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GENERALIZED NONINTERPOLATORY RULES FOR
CAUCHY PRINCIPAL VALUE INTEGRALS

PHILIP RABINOWITZ

ABSTRACT. Consider the Cauchy principal value integral

1
Ikf,4)= ][ k(x)lmdx, -l1<i<l.
-1 X =4

If we approximate f(x) by 2;\':0 ajpj(x; w) where {pj} is a sequence of
orthonormal polynomials with respect to an admissible weight function w and
a; = f, p;). then an approximation to /(kf; A) is given by Z;V:O ajl(kpj D A).
If, in turn, we approximate a; by 4y = 2;11 w,mf(x,-m)pj(xim) , then we get
a double sequence of approximations {Q,’:(f; A)} to I(kf; 1). We study the
convergence of this sequence by relating it to the sequence of approximations
associated with I(w f; 2) which has been investigated previously.

1. INTRODUCTION

In a recent paper, Rabinowitz and Lubinsky [9] studied the convergence prop-
erties of a method proposed by Rabinowitz [7] and Henrici [3] for the numerical
evaluation of Cauchy principal value (CPV) integrals of the form

(1) I(wf;l)=][lw(x)){(xidx, -1<Ai<l,
—1 -

where w € A, the set of all admissible weight functions, i.e., all functions w
on J =[-1, 1] such that w > 0 and ||w||, > 0. This method is based on
approximating I(wf; ) by

N

(2) Sy(f:4) =) a,q;,(A),
j=0

where

(3) aj=(f,pj),
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qj(/l) = I(ij; A) and {pj(x; w): j=0,1,2,...} is the family of orthonor-
mal polynomials with respect to w . In turn, $ v(f; A) is approximated by

N
(4) onfi) =Y a,,4,(4)
j=0

where a;,, = 0, ( fp ;) is an approximation to a ; based on the numerical inte-
gration rule

m
(5) Q,(8) = Zw,,,,g(xim),
i=1
and where we assume that
(6) Jim 0,(9)= [ wirgwdx

forall g € C(J) orall g € R(J), the set of all Riemann-integrable functions
on J.

Now, this method requires knowledge of the three-term recurrence relation
for the polynomials p i which is not always available. Furthermore, it is not
always easy to find squences of integration rules Q, (g) which satisfy (6), es-
pecially if w is a nonstandard weight or if we do not wish to use Gaussian
rules but rather rules which concentrate many integration points in subinter-
vals where f is not well behaved. Finally, the restriction to admissible weight
functions does not allow us to deal with CPV integrals of the form

(7) Ik f: ) = ][k x)dx l<i<l,

where k is such that I(kf; A) exists but k need not be nonnegative. Since
the main idea in writing the numerator of the integrand in (7) as the product
of two functions, k and f, is to incorporate the singular or difficult part of
the numerator into k and treat it analytically while treating the smooth factor
f numerically, it would make no sense to rewrite (7) as I(wF; 1) with F =

w 'k f unless w had the same singularity structure as k, and even then we
would usually have the problems mentioned above.

In this paper, we shall try to overcome these shortcomings in [9] by using
ideas of noninterpolatory product integration [8] combined with a device found
in [1] for expressing CPV integrals with respect to one function, say k, in
terms of CPV integrals with respect to a second function, say w, positive in
(-1, 1). The point is that we can then choose a convenient weight function

w for expressing our inner products and for evaluating the approximations to
these inner products, for example w(x) =1 or w(x) = (1 - xz)—'/z. In fact,
this latter weight function is particularly useful, as we shall see. We shall first

describe the method in §2 and then study some convergence questions in §3.

2. A GENERALIZED NONINTERPOLATORY RULE

Consider the CPV integral I(kf; ) given by (7) where k € DT(Ny(A)) N
L,(J) and f € DT(Ny(4))N R(J), which ensures that I(kf; ) exists. Here

N,(A)=[A-8, A+d]C(~1,1)
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and, for any interval I of length /(I),

19 »
DT(I)={g:/O w,(g; 0t dt<oo},

where the modulus of continuity of g on [ is given by

w,(g;t)= sup |g(x,) - g(x,)].
v, —x, <t
.\',..\'ZGI

Assume now that we have a convenient weight function w € DT(Ny(A)) N A
such that w(A) > 0. We then have a three-term recurrence relation for the
sequence of orthonormal polynomials {p (x;w)} of the form

8) =0, po=1, pj,(xX)=UAx—-a)p(x)-Bp,_(x), Jj=20.

If we expand f in an orthogonal series in terms of the pj(x; w), which for
the moment, we assume converges uniformly in J,

9) f(x) = iajp,(x; w),
then we can approximate f(x) by Z, _0a;p;(x;w) and Ikf;A) b
(10) Sy(f12) = Z;a,M,(k; A,
where Mj(k; A) = I(kpj ;A). In turn,j_we then approximate S, (f;4) b
(1) Qu(f: 1) = }Eaijj(k; 2).

j=0

The M j(k; A) satisfy the following nonhomogeneous recurrence relation

(12) My, (kid)=(AA—a)M(kiA)— B,M,_ (ki 1)+ A4,N k),

1
= /_n k(x)pj(x; w)dx.

Relation (12) follows by replacing P, in I(kp. INE ; A) by the right-hand side
of (8) and using the well-known devnce

][kx’”‘) /k A][k

where

Hence, if we know the N j(k), we can evaluate (11) in a stable manner by
backward recurrence.

If wkx)=1(1- xz)"/z, so that (except for normalization) p, = Tj the
Chebyshev polynomial of the first kind, then recurrrence relations for N j(k) are
known for a wide variety of functions [6]. For w(x) =1, for which p, = P, , the
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Legendre polynomial, recurrence relations for N, (k) for k(x) = e, Ix—1"
and log|x —1| are given by Paget [5], and for a variety of functions by Gatteschi
[2]. Since the work of Paget is not readily available, we give his recurrence
relations in Appendix 1. In Appendix 2, we give the recurrence relations for

evaluating Q,':,' (f;A) when the N j(k) are known, as well as for evaluating the
weights wl.’:'n(,{) in the Lagrangian formulation of Qf: (f; A), namely

(13) On(f;4) =S wp (A f(x,,)
i=1
with
N N
(14) wh () = w,, P, (%)M, (k 2).
j=0

3. CONVERGENCE RESULTS
We study first the convergence of S, (f;4) to I(kf; 4), for then we can

proceed as in [9] to study the convergence of Q,}Z( fiA) to I(kf;A), either
as an iterated limit or as a double limit. Since we have results in [9] for the
convergence of S'N( fiA) to I(wf; A), we shall try to reduce the study of the
convergence of S, (f; 4) to that of the convergence of S‘N( f; 4). To this end,
we use a device in [1] to relate a CPV integral weighted by k to one weighted
by w . This is done by writing

1
I(kf:2) = ][ k(x ldx—][_lw(x)-l];(—x)— (_xldx

X) x
f(x) k(x) k(A) k() f(x)
/ w(x [w(x)_w(l)} dx+m]l_lw( ) ld
_ k(A) [ k(4)
_/_lf(x)k[x,z]dx—m/_lf(x)w[x,a]dﬂ o Is ).

Here, we have used the divided difference notation,

h[X, ]= h(X) _h(y) )
x-y
Consequently, if we have conditions on f and w which ensure convergence
of Sy(f;4) to I(wf; 1), we need only find the additional conditions on f,
k and w to insure the convergence of

Z]_Z / x)w[x, Aldx to /f X)wlx, Aldx =1,

and

Zz_Za/ (x)k[x,A]dx to / fOo)k[x, Aldx=1,,
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for then

k()
ZaM (k; 4) = w(( Zaﬂ, Z +Zz

/:0

. " "“)11+12=1(kf;1).

(fi)

Clearly, sufficient conditions for the convergence of ), and ), are that
(9) holds uniformly in J and that w and k € DT(J), for then

(15) 1, =Y < 2 /w,wt s

where r(x) = Z _nv+14;p;(x; w), and similarly for |I, — >, |. Hence, pro-
vided |k(4)] < c© and w(4) > 0, we have convergence of S, (f; 1) whenever
S’N( f; 4) converges. Furthermore, if § v(f; A) converges uniformly with re-
spect to 4 on some closed subset A of (-1, 1) and w(4) >0 and |k(4)| < o0
on A, then we will have uniform convergence of S, ( f;A) on A. However,
we can weaken these conditions in various directions. Thus, it is not necessary
that w and k € DT(J), only that w, k € DT(Ny(4)) N L,(J). For then, we
can replace (15) by

'11 —Z 1‘ = ‘/_ll ry(x)wlx, Aldx

<Nl [ /N .,

(16)
lw[x, A]|dx+/

s 54

lwlx, l]ldx] ,

where both integrals are finite, and similarly for }_,. The first integral in (16)
is finite since

Ato
/ lwlx, Aljdx = /
Ny (4) A—0

s -
=/_5 w(t+ )

while, for the second integral, we have

w(x) —
X —

l)l dx

b
w(l)’ dt < 2/ wNé(M(w; e dt
0

/ lwix, Al dx :/ M‘ dx
J=Ny(A) J=Ny(A) x—=2
<! lw(x) — w(d)| dx
J=N(%)

67 [lwl], + 2w(A)] < oo.

Another possibility is to require only that (9) holds uniformly in Ny(4). Then,

if both w™' € L,(J) and kz/w € L,(J), a well-known condition in product
integration theory [10], we have convergence of S, (f; ). We summarize these
remarks in a theorem and several corollaries.
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Theorem 1. Assume that for some 1€ (-1, 1),
1

|
(17) ’/_IrN(x)w[x,l]dxAO, / ry(X)k[x, Aldx -0 as N — oo,

that w(A) > 0 and that |k(A)| < co. Then

(18) Sy(f34) = I(kf;A)

if and only if

(19) Sy(f3 ) = T(wf;4).

Let A be a closed subset of (=1, 1) and assume that (17) holds uniformly in

A, and that w(A) > 0 and |k(A)| < oo forall A€ A; then (18) holds uniformly
in A ifand only if (19) holds uniformly in A.

Corollary 1. If for some A€ (-1, 1), sup; |qj(/1)| < oo, sup; ||pj(-; w)|l,, < oo,
w(4) >0, w, ke DT(Nj(A)NL,(J), feL, (J) and flx,AleL, (J),
then (18) holds.

Proof. By Theorem 2 in [9], the hypotheses of the corollary suffice for (19) to
hold. By Theorem 4 in [4, p. 70], ||r\|l., — 0. Hence, as in (16),

1w 1w

1
/ ry(x)wlx, Aldx
-1

<yl [/ . dx+ [ N(,)lw[x,mdx] ~0,

.’Vé(/.)
and similarly for f_'l ry(x)k[x, A]dx . Furthermore, since k € DT(N,(4)),
one has |k(4)] < co. Hence, by Theorem 1, (18) holds. O

Before stating the next corollary, we recall the definition of a generalized
smooth Jacobi (GSJ) weight function [1]. We say that w € GSJ if

p+1
(200  w)=wx)[[Ix-11",  y>-1,/=0,...,p+1,
j=0
where —1=to<tl<~~-<tp<tp+l:1,p20andt//>0, v €

DT(J). Corresponding to such a w, we define the set D = J — T, where
T={ty,t,,.... 0.}
Corollary 2. Assume that f € DT(J), w € GSJ and k € DT(A)nL,(J),

where A is any compact subset of D. If (9) holds uniformly in J, then (18)
holds uniformly in A.

Proof. By Theorem 3 in [9], (19) holds uniformly in A. O

Corollary 3. Assume that f € DT(J) and w(x) = (1 — xz)_'/z, or that [ €
H . (J) and w(x) =1, where H (J) = {g: w,(g;1) < A", 0 < u <1,
A>0}. If k e DT(A)NL,(J), where A is any compact subset of (-1, 1),
then (18) holds uniformly in A.

Proof. Under the above hypotheses, (9) holds uniformly in J. O
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Corollary 4. Assume that f € DT(J), w € GSJ, w™' € L (J), kKw™!
L,(J) and k € DT(A)NL,(J) for every compact subset A of D. Then (18)
holds uniformly in any compact subset of A of D.

Proof. Let h be the distance of A from 7. Then we can find a compact set
A such that A c A c D and the distance of A from J — A is h/2. Since
by Theorem 3 in [9], (19) holds uniformly in A, we must show (16). Now, by
Theorem 2 in [4, p. 95] and by the properties of p"(x; w), we have ry(x) — 0
uniformly in A. Since w € DT(A),

‘/ ry(x)wlx, Aldx
A

<lryls [ Jwtx, 2dx — 0.
Furthermore,

/ ry(x)wlx, Aldx
J—A

s (/,-Mx)riv(x)dx)‘” ( /J_A %x)“ dx)l/z |

Since f €L, ., the first integral in the right-hand side tends to 0. As for the
second integral, we have that

(21)

/ (w(x) - w(A))’
J-a w(x)(x —2)*
Similarly, since k € DT(A), one has Jiry(oklx, Aldx — 0.

As for fJ_A ry(x)k[x, Aldx , we use an inequality analogous to (21) and the
fact that

2
/j k’[x, A]d h2 /' k*(x) = 2k(x)k(A) + k(A)dx

A w(x) w(x)

dx < p /l (w(x) = 2w(A) + wA)w(x) ) dx < 0.

< oo,

since kw™' = (kw"'/z)w_ € L,(J) by the Cauchy-Schwarz inequality. O

As particular cases of Corollary 4, we note that if w(x) = (1 — xz)_” 2
we only require of k that |k(x)| < C(1 — x*)™*"  while if w(x) = 1, we
require that |k(x)| < C(1 — xz)"/“e . As in Corollary 3, this again shows the
superiority of the Chebyshev weight.

Once we have shown that (18) holds, we can proceed to the study of the
convergence of Q,':( f; ). We shall state here three theorems corresponding to
Theorems 6-8 in [9]. We do not give any proofs, since they are almost identical
to the proofs in [9].

Theorem 2. Assume that f € R(J), that I(kf;A) exists and that w € A,
k € L\(J) and A € (=1, 1) are such that (18) holds. Let {Q, (g)} be a
sequence of integration rules such that (6) holds for all g € R(J). Then

(22) lim lim Q (f5 A =1kf;A).

N—00 m—0o0o




278 PHILIP RABINOWITZ

Theorem 3. Suppose that for m =1, 2, ..., therule Q, (g) has precision m,, >

N, , that p, =min(N, ,n, —N,)— oo as m — oo and that

m
S lwir()l < Clogu,,, m=1,2,....
i=1

Assume that f € C(J) satisfies the Dini-Lipschitz condition
lima,(f; 1) logt =0,

that I(kf; A) exists, that M(k; Z) is finite and that |k| is bounded in Ng(1)
for some 6 > 0. Then

(23) Jim QUr(f: ) =1(kf: 4).

Theorem 4. Assume that (6) holds for all g € R(J), that I(kf;A) exists and
that (18) holds. Then, given a sequence {(m, N, )} of pairs of positive integers
with N, — oo as m — oo, we have that (23) holds if and only if for every
e > 0, we can find a positive integer | such that for all m sufficiently large,

N,

S0, (fp)M,(k; 2)

Jj=!

<é¢.

APPENDIX 1

In this appendix we give the backward recurrence formulae of Paget [5] for
the evaluation of S = Z;V:O ¢;N,(k) for the case w(x) =1, ie,

1
Nj(k) = /_I k(x)P, (x)dx,

and for three classes of functions k. In each case we construct the sequence
{bj} defined by

by, =by, =0, b,=c+ub,  +v, b ,, J=N,N-1,...,0.
1. For k(x) = exp(itx),
u;=1i(2j+1)/t, v,=1 and S =2(b,sint — ib, cost)/T.
2. For k(x)=loglx —1], -1<1<1,
w;=(2j+N1t/(j+2), v,=-(-1)/(+2) and
S = (by—b,/2)(1 + 1) log(1 + 1) + (by + b, /2)(1 — 1) log(1 — 1)
+2b,/3 - 2b,.

¥

3. For k(x)=|x-1]", a>-1, -l <1<,

U, =2+ Dt/(j+a+2), v,=—-(-a-1)/(j+a+2) and

S=( b +L)(1—z)““+( T )(l+r)°+l.

a+l  a+2 a+l a+2
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APPENDIX 2
We give here the backward recurrence relations for evaluating

N
S=Y dMik;i
j=0
where Mj(k; A) = I(kpj ; A), the D, satisfy (8) and the Mj(k; A) satisfy (12)
with initial conditions

M_,(k;2)=0, My(k; 2)=1(k;4).

If we choose dj = a,,,, then Q,':',(f; A) = S and if we choose dj =D,(X)
then w" W) =w. S.

im im

We construct the sequence {b j} defined by b, ,=by,, =0,

b,=(Ai-a)b,, ~Bb ,+d, j=N,N-1,..,0.

N+2

Then
N—1

S=byl(k; )+ Y A;N,(k).
j=0
The latter sum can, in turn, be evaluated by backward recurrence as in Appendix
1, or by any other convenient algorithm. As for the evaluation of I(k; 1), see

[7].
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