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AN ALGORITHM BASED ON THE FFT
FOR A GENERALIZED CHEBYSHEV INTERPOLATION

TAKEMITSU HASEGAWA, TATSUO TORII, AND HIROSHI SUGIURA

Abstract. An algorithm for a generalized Chebyshev interpolation procedure,

increasing the number of sample points more moderately than doubling, is pre-

sented. The FFT for a real sequence is incorporated into the algorithm to

enhance its efficiency. Numerical comparison with other existing algorithms is

given.

1. Introduction

We extend the iterative algorithms due to Gentleman [12, 13] and Branders

and Piessens [1] for computing the sequence {pN(t)} of the truncated Cheby-

shev series

N

(1.1) pN(t) = J2"akwTk(t),        -l<t<l,
k=0

interpolating a given function f(t) on [-1, 1], where /(/) is assumed to be

sufficiently smooth. In (1.1), Tk(t) is the Chebyshev polynomial of the first

kind, and double prime denotes the summation in which the first and the last

term is halved.

It is well known that for a well-behaved function f(t) the truncated Cheby-

shev series (1.1) enables us to construct efficient automatic quadratures for the

so-called product integral [1, 6, 15, 23, 24, 25]

(1.2) Q(f,K) = j\(t)f(t)dt,

where K(t) is some singular or badly-behaved function. To be specific, the

approximation (1.1) yields an integration rule QN(f, K) to Q(f, K),

N

(1.3) QN(f,K) = l2"^Q(Tk,K),
k=0

where the modified moment Q(Tk , K) can be computed for various useful sin-

gular functions K(t) by means of recurrence relations [19, 20, 21]. If K(t) = 1,
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QN(f, 1) reduces to the Clenshaw-Curtis method [5] (henceforth abbreviated

to CC method).

Gentleman [12, 13] proposed the use of the Fast Fourier Transform (FFT)

to efficiently compute the Chebyshev coefficients ak in ( 1.1 ) and incorporated

it into a program of automatic quadrature by the CC method, where in general,

by doubling N, the computation can be repeated, using previously computed

results until an error criterion is satisfied. In the Gentleman scheme, however,

N is chosen asN — 2x3n,n = l,2,..., rather than N = 2" , because the

program is simpler. In either case, tripling or doubling [1] of yV increases the

number of function evaluations quickly [22] and is rather expensive when the

number of abscissae required is high.

Bulirsch [4] made use of the sequence N = 3 x 2" as well as 2", n =

1, 2, ... , in the Romberg integration scheme to enhance the efficiency or econ-

omy of automatic quadrature [10]. In this paper we increase ;V more moder-
ately as follows:

(1.4) /V=3,4,5,...,3x2",4x2",5x2",...,        « = 1,2,....

The aim of this paper is to present an algorithm for recursively generating

a sequence of pN(t) (1.1) by increasing N as in (1.4) and by using the FFT.

We choose abscissae {/ } for interpolating f(t) so that in particular for the

integral Q(f, 1) with K(t) = 1, the sequence {pN(t)} yields a sequence of

interpolatory quadrature rules QN(f, 1) = J_xpN(t)dt = lWj f(tj ) having

positive weights it; . This is important to guarantee the numerical stability

and convergence of quadrature rules [9, p. 189].

To this end, we make a slight modification in the sequence of abscissae

{cos27ra^} proposed in [14] to interpolate f(t) on the open interval (-1, 1).

We define a sequence ß} ( j = -1, 0, 1, ... ) such that ß_{ = 0 , ß0 = 1/2

and ßj (j > 1) satisfies the same recurrence relation as that for a. given in

[14, equation (1.1)] except for the starting value /?, =3/4 instead of 1/4. Then

the abscissae ?   are given by

tJ = cos2nßj,        j = -1,0, 1,2,... .

Note that all the properties concerning the sequence a in [ 14] also hold for

the sequence /?    (j > 1) and fi¡ - a¡ = 2~" for an ra-bit integer /.

The approximation pN(t) (1.1) is an interpolating polynomial of degree N

satisfying

(1.5) PN(tj) = f(tj),        j = -\,0,l,...,N-l.

Let N = 2", n = 2, 3, ... ; then, as shown in [14], the set of the first N + 1

abscissae t¡, j - -1, 0, ... , N - 1, coincides with {cosnj/N} (0 < j < N)

used in the CC method, so that we have [5]

2   N
(1.6) ak =-^"f(cosnj/N)cosnkj/N,        0<k<N.

7=0
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The interpolating polynomials P5N/4(t) and PiN¡2(t) of degrees 5/V/4 and

3/V/2 have the form

N/4

(I-7) P5N/4(()=PN(t) + TlbkiTN-k(t)-TN+k(t)},
k=\

N/2

(1-8) P3N/2(0=PN(t) + EBkiTN-k(0-TN+k(t)}.
k=l

In §2 we will prove the following theorem.

Theorem 1.1. Let N = 2", n - 2, 3, ... ,  and define 6k and yk by

/V/4-1

(L9) Sk = ñ  E /(«»i;)«      ' '        0 < rV < W/4,
7=0

Af/2-1

(M°) ?* = Ä7  E /(C08^)e '*'>,        0 < A: < /V/2,
7=0

w«ere £, ö«ö? ». are defined by

(1.11) tj = **U + fi¿/N,        r]j=4n(j + ß2)/N.

Then we have
N

JN/4-k = 2cosnßx cosnß2{2$lok - ak - cosnß2(aN/4_k + aN/4+k)}

(1.12) -cosnß2(aNN/2_k+aNN/2+k)'2\"N/2-k ^ "N/2+k>

N .
l3N/4-k + a3N/4+k>(a3NI4-k + a3N,4+k)/2 > 0 < /C < TV/4,

ßi/2-A- = cos nßi (25ß,4 - ak)

-(aN/2-k+aN/2+k)/2> 0<k<N/2,

where, when k = 0, the right-hand sides o/(1.12) and (1.13) are to be halved.

In §3 the FFT technique for real data [2, 26] is shown to be helpful in suc-

cessively evaluating the discrete Fourier coefficients {ôk} of length A//4 (1.9),

followed by {yk} of length N/2 (1.10), and followed by {a™} ( 1.1 ) of length
2N + 1 . Section 4 discusses error estimates for the interpolation polynomials

pN(t), PiNi^(t) and P3N/2(t), respectively. An application to automatic quadra-

ture, and numerical results, are given in §5.

2. Proof of Theorem 1.1

We first prove (1.12).  Setting / = cosö in (1.1) and (1.7), we have from

(1.7)

N N/4

(2.1 ) p5N/4(cos 9) - ^2 'ak cosk9 + 2 sin N9 ^ bk sink9.
k=0 k=\
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It can be easily seen from (2.4) in [14] that

5N/4-1 N/4

J]   (t- tj) = 2l-N,4(TN/4(t) - cos2nß4) = [](' - coscv)

j=N j=\

for the integer N = 2" (« = 2,3,...), where £. is defined by (1.11). Thus,

the coefficients ¿^ in (2.1) are determined from the condition

(2.2) P5im(cosZj) = /(costy,       0 < ; < /V/4.

Let the formal sine expansion of the right-hand side of (2.2) be

N/4

(2.3) Aco*tJ) = 'É"dkànkÇJ,
k=0

where dk is given [14, equation (3.15)] by

</* = 2»^/4_fc/ sin 2tt/?4 ,        0 < re < /V/4,

¿0 = 0.

Then from (2.1), (2.2) and (2.3) it follows that

N/4 N N/4

(2.5)        ^2  dksinkCj = ^2  ak C0SkÇj+ 2 sin 27T/5, ^¿¿. sin kc; .
/t=o A=o fc=i

Making use of the relations cos(/V - /c)¿;  = - sin ki\   and

cos kÇj = cos2nß4sixikc;i + sin(A//4 - k)£, J six\2nß4,

cos(A//2 ± k)Çj = cos2nß2coskCj t sin 2n ß j sin kÇj,

and using the orthogonality of the sine functions in (2.5) and (2.4), proves

(1.12). We can prove (1.13) similarly, in fact more easily, but we omit the

details.

3.  FFT WITH SYMMETRIES

A thorough presentation of the FFT exploiting various symmetry relations is

given in Swarztrauber [26]. Here we reformulate some of the algorithms to make

them suitable for our applications. It is convenient to introduce a general offset

trapezoidal rule [7, 16] (or generalized midpoint rule) Mn (X) for a periodic

function X(t) with period 27t. Define XJ+n with a shift parameter a as

follows:

(3.1) x"+a = X(2n(j + a)/N),        0<a<l.

Then Ma (X), an approximation to /0 * X(t) dt, is given by

(3-2) <W = f ÊV+Q-
7=0
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The special cases a = 0 and 1/2 of (3.2) coincide with the trapezoidal rule and

the midpoint rule, respectively.

Periodicity in X(t) gives rise to periodicity in Ma (X) with respect to a,

(3.3) MNa+x(X) = MNa(X).

The general offset trapezoidal rule M2a (X) with 2yV abscissae is easily ex-

pressible in terms of Mn (X) and Ma+x,2(X), both having yV abscissae,

(3.4) M™(X) = {M^(X) + M^x/2(X)}/2.

This relation will play an important role in the FFT algorithms to be developed.

Definition 3.1. For a periodic function X(t) with period In, the generalized

discrete Fourier transform Ak     with a shift parameter a is defined by

jn I   liAf,   -iki v/.w
Ak,n=2¿MJe *(0)

(3.5) . v-i

= ]vE*",exlH-2^(y + a)//V},        k = 0, ±1, ±2, ■■ • ,
7=0

where X¡+n is defined by (3.1).

Lemma 3.2. Let X(t) be a periodic complex function with period 2n, that is,

X^ ¡.   = X^.   . Then we have

it e\ jn —2nia  .N
(3-6) AN+k,„ = e        Ak,a>

(3.7) ANL    M. = AÏ   .^        i K,(t+1 k ,n

Proof. The proof follows trivially from the definition (3.5).   D

The relation (3.4) gives a splitting algorithm for Ak 2a (3.5):

(3-8) 4N2, = (4.„ + 4.,+ l/2)/^        0<k<N,

(3-9) A2NN+k2a = (ANka - ANkii+xl2)e-2n,'f2,        0<k<N.

If yV is a power of 2, N = 2" , the iteration of this splitting algorithm constitutes

a modified version of the FFT of Gentleman-Sande type [3, p. 155; 11] for a

complex function X(t).

Lemma 3.3. Let X(t) be a real-valued function with period 2n, that is, XJ+a =

X.    . Then we have
J+a

(3-10) AN-k,,t=e Ak,a>

where X denotes the complex conjugate of X.

Proof. The proof is a trivial consequence of the definition (3.5) for Ak    .   O
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Corollary. Let a = 0, 1/2, 1/4 or 3/4 ; then we have (A) ANN_k 0 = Ak 0, (B)

AN-k,\/2   =  ~Ak,i/2>   (C)   AN-k.1/4  =  ~ÍAk,\/4   0r (D)   AN-k,i/4  =  'A,3/4'
respectively.

Equation (3.10) indicates that it suffices to compute half of the yV transforms

Ak a . Consequently, the amount of computation and storage can be halved in

comparison with that for complex X(t). The splitting algorithm incorporating

this saving consists of (3.8) with 0 < k < N/2 and

(3.11) AZk,2* = (ANk,lt-Ak,a+l/2)e~2n'a/2>        0<k<N/2.

Here we conveniently restrict the fraction a in (3.5) to any element of the

sequence {ßj} , say, ßq for arbitrary positive integer q, to formulate the FFT

of the real-valued data Xj+a = X(2n(j + a)/N) (0 < j < N) in a form suitable

for our applications. Then it can be seen from (2.3) in [14] that (3.5) may be

rewritten as

.   N-\

<3-12)       Alßq = Ñ¿2 X(2xßqN+j)exp{-2nikß9N+j),        0<k<N,
7=0

for which an FFT algorithm is given in the following theorem.

Theorem 3.4 (FFT for a real sequence). Let N = 2" , «=1,2,..., and X(t)

be a real-valued function. Calculate Y (k) for I = 1, 2, ... , « by the following

recurrence relations with the starting values Y (j) = X(2nßqN+J), 0 < j < N :

(3.13)

Yl(k + j2l) = Yl  [(k + j2') + Yl  l(k + 2'  l+j2l),

0<k<2! 2.

Y'(-k + 2'   '+y2/) = {7/  \k + j2l)-Y'  \k + 2*  l+j21)}

(3.14) x exx)(-nißq2n-,+j)

0 < k < 2l 2, 0<j<2" '.

Then we have for Ak „   in (3.12)

(3.15) ANkß=Yn(k)/N,        0<k<N,

where we make use of the relation (3.10) to obtain Y"(N - k) for 0 < k < yV/2

by

(3.16) Y"(N -k)= Yn(k) exp(-2nißq).

Remark.   If we set  L = 2 , M = N/L  and  T = ß M+jL, we see that

Y (k + jL) corresponds to Ak r .

In implementing the above FFT on a computer, TV + 1 real-valued stor-

ages V(k), k = 0, 1, • • ■ , tV, are sufficient to carry out the recursions (3.13)

and (3.14) in place.   Specifically,  9tY'(k + j2l),  0 < k < 2/_1 , are stored
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in V(k + j2l ) and %Y'{k + j2l), 0 < k < 21'1, in V(2l - k + j2l), while

r/(2/_1 +j2l) exp(nißq.r-i+j), which is real-valued, is stored in V(2l~x +j2l).

In the final step, / = « of (3.13) and (3.14), the contents of V(k) are as follows:

sR7"(rc) = V(k),        0<k<2"~1,

g?y"(2""') = V(2"~l)cosnßq,

3tT"(2" -k)= V{k) cos 2nßq - V(2n - k) sin 2nßq,

(3.17) 0<fc<2""\

%Yn(k) = V(2"-k),       0<k<2"~\

c$Y"(2"-]) = -V(2n-l)sinnßq,

37" (2" -k) = -V(k)sin2nßq - V(2" - k)cos2nßq,

0<k<2n-{.

Note that no unscrambling is necessary for the result of the FFT (3.15) because

the input sequence Y (j) = X(2nß' N+J) has been generated in the bit-reversed

order.

Lemma 3.5. Let X(t)  be a real and even function, that is,  X¡,    = XK   .
\  i J »        j+a i\—j — a

Then

(3-18) <!-, = <„•
Proof. From (3.5) and the assumption of the lemma, we have

<i- = a? E <1_(iexp{-27r//c(y + 1 -a)/N}
7=0

N-\

Jf E XN-j-a w{-2nik(N - ; - a)/N}
7=0

= A? E <« exp{2^/(; + a)/yV} = Z£Q .    D
7=0

Corollary. Both Ak Q and Ak x/2 are real-valued and are given by

<i m\ a1n       1 t*"v2n       nkj
(3-19) 4,o = ^E  Xj   cos^-'        0<k<N,

7=0

(3-20) A¡% = 1 g <1/2 cos Ï* (; + i) ,        0 < A: < N.
7=0

When /(cos/) is taken as AT(i) in (3.19), comparison of (1.6) with (3.19)

gives the well-known relation [13] for the Chebyshev coefficients ak :

(3.21) ak =2A2kNQ,       0<k<N.



202 TAKEMITSU HASEGAWA, TATSUO TORII, AND HIROSHI SUGIURA

Equations (3.8) and (3.11) yield a well-known splitting algorithm for ak (=

2A2N \

(3.22) A2kN0 = (A*k\0 + Al 1/2)/2,        0 < k < N/2,

(3.23) A2NN_k>0 = (ANk 0 - <1/2)/2,        0<k<N/2,

where ^v/:) 1/2 = 0 from (3.10) and (3.18).   Swarztrauber [26] referred to

a real sequence X.   = XN+j  as being R symmetric, to a real even sequence

X, = XN_, as being E (even) symmetric, and to a sequence X. = XN_¡_X as

being QE symmetric (quarter-wave even symmetric). If we use this terminology

and in (3.20) take into account the fact that Z = X',2 is QE symmetric,

Z2A, ■_, = ^y ' equations (3.22) and (3.23) imply that an E symmetric sequence

splits into E and QE symmetric sequences both of half the length.

Further, it can be shown from (3.8) and (3.18) that the transform Ak ,/2,

a QE symmetric sequence in (3.22) and (3.23), agrees with the real part of the

transform Ak,,4   (= Ak/2,4), an R symmetric sequence, that is,

(3.24) Ak¡ 1/2 = %Ak/2/4 = ®ANkl2IA,        0<k<N/2.

As will be seen, the transform Ak , ,4 relies on the abscissae cos 2na.  (1 <j<

N/2) given in [14], while Ak3,4 relies on cos 27^   (1 < j < N/2). It will be

shown elsewhere that positive quadrature rules [9, p. 189] of closed type can be

constructed based on the abscissae cos27tß , whereas the abscissae cos27tq

(1 < 7 < tV — 1 ) yield positive quadrature rules of open type and degree N -2 ,

with yV given by (1.4). This fact makes the transform {Ak 3/4} preferable to

the alternative {Ak ,,4} .

Lemma 3.6. Take f(cost) as a real periodic function X(t) in (3.5) and let ôk

and yk be defined by (1.9) and (1.10), respectively. Then

(3-25) ** = <5/,6 = 4ÏÏ4.        0<k<N/4,

(3.26) yk=Aï% = 4/2Pl,        0<k<N/2.

Proof. The proof follows trivially from the definitions of 6k and yk .   u

Figure 1 illustrates how the transform Ak 0 with E symmetry, which corre-

sponds to the Chebyshev coefficient ak , successively splits into the transforms

of smaller length with their own symmetries, until it reaches the original func-

tion values AlQ „ = f(cos2nß.), j = -1, 0, ••■ , 7 .

Let yV = 2" (« = 3,4,...) and suppose that the Chebyshev coefficients

iak} ' 0 < k < N, of the interpolating polynomial pN(t) (1.1) are given. We

now show the process of successively getting p5N/4{t) (1.7), then p3Np(t) (1.8),
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16
</2=<

A

a\/2 = A2

0,0

2 it        A4
ak/2 = A

4 /-i a*
ak/2 = AkA

ik,\/2

QE

k.o

A:, 1/2

QE

'A-. 3/4

R

Figure 1

k,0

1k,\/2

QE

1k , 3/4

R

4 = ̂ A: ,3/8

R

'A-, 7/8

R

I1
'0,1/2

QE

*0,3/4
R

'0,3/8

R

'0,7/8

R

¿n = ^ 0,3/16

R

10, 11/16

R

'0,7/16

R

*0, 15/16

R

Splitting procedure for the Fourier transform Ak 0 of a real even function /(cos/). The /I

(/?_,   =0.   ß0

7 = - 1 , 0, 1 , • •

1/2.   /?,

7.

t   q    ui   a  icai  CVCIl   lUllLUUll     / \LU5 I j .    I HC    /in   ß

3/4,   /i2 = 3/8, •■• ) agree with the input data  /(cos2jrß),

then the polynomial p2N\

is satisfied.

t) of double the order 2yV, until a stopping criterion

Step 1. Construction of p5N/4(t). Compute ôk   (= Ak „ ) defined by (1.9) by.V/4

'5/V/4 k,ßA

using the FFT for a real sequence described in Theorem 3.4 and check a stopping

criterion based on an error bound which may be estimated by computing the

and bN  in (1.12) as described inlast two or three coefficients bN_2 'N-\

§4 below. If the stopping criterion is satisfied, exit from this step to stop the

process after computing the remaining {bk} (1 < k < N - 3) given by (1.12).

Otherwise, proceed to Step 2 without computing {bk }.

Step2. Construction of PiN,2(t) ■ Compute Aku,l6 , 0 < k < N/4, by using

the FFT for a real sequence (Theorem 3.4), and combine Sk obtained in Step

1 with Ak'XXIXf) by the algorithm of (3.8) and (3.11) to calculate yk (—Ak¡¡),

0 < k < N/2 . Similarly as in Step 1, check a stopping criterion. If the criterion

is satisfied, compute {Bk } given by (1.13) and exit from this step to stop the

process. Otherwise, go to Step 3.
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Step 3. Construction of P2N(t) ■ Use the FFT for a real sequence to compute

{Ak¡yS}, which is combined with {yk} obtained in Step 2 to yield {Ak 3/4}

by the algorithm of (3.8) and (3.11). Finally, use (3.22) and (3.23) to compute

ak     (= 2Ak 0) from ak   and Ak , ,2   (= ?RAk 3/4) obtained previously.

It should be noted that the steps in 1, 2 and 3 for computing Sk, yk  and

ak can be regarded as parts constituting the algorithm of the FFT of larger

length. Consequently, when p5N/4(t) or P3N,2(t) is the polynomial satisfying

a stopping criterion, its Chebyshev coefficients can be evaluated with the same

amount of computation as required for the FFT, namely 0(A/log, N).

Lemma 3.7. Let X(t) be a real and odd function with period 2n, that is,

X^-j-n = ~Xj1+<> • and Ak a be defined by (3.5). Then

(3-27) <!-„ = -<„•

Proof. Equation (3.27) is easily established along the lines of the proof of

Lemma 3.5.   D

Corollary. Both AkNQ and Ak ,,, are strictly imaginary and are given by

.   N-l ,   ■
,-> -.on -.2/v '  v^ V2N  ■   nkj .      ..
(3-28) A,o = -atE-Y7   sinl^'        0<k<N>

7=0

(3.29)        <1/2 = -±X;<I/2«n^(> + i),        0<k<N.
7=0

The splitting algorithm for Ak 0 is the same as (3.22) and (3.23) except

for Aq w2 = 0. Swarztrauber [26] referred to real sequences X- — -XN_.

and XN = -X*_ _, as being O (odd) symmetric and QO (quarter-wave odd)

symmetric, respectively. Noting that Z¡ = XJ+x/2 in (3.29) is QO symmet-

ric, Z2N_ _, = -Z , we can see from (3.22) and (3.23) that an O symmetric

sequence splits into O and QO symmetric sequences both of half the length. Fur-

ther, from (3.8) and (3.27), the transform AkNx ,2, a QO symmetric sequence,

can be shown to agree in magnitude with the imaginary part of the transform

Ak ...   (= -Ak ,/4), an R symmetric sequence, as follows:
'A., 1/4    ^_     ™k,3/4>

t2N
ik, 1/2 _ '^^k. 1/4 _ '°^A-,3/4'(3.30) A¡NX    = &Ak ,/4 = i%Ak3/4,        0 < k < N.

4. Error estimates

We now derive estimates for the differences between /(/) and the approx-

imate polynomials pN(t), P5N/A(t) and P3N/2(t) defined by (1.1), (1.7) and

(1.8), respectively.
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Substituting the function f(t ), expanded in terms of the Chebyshev polyno-

mials,

oo

(4.1) f(t) = ^'akTk(t),
k=0

into (1.6) establishes the (aliasing) formula [8]

oo

(4.2) 4 = ak + ¿2(a2mN+k +a2mN_k),       0<k<N.

In (4.1) the prime denotes the summation whose first term is halved.   From

(1.1), (4.1) and (4.2) it follows [8] that

oc

(4.3) max  \pN(t) - f(t)\ <2  £   \a
k=N+l

Lemma 4.1. Let N be a power of 2, N = 2" , and ök be defined by ( 1.9). Then

oo

(4.4)       2%Sk = aA. + E (amN/4+k + a,nN/4-k) C0S *mh > 0<k<N/4.
m=\

Proof. Verification of (4.4) consists of inserting (4.1) into (1.9) and using the

orthogonality of the cosine function.   D

We have from (1.7), (4.1) and (4.2)

N/4

lt\  _   flt\   —   n     (t\ _   ftt\ -L
'5/V/4P5N/<(t) - f(t) = pN(t) - f(t) + }Z bk{TN_k(t) - TN+k(t)}

k=\

N/4-1      oo

=    E   '¿Z^mN+k+^mN-kW*)
k=0     m=\

N/4   ( oo 1

(4-5) + E     bk   + EK„V+V-A + <hmH-N+k)     TN-k(t)
k=\   \ m=l J

oo N/4

+ E a(2,n+X)NTN(t) - EK+A + **") WO
m=\ k=\

oo

-   E   «*w-
k=N+N/4+\

Let G  (j, k) be defined by

(4.6)
"OTU > *)      a2mN+jN/4+k + a2mN+jN/4-k

+ a2mN-jN/4+k + a2mN-jN/A-k
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Then 2$iâk in (4.4) can be rewritten as follows:

3

môk = ak + ¿2(ajN/4+k + ajN/4_k) cos jnß 2

7 = 1
(4.7)

CXJ J

+ Ev-UT'^' k)cosjnß2,        0<k< N/4.
m=\ y=o

We find from (1.12), (4.2) and (4.7) that
oo    ,

bN/4-k = - E\G2m-i(Q>k)cosnßx cosnß2
m=\

(4.8) +G2m_x(l,k)(- + cosnßx)

+ G2vm_,(2, k)cosnß2 + G2vm_l(3,k)\,

0<k<N/4.

Substituting (4.8) into the rightmost side of (4.5) we find
oo

_rnaxi|p5yv/4(0-/(0l<2(2 + |cos7rjff2|)    £     \ak\

(4-9) "'- x ^"'M

~4.77    ■£    \ak\,
k=5N/4+l

where p% = 3/8 . In a similar way we find for P3Nn(t)

oc

_max i \p3Nr(t) -f(t)\< 4(1 + | cos nßx |)     ^     |ûfc|

(4,0) " "
= 2(2 + v^)    ¿     |a,|.

A:=3/V/2+l

It can be observed from (4.3), (4.9) and (4.10) that the numerical factors in

the error estimates for the approximate polynomials P5N,4(t) and P3Ni2(t) are

three to four times as large as the one for pN(t) based on the sample points

cosnj/N, j = 0, 1, ... , yV, used in the CC method. The coefficients \ak\ in

(4.3), (4.9) and (4.10) may be estimated by observing the asymptotic behaviors

of \ak\, \Bk\ and \bk\ [8, 14, 17].

5. Automatic quadrature and numerical results

This section compares the numerical performance of an automatic quadra-

ture routine based on our results with the performance of GCCINT [1] and

CCQUAD [13] for the definite integral Q(f, 1) = /_, f(x)dx .
5.1. Stopping criterion. O'Hara and Smith [17], and subsequently Oliver [18],

give a practical method for the error estimation in the CC rule. We incorporate

the method due to Oliver with minor simplifications and extensions.
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For N = 2"   (« = 2,3,...) Oliver sets

(5.1) K = max(\al¡i/2a!¡i_2\, \aNN_2/aNN_4\, \a^_Ja^_6\).

If K < KN{16), where KN(a) is tabulated in [18] for a = 2, 4, 8, 16 and

N = 2" (n = 2, 3, ... , 7), then an error estimate EN for the approximation

QN(f, 1) is given by

/« -m e- 16eryV /v       3
5-2) £jv = —5-5- flv   4 ^   »

*     (yV2- l)(yV2-9)

where a is the smallest of the numbers 2,4,8, 16 such that K < KN(a).

In (5.1) we note that K is an estimate of the rate of convergence of the

Chebyshev coefficient ak  in (4.1).   On the other hand, the aliasing formula

(4.2) indicates that aN_i (0 < /' < yV) is a better approximation to aN_¡ for

larger values of / except for aN . Therefore, we replace the second and third

terms in the right-hand side of (5.1) by a single term \a^_6/aN_g\ for yV > 8.

Further, for simplicity, we neglect the cases a = 2 and 8 in (5.2).

If 7^(16) < K, the Chebyshev series (1.1) converges slowly. We set eN —

\QN(f, 1) - QNn(f, 1)1 an(l take EN = eNK ' as an error estimate for

QN(f, 1) if i^v(16) < K < 0.9, where the choice of the constant 0.9 has
been empirically determined. For K > 0.9, we take EN = eN .

For the error estimates   E5N/4   and  E3N/2   of the approximate integrals

ö5/v/4(/> 1) and Q3N/2(f, 1), respectively, we set

(5-3) E^=(N2-l)(N2-9)lbN'*]K'

IÎ4\ F l6aN \RN   \V
[       } jfc3V/2-(;v2_1)(yv2_9)l^/4^!

if K < KN(a). We take EiN/4 = EN-KN/S and E3N/2 = EN-KN/4 if KN(16)<

K < 0.9. For K > 0.9, we set kn = eN/eN,2 and take' E5N/4 = eNKlJ   and

E3N/2 = eNK¿~. Finally, we use E5N/4 and E3N/2 multiplied by 2 + ¡cosnßA

and 2 + \¡2 , respectively, to take into account the differences between the ap-

proximations piN,4(t) and P3N/2(t) and f(t) as shown in (4.9) and (4.10).

5.2. Numerical results. We give numerical results for the integral /_, f(x) dx,

where

(1) f(x) = (x2 + a2)~\ a= 1,1/8,

(2) f(x) = (l -a2)/(\ -2ax + a2),       a =1/2, 7/8,

(3) /(x) = (l+x)a/2, a = 3,1.

Figures 2 and 3 illustrate the number N of functional evaluations required

to satisfy the requested tolerance ea . Table 1 compares the execution time, the
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/ (Kr^1-2rç«cr*)dx_

Figure 2
Comparison of the number N of functional evaluations required to satisfy the requested tolerance

Ea for /_,(.v + a )~ dx and /_!,(! - a2)/{\ - lax + a2)dx. Solid curves, equally and

unequally dashed curves represent results based on the present method, the method of Branders and

Piessens [1], and the method of Gentleman [13], respectively.

-5 -10
{0^0

Figure 3
Comparison of the number N of functional evaluations for /_,(! + v)     dx

actual error, as well as the TV required for the tolerance ea for the problem (2)

with a = 3/4.
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Table 1 suggests that all schemes examined perform the computations in

execution times proportional to the number of abscissae used. Specifically,

CCQUAD and GCCINT take almost the same execution time per sample point,

while the present method takes approximately two thirds of that.

Table 1

Comparison of the performance of the present method with GCCINT due to Branders and

Piessens[l] and CCQUAD due to Gentleman [13] for /¿,(1 -a2)/(\ -2ax+a2) dx, a = 3/4. The

time is given in msec.

present method Branders Gentleman

N time error N

3xl0"4

4x 10"7

9x 10~8

time error yV time error

-16

-16

-16

■16

-16

10"

10"

10"

10"

10

10'

-10

■12

17

33

41

65

65

81

10

18

24

36

36

48

4x 10

4x 10

8x 10

-12

-12

-14

13

49

97

97

193

193

36

78

78

160

160

1 x 10"

9x 10

1 x 10

1 x 10

4x 10

4x 10

-10

-15

-15

-16

-16

19

163

163

163

487

487

14

140

140

140

458

458

1 x 10

4x 10

4x 10

4x 10

2x 10

2x 10

The positivity of the weights Wj of the quadrature rules QN(f, 1) depend-

ing on the abscissae ? will be proved elsewhere. The FORTRAN program

implementing the present scheme will also appear elsewhere.

The computation was carried out in double-precision arithmetic (about 16

significant digits) on the MELCOM COSMO 700-11 computer at Fukui Univer-

sity.
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