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GENERALIZED NONINTERPOLATORY RULES FOR
CAUCHY PRINCIPAL VALUE INTEGRALS

PHILIP RABINOWITZ

Abstract. Consider the Cauchy principal value integral

I(kf;X)=i   k{x)F^Ldx,     -1<A<1.
7-1 x — A

If we approximate f(x) by Yli=oajP¡(x'i w) where {p } is a sequence of

orthonormal polynomials with respect to an admissible weight function w and

û, = (/. P.), then an approximation to I(kf; X) is given by X!/=o ajl(kp¡ ; ^)-

If, in turn, we approximate a¡ by ajm = £™ , wimf(x¡m)Pj(xim), then we get

a double sequence of approximations {Qm(f;X)} to I(kf; X). We study the

convergence of this sequence by relating it to the sequence of approximations

associated with l(wf ; X) which has been investigated previously.

1. Introduction

In a recent paper, Rabinowitz and Lubinsky [9] studied the convergence prop-

erties of a method proposed by Rabinowitz [7] and Henrici [3] for the numerical

evaluation of Cauchy principal value (CPV) integrals of the form

(1) I(wf;X) = j  w(x)-^dx,        -Kkl,

where w G A, the set of all admissible weight functions, i.e., all functions w

on / = [—1, 1] such that w > 0 and \\w\\x > 0. This method is based on

approximating I(wf; X) by

N

(2) SN(f;X) = Y,a]q](X),
7=0

where

(3) a. = (f,pt),
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q(X) = I(wpj ; X) and {p}(x ; w) : j = 0, 1,2,...} is the family of orthonor-

mal polynomials with respect to w . In turn, SN(f; X) is approximated by

(4) #(/;*) = £«*,«/*).
7=0

where a m = QJfpf) is an approximation to a. based on the numerical inte-

gration rule
m

(5) Ö«(S) = !>,■«*(*,■*).

and where we assume that

(6) lim QJg)= f  w(x)g(x)dx
m—»oo     '" J_,

for all g e C(/) or all g G R(J), the set of all Riemann-integrable functions

on J.
Now, this method requires knowledge of the three-term recurrence relation

for the polynomials o which is not always available. Furthermore, it is not

always easy to find squences of integration rules QJg) which satisfy (6), es-

pecially if w is a nonstandard weight or if we do not wish to use Gaussian

rules but rather rules which concentrate many integration points in subinter-

vals where / is not well behaved. Finally, the restriction to admissible weight

functions does not allow us to deal with CPV integrals of the form

(7) I(kf;X) = j   k(x)-Ç^dx,        -Kkl,

where k is such that I(kf; X) exists but k need not be nonnegative. Since

the main idea in writing the numerator of the integrand in (7) as the product

of two functions, k and /, is to incorporate the singular or difficult part of

the numerator into k and treat it analytically while treating the smooth factor

/ numerically, it would make no sense to rewrite (7) as I(wF; X) with F =

w~ kf unless w had the same singularity structure as k, and even then we

would usually have the problems mentioned above.

In this paper, we shall try to overcome these shortcomings in [9] by using

ideas of noninterpolatory product integration [8] combined with a device found

in [1] for expressing CPV integrals with respect to one function, say k, in

terms of CPV integrals with respect to a second function, say w, positive in

(-1, 1). The point is that we can then choose a convenient weight function

w for expressing our inner products and for evaluating the approximations to

these inner products, for example w(x) = 1 or w(x) = (1 - x )~ ' . In fact,

this latter weight function is particularly useful, as we shall see. We shall first

describe the method in §2 and then study some convergence questions in §3.

2. A GENERALIZED NONINTERPOLATORY RULE

Consider the CPV integral I(kf; X) given by (7) where k g DT(Ns(X)) n
LX(J) and / G DT(NS(X)) n R(J), which ensures that I(kf\X) exists. Here

Nâ(X) = [X-ô, X + ô]c(-l, 1)
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and, for any interval / of length /(/),

Í f!{!)
\8: Jo     °)rig'

DT(I) = lg:   I      œ.(g;t)t  ' dt <oo\ ,

where the modulus of continuity of g on / is given by

toI(g;t)=     sup     \g(xx)-g(x2)\.
\xx-x2\<t
x, ,.v2€/

Assume now that we have a convenient weight function w G DT(NS(X)) n A

such that w(X) > 0. We then have a three-term recurrence relation for the

sequence of orthonormal polynomials {p(x;w)} of the form

(8)/>_,=0,    p0=l,    pj+x(x) = (Ajx-aj)pj(x)-ßJpj_x(x),        7>0.

If we expand / in an orthogonal series in terms of the pAx; w), which for

the moment, we assume converges uniformly in /,

oo

(9) f(x) = Y^ajPj(x;w),
7=0

then we can approximate f(x) by ^2¡=0OjPAx;w) and I(kf;X) by

N

(10) SN(f;X) = YiajMj(k;X),
./=0

where M.(k ; X) — I(kp. ; X). In turn, we then approximate SN(f; X) by

(ID QNm(f->V=EajmMÁk->V-
7=0

The M.(k ; X) satisfy the following nonhomogeneous recurrence relation

(12)       Mj+X(k ; X) = (A/ - aj)Mj(k ; X) - ßjMj_l(k ; X) + AjN/k),

where

Nj(k)= Í   k(x)pj(x;w)dx.

Relation (12) follows by replacing p.+ i in I(kpj+X ; X) by the right-hand side

of (8) and using the well-known device

/"' t,  ^7(x) j        /"' //  M-X)p(x) /•' p(x)
f   k(x)—J-—dx=       k(x)-f—dx + X-i-   k(x)^-—-dx.
J_i x — X J^x x — X 7-1 x — /

Hence, if we know the Nfk), we can evaluate (11) in a stable manner by

backward recurrence.

If w(x) = (1 - x ) '", so that (except for normalization) p. - T, the

Chebyshev polynomial of the first kind, then recurrrence relations for Nfk) are

knownfora wide variety of functions [6]. For w(x) = 1 ,for which p. = P'., the
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Legendre polynomial, recurrence relations for Nik) for k(x) = enx , \x - x\a

and log |x - t| are given by Paget [5], and for a variety of functions by Gatteschi

[2]. Since the work of Paget is not readily available, we give his recurrence

relations in Appendix 1. In Appendix 2, we give the recurrence relations for

evaluating QJf; X) when the N.(k) are known, as well as for evaluating the

weights w. (X) in the Lagrangian formulation of QJf; X), namely

(13) Öl(/;A) = E»:WM,

with

(14) ™ÍW = ™imÍ2Pj(xiJMj(k;X).
7=0

3. Convergence results

We study first the convergence of SN(f; X) to I(kf; X), for then we can

proceed as in [9] to study the convergence of ßm(/; X) to I(kf; X), either

as an iterated limit or as a double limit. Since we have results in [9] for the

convergence of SN(f; X) to I(wf; X), we shall try to reduce the study of the

convergence of SN(f; X) to that of the convergence of SN(f; X). To this end,

we use a device in [ 1 ] to relate a CPV integral weighted by k to one weighted

by w . This is done by writing

I(kf;X) = 4   k(x)^Jrdx= 4-   w(x)—+Jr^-Jrdx
7-1      'x- X J-\       'w(x)x-X

= f f(x)k[x,X]dx - M y' f(x)w[x,X]dx + ̂ hwf; X).

Here, we have used the divided difference notation,

..       .     h(x)-h(y)
h[x, y] = -1—:-— .

x - y

Consequently, if we have conditions on / and w which ensure convergence

of SN(f; X) to I(wf; X), we need only find the additional conditions on /,

k and w to insure the convergence of

N rl r\

^2\=^2<2,      Pj(x)w[x, X]dx   to     /   f(x)w[x, X]dx = /,
y=o    ■'-1 ^"'

and

N rl rl

y22 = Y]a   /   p fx)k[x, X]dx   to     /   f(x)k[x, X]dx = I2,
j=o    J~i J~l
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for then

SJf; X) = ±ajMj(k;X) = £§X>ÄW " Sï 5
7=0

fc(A)
/(w/;A)

w(A)

k(X)

w(X)

7=0
wW

Ix+I2 = I(kf;X).

Clearly, sufficient conditions for the convergence of £3-   and £2 are tnat

(9) holds uniformly in J and that u; and k G DT(J), for then

:i5)
1 f2

F - E iP 2IMoo /   wy(«;;0/" J?.

where r^(x) = X^/v+i a¡P'¡(x ; u;), and similarly for |/2 - ]C21 • Hence, pro-

vided I A: (A) I < 00 and w(X) > 0, we have convergence of SN(f; X) whenever

■SN(f;X) converges. Furthermore, if SN(f;X) converges uniformly with re-

spect to X on some closed subset A of (-1, 1) and w(X) > 0 and \k(X)\ < 00

on A, then we will have uniform convergence of SN (f;X) on A. However,

we can weaken these conditions in various directions. Thus, it is not necessary

that w and k G DT(J), only that w, k € DT(NS(X)) n LX(J). For then, we
can replace (15) by

'.-£.1-
:i6)

<   r

/   rN(x)w[x, X]dx

/      \w[x,X]\dx+ \w[x,X]\dx
Jnax) Jj-nax)

where both integrals are finite, and similarly for J22 ■ The ^rst integral in (16)

is finite since

/■In.(i)
\w[x, X]\dx =

rX+S

JX-Ô

w(x) - w(X)

X - X
dx

-F\w(t + X) -w(X) rs -1
dt<2l   coN¡w(w;t)t    dt

while, for the second integral, we have

/, "¿W
\w[x, X]\dx

Jj-N, (/.!

u;(x) - w(X)
dx

<S
-1

/, "sW

x-X

\w(x) - w(X)\dx

• -1,
<S    [\\w\\x +2w(X)]<oo.

Another possibility is to require only that (9) holds uniformly in NS(X). Then,

if both w~] G LX(J) and k2/w G LX(J), a well-known condition in product
integration theory [10], we have convergence of SN(f; X). We summarize these

remarks in a theorem and several corollaries.
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OO.

Theorem 1. Assume that for some A e (-1, 1),

(17) í   rJx)w[x,X]dx^O,        í   rjx)k[x, X]dx — 0   as N

that w(X) > 0 and that \k(X)\ < oo. Then

(18) SN(f;X)^I(kf;X)

if and only if

(19) SN(f;X)^I(wf;X).

Let A be a closed subset of (-1, 1) and assume that (17) holds uniformly in

A, and that w(X) > 0 and \k(X)\ < oo for all A e A; then (18) holds uniformly
in A if and only if (19) holds uniformly in A.

Corollary 1. If for some X G (-1, 1 ), sup^ \q^(X)\ < oo, sup^ ||o (• ; w)^ < oo,

u>(A)>0, w, kGDT(Ns(X))nLx(J), feLlw(J) and f[x, X] e Lx JJ),
then (18) holds.

Proof. By Theorem 2 in [9], the hypotheses of the corollary suffice for (19) to

hold. By Theorem 4 in [4, p. 70], \\rAH loo 0. Hence, as in (16),

/_'
rN(x)w[x, X]dx

<\\r /Vlloo
/Jnax)

\w[x, X]\ dx + FNAX)
\w[x, X]\dx 0.

and similarly for /_, rN(x)k[x, X]dx .   Furthermore, since k G DT(NS(X)),

one has \k(X)\ < oo. Hence, by Theorem 1, (18) holds.   D

Before stating the next corollary, we recall the definition of a generalized

smooth Jacobi (GSJ) weight function [1]. We say that w G GSJ if

y}> -1, j = 0, ... , p + 1,

1

p+i

(20) w(x) = w(x)H\x - tj
7=0

where -1 = f0 </,<•■•< f < tp+x = 1, p > 0 and <// > 0, tp g

DT(J). Corresponding to such a w, we define the set D = J - T, where

T={t0,tx,...,tp+i}.

Corollary 2. Assume that f G DT(J),  w G GSJ and k G DT(A) n L,(/),
wAfre A « any compact subset of D. If (9) holds uniformly in J, then (18)

holds uniformly in A.

Proof. By Theorem 3 in [9], ( 19) holds uniformly in A.   d

2,-1/2Corollary 3. Assume that f G DT(J) and w(x) = (1 x , or that f G
H

l/2+E
(J) and w(x) = 1 , where H(J) = {g : co.(g; t) < Af ,  0 < p < 1 ,

A > 0}.  If k g DT (A) D L{(J), where A is any compact subset of (-1, 1),
then (18) holds uniformly in A.

Proof. Under the above hypotheses, (9) holds uniformly in / .   D
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Corollary 4. Assume that f G DT(J), w G GSJ, w ' € £,,(/), A:2u; ' 6

Z.,(7) íi/íí/ ¿c G DT (À) n L,(7) ybr every compact subset À of D. Then (18)
Ao/í/j uniformly in any compact subset of A of D.

Proof. Let h be the distance of A from T. Then we can find a compact set

À such that A c À c D and the distance of A from J - À is A/2. Since
by Theorem 3 in [9], (19) holds uniformly in A, we must show (16). Now, by

Theorem 2 in [4, p. 95] and by the properties of p„(x; w), we have rN(x) -* 0

uniformly in À. Since w G DT (A),

/ rN(x)w[x,X]dx < ||rA,||A / |iu[x, X]\dx -» 0.
Jà Jà

Furthermore,

rJx)w[x, X]dxF
(2,)    '\{j^wY{jJ&«Y.
Since f G L2 w , the first integral in the right-hand side tends to 0. As for the

second integral, we have that

f     (w(x)-w(X))2  ,   ^ 4   /"' , ....        ....    _i
i      v—v_¿-\_L>dx< —r      (w(x)-2w(X) + w(X)w(x)    )dx<oc.

Jj-a   w(x)(x - X) A   J-l

Similarly, since k G DT(À), one has /¿ rN(x)k[x, X] dx —► 0.

As for fj_¿ rN(x)k[x, X] dx, we use an inequality analogous to (21) and the

fact that

f     k2[x,X]J        4   /•' k2(x)-2k(x)k(X) + k(X)dx
/     —r^- dx < —z /    -—-< oo,

Jj-A     W(X) h2J-l W{X)

since kw~l = (kw~i/2)w~]/  G LX(J) by the Cauchy-Schwarz inequality.    D

As particular cases of Corollary 4, we note that if w(x) = (1 - x ) ,

we only require of k that \k(x)\ < C(l - x )~ , while if w(x) = 1, we

require that \k(x)\ < C(l - x2)~ï/2+E. As in Corollary 3, this again shows the

superiority of the Chebyshev weight.

Once we have shown that (18) holds, we can proceed to the study of the

convergence of QJf; X). We shall state here three theorems corresponding to

Theorems 6-8 in [9]. We do not give any proofs, since they are almost identical

to the proofs in [9].

Theorem 2. Assume that f G R(J), that I(kf;X) exists and that w G A,
k g LX(J) and A G (-1, 1) are such that (18) holds. Let {QJg)} be a
sequence of integration rules such that (6) holds for all g G R(J). Then

(22) lim   lim QNJf; X) = I(kf; X).
N—»oo m—»oo
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Theorem 3. Suppose that for m- 1,2,..., the rule QJg) has precision nm >

Nm , that pm = mii\(Nm , nm - NJ —> oo as m —> oo a«i/ ?Aa?

m

£l^WI<Clog/Jm,        m = l,2,....
i=i

/Issu/w that f G C(J) satisfies the Dini-Lipschitz condition

lim<y,(/; t)logt = 0,
f-»0     J

that I(kf;X) exists, that M0(k;X) is finite and that \k\ is bounded in NS(X)
for some ô > 0. Then

(23) lim Qj(f;X) = I(kf;X).

Theorem 4. Assume that (6) holds for all g G R(J), that I(kf; X) exists and
that (18) holds. Then, given a sequence {(m,Nm)} of pairs of positive integers

with Nm —> oo as m —> oo, we have that (23) holds if and only if for every

e > 0, we can find a positive integer I such that for all m sufficiently large,

v..

£<2m(/p,)M,(fc;A)
i=i

< e.

Appendix 1

In this appendix we give the backward recurrence formulae of Paget [5] for

the evaluation of S — ¿^.^CjNfk) for the case w(x) = 1, i.e.,

Nj(k) = j_   k(x)Pn(x)dx,

and for three classes of functions k. In each case we construct the sequence

{b } defined by

j = N,N-l,...,0.hN+2 = bN+i 0,    bJ = cj + ujbJ+i+vj+xbj+2..

1. For k(x) = exp(iTx),

u  = i(2j + 1 )/t ,    vj - 1    and   S = 2(b0 sin x - ibx cos x)/x.

2. For fc(x) = log ¡x - t| , -1 < x < 1 ,

K, - (2j + 1 )t/(; + 2),     ?77. = -(y - 1 )/(; + 2)    and

S=(b0- A,/2)(l + T)l0g(l + T) + (b0 + A,/2)(l - T)l0g(l - T)

+ 2A2/3-2A0.

3. For k(x) = \x - x\" , a > -1 , — 1 < T < 1 ,

Uj = (2j + 1 )x/(j + a + 2),     Vj = -(;- a - 1 )/(; + a + 2)    and

+
a + 1      a + 2

(1-t)      +
+ 1      a + 2

1 + T)
o+l
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Appendix 2

We give here the backward recurrence relations for evaluating

N

S = Y,dJMj(k;X)
7=0

where M}(k ; X) = I(kpj ; X), the p} satisfy (8) and the M}(k ; X) satisfy (12)

with initial conditions

M_x(k;X) = 0,        M0(k;X) = I(k;X).

If we choose d- = a-   , then QJf; X) - S and if we choose d} = p¡(xim),

then w!FjX) = wimS.
We construct the sequence {b } defined by bN+2 = bN+x = 0,

bj = (A/ - aj)bj+x - ßjbj+2 +dj,        j = N,N-l,...,0.

Then
N-l

S = b,I(k;X)+YJA]N](k).
7=0

The latter sum can, in turn, be evaluated by backward recurrence as in Appendix

1, or by any other convenient algorithm. As for the evaluation of I(k ; X), see

[V].
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