>(n)/k, we have from (2.9) that

n = 0 (modp2),        k(n — 1) = 0 (modp(p - 1)).
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Thus, p\k, and the number of such n < x is at most

\x(k,p — 1
1 +

p2(p-l)

x      ,      x
< 1 + -5- <l + 77

p2 M

if p2 > M. Since fc < L\, the number of primes p|fc with p > M1/2 is at most

(logL\)/log(M1/2) < logLi. Thus, the contribution to Bfcj2(x) when o = p is at

most (1 + x/M) log L\.

Using this result together with (4.8) and (4.9) gives

E^f^^l + logLO + JL(i + logL1)a
(4.10) fc^£i

+ Ï44ÂF(1+l0gL2)2(4 + l0gLl)4-

We now turn our attention to Bfc)3(x), the number of odd, composite n with

x/10 < n < x, p < L2 for every prime p\n, and pq < M for all primes p,q with

po|n. Factor such a number n as Oi02 ■ • ■ qt, where q\ > ç2 > • • • > ot are primes.

Then, qx < L2 and Oio2 < M. Note that

n. n t

<7i02      M      10M

Suppose n/9192 > x/L. Then, çig2 < L, so that o2 < L1'2. Thus, n has a divisor

d with x/L3!2 < d < x/L. But x/L3!2 > j/(iOAf), so that in either case, n has a

divisor d satisfying

We next repeat the calculations (2.15)-(2.18), but with ^ now representing a sum

over odd d satisfying (4.11). Thus,

BmW^ + ^iiom)1-^ E -exP(2-7c(»H),
¿L     \ — c I-^ *—'   m

u|fc m<L2

and so, as in Section 2, we get

^^¥£l-è(i+iogLi)+ï^:rC(ioM)1"c(i+iogLi)

(4.12) ^Ll ,   .

•    E    ^exp(2-7c(m)).
m<L2Li

Our proof is now complete, since adding (4.3), (4.10) and (4.12) gives (4.2),

which, as we have seen, is sufficient for the proof of the theorem.

We shall also wish to use a sharper result than Proposition 3.3. Let

(4.13) 2</<Lx,        Qi = (l_rc)-lo8(L2Ll)/log',

where a¡ depends on the choice of c, L, L\,l.
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PROPOSITION 4.2.   // i < c < 1, 1 < Li < L and I,an are given by (4.13), we

have

n1{m)

m
E    ^^exp(2-7cM)

m<L2Li

<(l + logLi)¿l [2E-]   exp(2-cQ¡/cK))(l+log^¿V

where mi and j are defined in (3.4) and (3.5).

To prove Proposition 4.2, we state a result that will be useful. We first make a

definition as follows. Let S (I, k) = J2 u, where u runs over the squarefree integers

that are the product of k distinct primes up to /.

LEMMA 4.3.  For any nonnegative integer k and any I > 2, we have

Í V
S(l,k) <- y1-

Proof. This elementary result follows by expanding the right side of this inequal-

ity with the multinomial theorem.

We now prove Proposition 4.2.

Proof of Proposition 4.2. To estimate fc(m), we ask how many primes p > / can

divide m. The number of such primes is at most log(L2Li)/log/. Thus,

Mm)=ii(i - p-r1=nt1 - p_c)_i D1 - p")-1
p|n p\m p\m

p>l p<l

< (1 - /-c)-log(L2L1)/logi . rj(1 -p-c)-i < entena)

p\m

P<1

if m has exactly i distinct primes up to /. In general, let w;(m) be the number of

distinct prime factors of m at most I and oj(m) be the number of distinct primes

in m.

Now,

E    ^exp(2-7c(m))<E    E    ^exp(2-7c(m)).
m<L2L¡ i=0 io¡(m)=i

m<L2Li

For the inner sum, we have

E    ^^exp(2-7c(m))<exp(2-WcK))    E    ^^
üj¡(m)=i ¡ji[(m)=i

m<L2L\ m<L2L\

< exp(2-ai/cK))        E E      I^
w(«)=ciJi(u)=t  t<L2Li/m,i

u squarefree
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since any m < L2L\ with w¡(m) = i may be factored as ut, where u is the product

of i distinct primes up to I and t is an integer at most L2L\/u < L2L\/mi- Using

TLl(ut) < TLl(u)TLl(t) < T(u)TLl(t) = 2VLl (t),

we have

E    ^^exp(2-7c(m))
uji(m)=i

m<L2Li

(4.14)
<exp(2-<a;/c(mt))        E        7,       E      ^

u
u(u)=uii(u)=i        t<L2Li/mi

u squarefree

<exp(2-ca,/cK))^    2eM   (1 + logLi) (l + log ̂ )

by Lemmas 3.2 and 4.3. Therefore, taking the summation of (4.14) from i = 0 to

j completes the proof.

Putting together Theorems 2.1 and 4.1 and Proposition 4.2, we have the following

result.

THEOREM 4.4.   // ¿ < c < 1, 10 < Li < L < L2 < M/2, L3'2 < 10M, and

x > I?, then

P(x)<2(2 + logxW 1     ,  50 /   ¿i      { x\ (2 + logLi)2

4Lj     99 \L2 - 1       /      L2 - 1

+ ̂ Í2+iSVl+logL1) + ̂ .í1±MM2
x   ^ V       loglO; v '      99 M

r25_(l + logL2)2 50   1 + logL,

3564    M-2L2    y '      99 L

- (1 + logLx)2
(l-c)(101+c-l) \x J

E^(2E^]   (l + log^)exp(2-WcK))>,

where I, on are given by (4.13), m, is defined in (3.4) and j is defined in (3.5).

While admittedly looking complicated, Theorem 4.4 can be readily used to get

explicit upper bounds for P(x) for various values of x. The art is to choose the

many free parameters optimally. Of the seven terms in the brackets, it is clear

that some dominate others. For example, the fourth term is small compared to

the fifth term. We choose the parameters so that the first four terms are the least

important and the seventh is the most important. We feel these choices are close

to the optimal ones. Our results are recorded in Table 2 and summarized in Table

1 in the Introduction. An asterisk in the M column signifies that M was chosen as

L3/2/10.
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TABLE 2

Upper Bound

x                   L                Li                Li M I c             for P(x)

1.0E + 60 3.6E+   5 5.4E + 3 2.0E +   6 6.2E +   9 350 0.7125 7.16E - 2

1.0E + 70 1.1E+   7 1.7E + 5 1.2E +   8 5.9E +11 600 0.7125 2.87E - 3

1.0E + 80 7.2E+   8 1.1E + 7 1.4E +10 9.9E +13 850 0.7125 8.46E - 5

1.0E + 90 4.5E+10 7.0E + 8 1.4E + 12 1.4E + 16 1400 0.7100 1.70E-6

1.0E + 100 3.3E + 12 5.5E + 10 1.7E + 14 2.5E + 18 1850 0.7100 2.77E - 8

1.0E + 110 2.6E + 14 5.3E+12 2.3E + 16 4.3E + 20 1850 0.7100 4.03E - 10

1.0E + 120 1.2E + 16 4.4E+14 2.5E + 18 »1.3E + 23 2350 0.7075 5.28E - 12

1.0E + 130 6.7E + 17 5.6E + 16 4.2E + 20 *5.5E + 25 2590 0.7075 7.54E - 14

1.0E + 140 6.8E + 19 5.7E + 18 5.3E + 22 *5.6E + 28 2800 0.7075 1.08E - 15

1.0E + 150 2.7E + 21 2.2E + 20 2.4E + 24 *1.4E + 31 3250 0.7075 1.49E - 17

1.0E + 160 4.2E + 23 3.8E + 22 5.IE + 26 »2.7E + 34 4900 0.7050 1.81E - 19

1.0E + 170 3.9E + 25 3.5E + 24 5.6E + 28 *2.4E + 37 6300 0.7025 2.27E - 21

1.0E+180 3.7E + 27 3.3E + 26 6.2E + 30 *2.3E + 40 8000 0.7025 2.76E - 23

1.0E + 190 2.9E + 29 2.4E + 28 5.4E + 32 *1.6E + 43 9300 0.7025 3.26E - 25

1.0E + 200 2.7E + 31 3.3E + 30 8.2E + 34 *1.4E + 46 12000 0.7025 3.85E - 27
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