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SOME QUESTIONS OF ERDÖS AND GRAHAM
ON NUMBERS OF THE FORM £ gJ2g"

P. B. BORWEIN AND T. A. LORING

Abstract. Erdös in 1975 and Erdös and Graham in 1980 raised several ques-

tions concerning representing numbers as series of the form Y^L\ g„/2g" . For

example, does the equation

± = Y&-       r>i
k=\

have a solution for infinitely many n ? The answer to this question is affirma-

tive; in fact, we conjecture that the above equation is solvable for every n . This

conjecture is based on a more general conjecture, namely that the algorithm

an+i =2{-a„ mod«)

with initial condition am e Z always eventually terminates at zero. This, in

turn, is based on an examination of how the "greedy algorithm" can be used to

represent numbers in the form J2 8nßs" ■ The analysis of this, reformulated as

a "base change" algorithm, proves surprising. Some numbers have a unique rep-

resentation, as above, others have uncountably many. Also, from this analysis

we observe that ¿Zg„ßS" is irrational if limsup„((^„+1 -g„)/log(g„+1)) = oo

and conjecture that this is best possible.

1. Introduction

In [3] Erdös and Graham raise the following three questions. Does the equa-

tion

(1.1) f = t|t.        r>1'
k=\

have a solution for infinitely many «?  For all «?  (Here,  {gn} is a strictly

increasing sequence of positive integers.) Is there a rational x for which

oo

(1-2) * = £§■
k=\

has two solutions? Does there exist a rational x for which

:i-3) * = £|fr
k=\
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and for which

limsup(gn+1 -gn) = œ1
n

They speculate that the answer is positive to the last question. This would be

best possible. In [1] Erdös resolves a twenty-year-old problem by showing that

(1-4) £2%    wi* ü™^,-^ oo

is irrational. He asks in [2] whether the greedy algorithm always generates

a representation for a rational x with gn+x - gn bounded. We discuss this

further in §3.
We choose to approach these problems from the following point of view.

Given
OO      I

(1-5) a = £#' K=°>1>
n=\

how can we represent a as

OO I

(1.6) * = £#'      4, = o,i?
n=\

We call a representation of a as in ( 1.6) a *-binary representation and call dn

the «th *-binary digit. It is in this sense that we think of the above problems as

being "base change" problems. From this point of view the following questions

are suggested.

[Ql] Does every a e [0, 2] have a *-binary representation?

The answer, as observed in [1], is that the "greedy algorithm" always provides

such a representation. In this context the greedy algorithm is the algorithm that,

inductively, sets dN :- 1 if ¿Zn=x ndn/2n < a and sets dN := 0 otherwise.

This algorithm, as we shall see, converges. In §2 we offer two reformulations of

the greedy algorithm that are more amenable to analysis. The second natural

question is:

[Q2] When does q e [0, 2] have a unique *-binary representation?

It is apprarent from the existence of nontrivial solutions to ( 1.1 ) (see Proposi-

tion 1) that *-binary representations are not always unique. Uniqueness is, how-

ever, possible. For example, 1/72 has a unique *-binary representation. Other

numbers have uncountably many different *-binary representations. Unique-

ness questions will be primarily dealt with in §3. In particular, there is a sys-

tematic way of modifying the "base change" algorithm of §2 to generate all

representations.

The third natural question is:

[Q3] When does a have a finite *-binary representation?

This is a question in Diophantine equations. It asks when we can solve

(1.7) a = J2"^,        d„ = OoTl.
n=\
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Clearly, a must be an exact binary fraction for such a solution to exist. We

conjecture, perhaps surprisingly, that this is also sufficient. This, as we shall see,

follows from the following conjecture.

Conjecture 1. Let n be any integer. Let

am:=n   and   an+x := 2(an mod n),        n = m,m + l,...

(where {a mod n) is always chosen in the interval [0, n - 1] ). Then for some

Nm , there holds an — 0, for n > Nm (that is, the above iteration always

terminates).

This conjecture, if true, also totally resolves the third question of Erdös ((1.3)

above) by showing that every diadic rational has a representation of the form

(1.3) with arbitrarily large gaps (i.e., strings of zeros). The evidence for Con-

jecture 1, and a discussion of its consequences, is the content of §5. Section 4

concerns arbitrary base analogues of these questions.

2. The base change algorithm

The two reformulations of the greedy algorithm we offer are:

Algorithm 1. Let
OO      I

« = £#>     *„ = o,i.
n=\

Let

ax:=bx    and   an+x := 2(an mod n) + bn

(where (an mod n) is chosen in [0, n - 1] ). Then

n=i

where
{0       ifan<n,

1       if a   > n .

Algorithm 2. Let a G [0, 2). Let ex = 2a and

2(e„-n)       ife>n,
en+\

Then

where

2en ifen < n .

n=\

d =
0 ifen < n,

1 ifen > n .

In fact, if a e [0, 1) (and that in the event a is an exact binary fraction it

is represented by its terminating representation) then Algorithms 1 and 2 have

the same output. In this case, an = int part(e"J .
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We shall sometimes refer to this representation as the canonical *-binary

representation. Observe that Algorithm 1 is very efficient, both practically and

theoretically. The bit complexity of converting n binary digits to n *-binary

digits is 0(n log n) (which is better than the best known algorithm for converting

base 2 to base 3 or, for that matter, multiplication [4]).

Proof of Algorithm 1. Let {ôn} be any sequence of zeros and ones. Then

(id -g^ + ̂+f;^,
where

m=l m=n+\

ax:=bx

and

(2-2) an+x:=2(an-ônn) + bn+x.

This is easily verified by induction on n and the observation that

2nSn = 2an-an+1+bn+l

or equivalently

nS-   ,   an+\   _an    ,   fr-"
2" -yn + \ 2"        T«+l  '

If we now inductively define {Sn} and {an} by

ax:=bx,

f 0   ifan<n,

"'    1 1    if an > n

and

an+x :=2(anmodn) + bn,

then we derive Algorithm 1. The proof of convergence of Algorithm 1 now is

reduced to showing that in (2.1 )

aJ2n^0.

However, by construction,

an+x <2(n-l) + l=2n-l,

and we are done.

That this algorithm is actually the greedy algorithm (except for nonterminat-

ing representations of diadic rationals) follows from the inequality

(23)       a-Yn^ = '^+ Y b»L<llzA + ± = fLii
\¿~--') u    ¿_^  2m       2"       i—'   2m 2"        2n      ln~{ '

m=\ m=n+\

which shows, again inductively, that at every n , every term that can be included

in the representation has been included.    D

Proof of Algorithm 2. Algorithm 2 is easily reduced to Algorithm 1 on writing

a = X^i ft«/2"  (using the terminating representation if possible). One need
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only observe that the remainder Y^LN+X ̂ n/2" ftas no effect on the Ath step

of the algorithm.    D

Corollary 1. Conjecture 1 implies that every diadic rational has a terminating

^-binary representation.

Proof. If a = J2n=ibn/2", then for m > M, Algorithm 1 reduces to the
algorithm of Conjecture 1.      D

We now wish to exhibit an infinite class of m for which

m -        ^ k
l^t 7k'2m-\
k=m

thus resolving the first question of the introduction. The approach is the fol-

lowing. Since

m - I _ 2m - 2 _ m      m -2
-ym-\ 2m 2m       2m    '

we have

(2 5) ^Lii = ^+ y <\*"J> yn-\ 2m l—'      2"   '
Z n>m+\

where the dn  are the output of Algorithm 1 applied to  (m - 2)/2m .   The

corresponding {#,} are generated by

(2.6) am := m - 2

and

an+\ ■■=2{anmodn).

Observe, for large m , that the initial few terms am , am+x , am+2, ...  are

(2.7) m-2,  2m-4,  2m-10,  2m-24,...,

where, if

(2.8) am+k:=2m-Sk>m + k,

then

am+k + \ — 2(2w - Sk mod m + k) = 2m - 26k - 2k .

So

(2.9) Sk+X = 2ôk + 2k   where S0 = 2.

Suppose for some K that

a,n+K = m + K

while

am+k>m + k> k<K-

Then Algorithm 1 outputs a sequence of dj with

dm+\ =dm+2=-- = dm+K-l= !
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and all other d¡ - 0 and produces a ^representation of (m - l)/2m~   of the

requisite form. The trick now is to solve the recursion (2.9) for ôk . If

OO

/(*) = £****.

then

'k

k
okx

k=\

(2.10) ^ = 2f{x) + 2j2kxk+âx
k=l

or, after some effort,

(2.11) /(je) = £±¿ --2     7 = ¿2(2k+2-2(k+l))xk.
1 - ix     (1 -x)

In particular,

am+K = 2m + 2(K+l)- 2K+2 = m + K

exactly when

(2.12) m = 2(K+2) - {K + 2)

for some K . Packaging this, yields:

Proposition 1. For m = 2    - M, M >2, there holds

.        m+M-2   ,

(2-13) §^ =   £   4.
L k=m     L

This derivation of Proposition 1 also shows that no other identities of the

form

c-\     ^ k
l^i ~,k■ye—I        t-^t -\K

z k=c L

exist.  Of course, (2.13), once discovered, can be proved directly.  From the

identity

*"'     *-,      /1-/V     (l-xA\
¿\Zkx

yi-xj    yi-x

we have

and

i^     k _ xA(A -Ax + x)- xB(B -Bx + x)

k=A (x-iy

n Va A+l B+l
y       i 2-~t jk      2A~l       2B~l '

Proposition 1 now follows from (2.14) on setting A := 2M - M, B = 2M - 1

and C = 2   - M - 1, whence

C_ _A+l     B+\ _ yl k
2C  -   2a-X 2B^    ~jL2k-
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From Proposition 1 it is clear that *-binary representations are not unique,

and thus not every *-binary representation arises as the output of the greedy

algorithm. We shall see in §5 that for terminating representations the greedy

algorithm does not necessarily generate the shortest representation.

Proposition 2. Suppose a e [0, 1) has the (canonical) *-binary and binary
representations

OO I OO      1

" = £^ = £#>    dn,bn = o,i.
n=l    Z n=\ Z

Let Zm(a) denote the length of the longest consecutive string of zeros among the

first m of the djt and let Om(a) denote the longest such string of ones. Let

zm(a) and om(a) denote the corresponding counts for the br Then,

OJa)< I+log2 m+ om(a)   and   ZJa) < 1 +log2 m + zm(a).

Proof. (We do not need to assume we are using the canonical representation,

but then we must use Proposition 4 of the next section.) The longest possible

string of zeros in the output of Algorithm 1 arises from

am_s = am_s+l = --- = am_l=0   and   am = 1, bm = ••■ = bm+k = 0

with

am+\ = 2am <m+l,..., am+k = 2kam <m + k.

The first sequence above is of length less than or equal zm(a), since the ai

can only stay at zero if the corresponding bj are zero. The number of terms

following am - 1  for which dm = 0 is less than the smallest K for which

2   > m + K . Since K = 1 + log2 m satisfies the above, we are done.

A similar argument applies for Om .    D

Corollary 2. If a is rational, then for some constant C,

Om(a)<log2(m) + C,

and if a is not a diadic rational, then for some constant D,

Zm(a)<log2(m) + D.

Corollary 2 has an easy direct proof: if a has gaps of length > log n at the

«th *-digit, then

2" a = integer +0(1)

and a cannot be rational.

3. Multiple representations

Consider the numbers

o.i: R   ._ v 2   -m- 1      y-  gjj,
°M ■       Z^       ?2'"-m-l        "   l~t   2g'"

m=M     ^ m=M
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where gm := 2m - m - 1 . Then there is a systematic way of replacing each

gm/28m term using the identity (2.13), namely

g     8mV^~l k
Srn_ =      Y^     _
2*»« ¿—>     -yk '

Since there are infinitely many independent choices to make, the total number

of resulting representations is uncountable.

Proposition 3. (a) There exists a dense set of irrationals, each with uncountably

many different *-binary representations.

(b) If Conjecture 1 holds, then every diadic rational has infinitely many ter-

minating representations (so that the Diophantine equation (1.7) has infinitely

many solutions).

(c) Let A := [0, 1] - {diadic rationals). The set of a e A with more than

k different *-binary representations is open and dense in A (in the topology on

A)-
(d) If Conjecture 1 holds, then the set of a e[0, 1] with more than k different

*-binary representations is open and dense in [0, 1].

Proof. Pari (a) follows from the observation that any number of the form

m nd
(3.2) J2^r + BM,        m<M, ¿?w as in (3.1),

n=i

has uncountably many different representations. Since by construction and

Corollary 2, BM is irrational, it follows that the above numbers are irrational.

The denseness of numbers of the form (3.2) follows from the fact that

lim Bx, = 0

and the observation that (2.3) of Algorithm 1 guarantees that

d=0,l\

is dense in [0, 1].
For part (b) we observe, as in (2.5), that

m - l      m       y~*   ndn
v«-i   = v» +   Z^     9"  '
L Z n>m+\   A

where the sum is the output of Algorithm 1 applied to (m-2)/2m . If Conjecture

1 holds, this sum is finite. In particular, each finite representation of a diadic

rational can be extended to a new finite representation just by using the above

procedure to rewrite the highest nonzero term. The finiteness at each stage

follows from the conjecture, as in Corollary 1.

Part (c) and part (d) would be the same if we knew that every diadic rational

had infinitely many different »-binary representations. (Our problem is dealing

with representations that end in an infinite string of ones, which by (2.14) can

only occur for diadic rationals.) We prove openness as follows. Suppose a e A
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has k +1 different »-representations. Then, for some Nx , these representations

all differ at one of the first Nx "digits". Furthermore, for some N2 > A, ,

each of these representations has a zero "digit" between A, and A2 (here we

have used the assumption that a is not diadic—if we knew that a diadic had

infinitely many different »-representations we could proceed anyway). Thus for

a particular one of these representations of a, we have

,"':'>•<, ■?• »iE^+E
n=\ n=/V3 + l

where A, < A3 < A2 is a zero term for this representation. We now show that

if

then

^3— 1 J OO J*

("I „=EH + E^
n=\ n=N}

and thus ß has a representation with the same A, initial terms as a. To do

this, we observe that

dn

ß-E-f
Il = I

1 ^    n      Nx + 3     A, - 11 Y^        H

2"   -    2^ 2^"'n=N}+] z z

Thus, Algorithm 1, applied to ß - Yln=\   dnn/^" > Senerates no nonzero terms

until after the (A3 - l)st digit. In particular,

»    dnn     y. dnn"      Z-i    7" 2-^i    ■y"   '
r

n=\

and we are done.    D

We will show presently that there exist infinitely many (nondiadic) rationals

with unique »-representations.

We now present a nondeterministic algorithm for constructing noncanonical

»-binary representations. We shall in fact prove that all »-binary representations

of o, 0 < a < 1 , arise as possible outputs of this algorithm. Therefore, this

may be modified to be a deterministic algorithm which produces all possible

initial segments of »-binary representations of a.

Algorithm 3. Let
OO      L

* = £#.    *. = o,i,

be a binary representation of 0 < a < 1. Let

ax:=bx
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and, for n> 1, let

dn-- =

0

Oor 1

1

ifan < n - 1,

ifa„ n or a„ n + 1

and

Then

ifan >n + 2

an+l ■= 2K - ndn) + K ■

a =

oc

E
n=\

nd„

Proof. As was true for Algorithm 1, equation (2.1 ) reduces the proof to showing

that an/2" —» 0 for all possible outputs of the algorithm. This follows from the

inequality 0 < an < 2n + 1 , which can be proved by an easy induction.    □

Suppose at some stage during a run of the algorithm, an — n or an = n + 1.

We shall refer to setting dn = 1 as the canonical choice, since always making

this choice reduces Algorithm 3 to Algorithm 1. We shall refer to setting dn = 0

as cheating, since this does not correspond to following a greedy algorithm.

As an example, we run the algorithm on 1 ¡4 = .01000... three times: canon-

ically, cheating at the first opportunity, and cheating at the first two opportuni-
ties. This yields

0  0  0

0 0
0 1
0  1

1 0 0
6 0 0
0  0  0

3  4^
cheat

0 0
0 1
0  1 0

1   1  0
12  10  4
0   0  0

16

0

0
10

0

1

20
0

1   0
14   0
0   0

1 4  5 6^

cheat cheat

10  11 12  13 15

Thus,

5  6
= -T +

4  25 ' 26

11 13  14
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Notice that the input to the algorithm is the given binary representation of

a, not a . For diadic rationals, the choice of binary representation can affect

the outcome of the algorithm. For example, running the algorithm on \ =

.0011 ... and cheating at the first opportunity, produces an infinite »-binary

representation:

0      0      0      0      10        10 1 1 1      ...
0      0      1      3      7      5      11      9 19 21 23      ...
0      0      1111        11 1 1 1      ...

12      3      4      5      6        7      8 9 10 11

cheat

111     fl
4 ~ 25 + 27 + ^ 2" 'z z H=9

Proposition 4. Suppose 0 < a < 1.

(a) If a is not a diadic rational, then every *-binary representation of a arises

as a possible output of Algorithm 3.

(b) If a is a diadic rational, and

a = £s„"/2\        £„ = 0,1,
n=\

is a *-binary representation of a, then either there exists an N for which gn = 1

for all n > N, or the sequence {gn} is a possible output of Algorithm 3 run on

the terminating binary representations of a.

Proof. If a is not a diadic rational, it has a unique binary representation

OO

«=i

Let
OO

a = £s„"/2", gn=0,\,
n=\

be a given »-binary representation of a. To simplify equations, we introduce

the notation

CO OO

B„=   £   bJ2'\        Rn=   £   gmm/2m.
m=n+\ m=n+\

If a > j, then a, = bx - 1 and cheating is allowed. Cheating causes an

output of dx = 0, while not cheating causes dx = 1 . Thus we may arrange to

have dx = gx . If, on the other hand, a < j , then no cheating is possible since

ax = bx = 0, and the output is dx = 0. However, as \> a, this term cannot
occur in the »-binary representation, i.e., gx - 0.
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Let us assume that some run of the algorithm has produced dk - gk for

k = I, ... , n - I . We shall endeavor to show that, by cheating if allowed and

necessary, the algorithm will output dn = gn.

In the present context, equation (2.1) now reads

n _ ST  mg™    .   «I.    .    »
01 - ¿^ ~Yr    ¥      n

m=\

or equivalently

(3-4) an = 2nRn_x-2nBn.

Since a is not a diadic rational, we have only to consider the following three

cases:

(i) R„_x<n/2n,

(ii) n/2" <Rn_x<(n + 2)/2n,

(iii) *„_,>(« + 2)/2".
In case (i), no cheating is possible because, by (3.4),

an = 2"Rn_l-2"Bn<2"Rn_l<n.

The algorithm must produce dn = 0. Also, /?„_,  is too small to contain the

summand n/2", so gn = 0 = dn .

In case (ii), we add the inequalities

n<2"Rn_x <n + 2,        -l<-2nBn<0

and obtain, by equation (3.4),

n - I < an< n + 2.

But an is an integer, so n < an < n + 1 , and cheating is possible. Thus, we

may arrange to have the output dn equal gn .

In case (iii), we have

an = 2nRn_x-2"Bn>(n + 2)-l

and, since an is an integer,

an > n + 2.

No cheating is possible, and the output must be dn = 1 . If gn were to equal

zero, then ^
R       - R   <   V   — - n + 2
^n-\       ^n -    Z^     2m  ~      2"     '

m=n+\

a contradiction. Therefore, gn = 1 = dn. This completes the proof of (a).

Let

" = £V2",        ^ = 0,1, bN=l,
n=\

be the terminating binary representation of the diadic rational a, and let

a = Y.Snn/2",        £„=0,1,
n -- I

be a given »-binary representation.
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Notice that

0<2"Bn<l    for 7î = 1,..., A- 1,

and since an is an integer, equation (3.4) implies that

2"Rn_{ £ Z   forn= 1,..., N-l.

Therefore, for n < A- 1 , one of cases (i), (ii) or (iii) above must hold, and the

proof of part (a) works here to show that some run of the algorithm produces

dn = 8n for « = 1, • • ■ , A - 1.
We now show that, unless the gn are eventually all ones, one may prove by

induction that gn, n > N, are possible outputs. Suppose the algorithm has

produced dk = gk for k = 1, ... , n, for some n > N - 1. At this stage,

Bn = 0, so

We must now consider four cases:

(i) Rn_,<n/2n,

(ii) Rn_x=n/2n or (n+l)/2n,

(iii) Rn_x>(n + 2)/2n,

(iv) Rn_x=(n + 2)/2n.

Cases (i), (ii) and (iii) are handled exactly as in the proof of part (a), except

that now the required inequalities for an are trivial to obtain.

In case (iv), the algorithm is forced to produce dn = 1. If gn — 1, the

induction may continue. It is possible to have gn = 0, but then

n + 2 _ ^   ^m        ~     m      n + 2
2" n-\ n ¿_j      y" ¿—t    2m 2"     '

m=n+\ m=n+\

which forces gn+x = gn+2 = ■ ■ ■ = 1 .    D

Proposition 5. Any number of the form

E'   2k ^ 2k - 1 ..
^2T    or    £t27-T'        N>2>

k=NZ k=N   Z

has a unique *-binary representation (as above). In particular, the first few

of these, 5/24, 13/288, 1/72... and 17/72, 23/288, 29/1152..., have
unique *-binary representations.

Proof. We use the identity

,i « V^   2k      2 / A \     8 /   1   \

(3-5) L^ = Áw) + Á¥*)k=N+\

to prove inductively that

l^i ?2A-
k=N Z
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is the unique »-binary representation. Since, from (3.5),

^   2k      2N+1 AT
£   72k<^2Ñ7T>        N>2>

k=N+\ Z Z

it is not possible to replace an odd »-digit by a 1. (This also shows why the

initial »-digits must be zero.) Since

2A       ^   2k        ^    k ..    .

z k=N+\ Z k=2N+\ Z

it is not possible to replace any even digit by a zero. (What we have really

done is construct numbers for which an / n or n + 1 and used the previous

proposition.) The odd case is similar.    D

We know, by Corollary 2, that if a is rational and

Sn
OO

*=£i%

n=\

is a nonterminating »-representation, then

,Ín±i—£» i
log2£„/i

We want to show that, given Conjecture 1, this is best possible.

Proposition 6. If Conjecture 1 holds, then every diadic rational a e (0, 1) has

a representation
oo      „

,2in-\

limsupfV     M > 1.
n   \ iog2#„ ;

Proof. Consider the representation of (2 - a) that is constructed by expanding

(2 - a) by Algorithm 1 and then systematically replacing the final 1 in the

(terminating) representation as described in part (b) of Proposition 3. Note

that, if a one in the Ath place is modified in this fashion, it gives rise to a

sequence of at least log2 A ones following it. This gives a representation of

(2 - q) with "logarithmically long" sequences of ones. However, if

OO J

n = \    Z

then

^n(\-dn)

Q = £—r—'
n = \ Z

and this provides the representation of a with logarithmically long sequences

of zeros.    D
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It seems possible that many other rationals have logarithmically large gaps.

We computed the first million »-binary digits of the canonical representation

of 1/3 and encountered exactly 2 strings of 17 consecutive zeros (starting at

287,658 and 969,239). We have not ruled out the possibility that all rationals
have periodic »-binary representations, but this seems unlikely. If the canonical

»-representation of 1/3 is periodic, then either the period is greater than 1/2-

million or it starts after the 1/2-millionth digit.

4. General bases

Let c be a positive integer (> 2). The base c analogue of »-binary repre-

sentations is contained in

Algorithm 4. Let c be an integer (> 2). Let

B=0,l,...,c-l.
OO     n

°=e3?.
n=i

Let

Then

where

ax=Bx and   an+x - c(an mod n) + Bn

n=\

D

0

I

2

c- 1

ifa„ < n,

ifn < an < 2n,

if2n < a  <3n,

if(c l)n<an.

Once again, this is the "greedy algorithm". The details are similar to those

of §2. The analogue of Conjecture 1 is

Conjecture 2. Let n be any integer and c be any integer > 2. Let

a.. r¡   and   a«-M c(a  mod n),        n = m , m + 1, ..

(where {a mod n) is chosen in [0, n - 1]). Then the above iteration always

terminates at zero.

Corollary 3. Conjecture 2 implies that every c-adic rational has a terminating

representation as in Algorithm 4.

The analogue of Proposition 1 is

Proposition 7. For

M+2
C — C

m = -    —;-M,
c 1

A/=l,2,
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we have

,        m+M , ,. ;

H..) ^=E^.
C k=m C

This can be derived directly or by a generating function argument like that

of §2. Proposition 3 has its obvious analogue. As before, this shows that *-

representations base c are not unique and that there exist numbers with un-

countably many different representations. The limited numerical evidence for

Conjecture 2 is presented in the next section.

5. Matters numerical

Algorithm 5. Let c > 2 and M be positive integers, and let

an+\ :=CK mod«),

where the initial value is

am:=M.

Here as before, (an mod n) is the principal representation in [0, n - 1].

We will denote this by ALGOc(m, M). We say that ALGOc(m, M) termi-

nates if ah = 0 for some h > m , and we say that ALGOc(m , M) terminates

at H if H is the smallest such h . The global termination function T is de-

fined so that T (m) is the smallest integer (if it exists) so that ALGOc(m, M)

terminates for all M. Note that T (m) is a nondecreasing function of m . The

conjectures then become

Conjecture 3. For c, m > 2, Tc(m) is finite.

This conjecture seems hard. Though not directly related, it has a similar feel

to the 3x + 1 conjecture [5].

Some suggestive numbers follow.

c = 2

T2(l) = 2

T2(2) = 5

T2(3) = 9

r2(4) = r2(5) = 15

T2(6) = T2(l) = 25

T2(8) = T2(9) = 33

72(10)---72(53) = 393

r2(54)---r2(1000)= 12,231
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c = 3

T3(l) = 2

r3(2) = 4

r3(3)-

r3(6)-

r3(i5)

r3(2i)

r3(30)

r3(42)

7-3(5) = 10

r3(i4) = 3i

• r3(20) = 43

• r3(29)= 121

•r3(41) = 424

■r3(100) = 853

c= 10

7-,o(1) = 2
rI0(2) - r10(4) = 6

7*io(5) • ■

Tio(lO)'

r10(20)

r10(30)

7*10(80) •

rI0(80).

y9) = n

ri0(19) = 26

ri0(29) = 51

ri0(69) = 106

r10(74) = 111

ri0(79)=113

ri0(150) = 261.

We collect some of this and some additional computational experience in the

following proposition.

Propositions. For c=3, 4, 5 and 10 and m< 100, ALGOc(rn, M) termi-
nates for all M.

For c-2 and m < 1000, ALGOc.(m, M) terminates for all M.

Algorithm 3 (with Proposition 4) gives a very satisfactory algorithm for com-

puting minimum length »-representations of diadic-rationals. We illustrate this

on the question of minimum length rewritings of (n - l)/2"~ using the fact,

once again, that

(5.1) n-~{       U      n~2n
-Tn + 2"

and considering minimum length rewritings of (n - 2)/2" . Note that, if Al-

gorithm 1 applied to (n - 2)/2" terminates at A without generating an an,

n < N, with an = n + 1, then this is, in fact, the minimal representation. If at

some point, an-n + l, then we branch as in Algorithm 3 by setting dn = 0

instead of 1, and continue. In practice, very few branches are required until we

have exceeded A. The following table collects some of the numerical experi-

ence. It presents the lengths (i.e., numbers of terms and termination term) for

minimal representations of (n-2)/2n for various n. Often, though not always,

the greedy algorithm provides this representation. Notice that, with (5.1), this
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provides minimum length solutions for the Diophantine equation (1.1). (The

number of terms is one more than that in the table while the largest term is

one less than the termination term.) It is perhaps surprising that such an easy

algorithm exists for generating minimal representations.

»-binary expansions of (n - 2)/2"

Algorithm 2 minimum rep. # of branches

n                         terminates at terminates                 required

¡1           393 (186 TERMS) 393(180 TERMS)               2
16 23 (4 TERMS) «-                            0
17 393 (184 TERMS) 47(16 TERMS) 1
18 33 (7 TERMS) «- 0
19 33 (6 TERMS) — 0
20 33 (7 TERMS)                    <- 0

122 12231 (6065 TERMS) 321(101 TERMS) 1
5000 7183 (1065 TERMS) «- 1
5001 12231 (3612 TERMS) «- 2
5002 5601 (286 TERMS) <- I
5003 6273 (642 TERMS) <- 0
5004 12231 (3620 TERMS) <- 2
5005 12231 (3590 TERMS) «-     _ 0
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