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ON AN INTEGER'S INFINITARY DIVISORS

GRAEME L. COHEN

Abstract. The notions of unitary divisor and biunitary divisor are extended

in a natural fashion to give k-ary divisors, for any natural number k . We

show that we may sensibly allow k to increase indefinitely, and this leads to

infinitary divisors. The infinitary divisors of an integer are described in full,

and applications to the obvious analogues of the classical perfect and amicable

numbers and aliquot sequences are given.

1. Introduction

A divisor d of a natural number n is unitary if the greatest common divisor

of d and n/d is 1, and is biunitary if the greatest common unitary divisor of

d and n/d is 1. Unitary and biunitary divisors have been studied by several

authors, often in terms analogous to those of the classical perfect and amicable

numbers. Among these writers are E. Cohen [2], Hagis [4-6], Lai [7], Subbarao

and Warren [9], Suryanarayana [11] (see also [12]) and Wall [15, 16].

It is easily seen that, for a prime power py, the unitary divisors are 1 and

py , and the biunitary divisors are all the powers 1, p , p , ... , py, except for

py    when y is even.

There is no difficulty in extending this notion. Thus we may call d a tri-

unitary divisor of n if the greatest common biunitary divisor of d and n/d

is 1. We soon calculate that the triunitary divisors of py are 1 and py , except

if y = 3 or 6; those of p axe 1, p, p , and p ; and those of p axe 1, p ,

p and p . In this way, we may also define 4-ary divisors, 5-ary divisors, and

so on. We shall speak in general of k-axy divisors. The lack of a pattern in the

list of k-axy divisors of p} (for small values of k, not 1 or 2, and y ) would

have inhibited a study of these. But as we increase k, in fact a very striking

pattern begins to appear.

Figure 1 shows the k-axy divisors of p> for k = 1, 2, ..., 6, and 0 < y <

30. The asterisks indicate those values of x for which px is a k-axy divisor

of py . Figure 2 is the same for k = 19 and 20, and 0 < y < 80. We notice
that for small values of y, to be characterized later, the k-axy divisors remain

fixed. The pattern for large y is also fixed, and depends on whether k is odd or

even. Finally, in Figure 3, we show the 100-ary divisors of py for 0 < y < 120.
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The pattern of divisors for the small values of y would now appear to be

established, whatever the value of k, and it is these which we shall be calling

infinitary divisors. Note that the figure shows some collapse in the pattern for

y > 100. The last (decimal) digit of x, where px is a 100-ary divisor of py,

is shown in this figure, so that the actual divisors may be read off; this will be

useful later.

The pattern indicated by Figure 3 has the distinct appearance of a fractal. It

may be compared with Sierpiñski's "arrowhead" or "gasket" (Mandelbrot [8]).

See also Sved [13], where the same fractal appears, also in a number-theoretic

setting.

The pictures would appear to be worth a thousand words. The first aim of

this paper is to describe this unexpected pattern in terms of our definition of

k-axy divisors.

2. Infinitary divisors of prime powers

In the following, all letters denote nonnegative integers, with p reserved for

an arbitrary prime. To put the above on a formal footing, we begin with

Definition 1. A divisor d of an integer n is called a 1-ary divisor of n if the

greatest common divisor of d and n/d is 1; and d is called a k-axy divisor

of n (for k > 2 ) if the greatest common (k - l)-ary divisor of d and n/d

is 1.

For convenience, we shall call d a 0-ary divisor of n if d\n. We write

d\kn to indicate that d is a k-axy divisor of n , and (/, m)k for the greatest

common k-axy divisor of / and m . It has become common to write d\\n in

place of d\xn.
It should be mentioned that different generalizations of unitary divisor have

been given by Suryanarayana [10] (who also used the term "/c-ary divisor") and

Alladi [1].
The following observations are immediate and will be used later without

special reference.

(i) For any n ,  \\kn .

(ii) px\kpy means (px ,py~x)k_x = 1 .

(iii) px\kpy if and only if py~x\kpy .

The permanency of the pattern for the early k-axy divisors of py , described

in § 1, is accounted for in

Theorem 1. For k > y - 1 > 0, px\kpy if and only if px\    xpy .

Proof. The proof is by induction. The result is true when y = 1, since 1 \kp

for all k . We suppose now that it is true for y < Y - 1, and consider y = Y.

For k = Y — 1, there is nothing to prove, so we suppose also that the result is

true for Y - 1 < k < K - 1, and consider k = K.
x Y x Y

Suppose p \Kp . We must show that p \Y-\P ■ *f m's ls not true> tnen

1 < x < Y - 1 and (px , p ~X)Y_2 - pa , a > 1 . Since pa\Y_2px , the induc-

tion hypotheses show first that p"\x_xpx , and then that pa\K_xpx . Similarly,
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p"\y-2P _l  and Y — x < Y - 1, so pa\Y_x_xp ~x , and then pa\K_xp

Hence (px, p ~X)K_{ > p" > 1, contradicting px\Kp   . Hence, px\Y_xpY , as

required.
x ¡ Y x Y

Suppose next that p' \Y_{P ■ We must show that p \Kp . If this is not

true, then x < Y - 1 and (px, pY~x)K_x = pb, b > 1. Then p \K_xpx,

and the induction hypotheses give p \x_xpx and then p \Y_2px ■ Similarly,

p \Y_2P ~x , and we are contradicting px\Y_xpY . The proof is complete,   o

We are justified now in making the following

Definition 2. We call px an infinitary divisor of py   (y > 0) if px\v_xpy . We

also define 1 to be an infinitary divisor of 1.

We write px\00py when px is an infinitary divisor of py (and px \ 00py

when it is not), and (p1, p1)^ for the greatest common infinitary divisor of p'

and pJ .

Theorem 2.  We have px\00Py if and only if (px , py~x)00 - 1 ■

Proof. This is trivially true if y = 0 or 1, and generally if x = 0 or x — y,

so assume now that y > 2 and that 1 < x < y — 1. Then x — 1 < y - 2 and
y - x - i < y - 2. If px t „y , then px \ y_ xpy , so (px , Py~x)y_2 = pa > \.

Then pa\v_2px, so that, by Theorem 1, p"\x_xpx ; similarly, pa\v_x_xpy~x .

But then p"\00px and pa\00py~x , so (p'v, py~x)00 > p" > 1 • For the converse,

we assume that (px, py~x)ao = P   > 1  and essentially reverse the preceding

argument.   D

The theorems and corollaries which follow will lead to the complete charac-

terization of the infinitary divisors of py . The pattern of Figure 3 (excluding

the top nineteen lines) will thus be fully described, although the characterization

we end with, in Theorem 8, will lead to a more efficient means of constructing

tables of infinitary divisors.

Theorem 3. We have p\oopy if and only if y is odd.

Proof. Using Definition 2, we have pl^p1 and p \ ^p". Also, using Theorem

2, we have, for y > 3 ,

P\ooPy   ^   (/>>/"')oo=  1    ^   P^ocPy~[

The result follows.   D

Theorem 4. If y is even and px\00py , then x is even.

Proof. Suppose x  is odd.   Then y - x  is also odd and, using Theorem 3,

(px , py~x)oc > P ■ This contradicts the statement that px\QOpy ■   □

Theorem 5.  We have px\oopy if and only if p2x\00p2y ■
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Proof. We use induction on y. The result is trivially true if y = 0. Suppose

the theorem is true for y < Y - 1, and consider y = Y. Clearly, we may

assume 1 < x < Y — 1.
x Y Ix 1Y 2y       2Y—2x

Suppose p \oop   , but p    \ m/j    . The latter implies that (p ' , p )00 =

pa, say, and, using Theorem 4, a is even and positive. Put a = 2b. Since

p l^p x and p l^p Y~ "x, the induction hypothesis implies that p \oopx and

P \<xP ~X ■  Then (px, p ~x)00 > p   > 1, contradicting the assumption that
x,       Yp Lp ■

Suppose next that px \ ^p   .   Then (px, p    x)00 = pc > 1, from which,

by hypothesis, p c\OQp x and p c\oop "v. It follows that p x \ ^p . This

completes the proof for y = Y, and thus for all y.   D

Theorem 6. If px\aopy and y is divisible by 2J for some j > 0, then x is

divisible by 2J.

Proof. The result is trivial when 7 = 0. Suppose it is true when j - J, and

consider j = J + 1. Put y = 2 + a . By Theorem 4, x is even, say x = 2w .

Then p "l^P " , so that, by Theorem 5, pw\00P a • Then, by the induction

hypothesis, w is divisible by 2   , and the result follows.   D

~*a ~.a

Corollary 1. The infinitary divisors of p    are 1 and p   .

Proof. This is immediate.   D

Corollary 2. For 0 < k < 2J, P^^p2'^ \for 2J < k < 2j+l, p2' \00p2'+k .

Proof. The first statement follows from Corollary   1   since,   for these   k,
2'       k

(P   ' P )oo = 1 ■ T°e second statement follows from the first.   G

's) ...

Theorem 7. We have p   \oopy if and only if y = 2J or 2J + 1 or 2' + 2 or ■ ■ ■

or 2J+] - 1 (mod 2J+I).

Proof. We have

P2 \ooPy *=> (P2 ' P'~2 )oo = l  ^^ P2 ^oc,Py~      ( by Corollary 1)

<=> (P2' ,P~     )oo > J  ^^ P2 \ooP'~ (by Corollary 1)

2J,        y-2J+'l^^ ■ • • *=> p Lp

where / is chosen to be the largest integer such that y - 2J+ll > 2J. Then

2J < y - 2J+[l < 2' + 2J+l , and the result follows from Corollary 2.   D

The remainder of the identification process for infinitary divisors is carried

out mainly in terms of the binary representations of the exponents on the prime

p. We write a binary representation in general fashion as \^q2} ; the sum is

finite, j > 0, each q. is 0 or 1, and trailing zeros are allowed where required.

A little reflection gives us the following alternative statement of Theorem 7.
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Theorem 7  . Let y = JZy 2. Then p   \n' if and only ify¡ = 1.
J OO J

Theorem 8. Let x = ^2x-2J and y - x = ¿~2 z.2J. Then

PX\ooPy    ifand on[y V    Sxjzj = °-

Proof. Suppose first that ¿~^x¡z¡ / 0.   Then x   = z   = 1  for some j, so

P2 \ooPX and P2 \ooPy~X > by Theorem 7 ' • Hence (px, py~x)00 > p2  > p , so
* L      y

For the converse, suppose px \ 00py, so that (px , py x)0O = pa , say, with

a > 1. Put

a = Y^aj21,    x-a = Y^bj2J,    y -x - a = \S^c¡l1.

Since a > 1, we have a, = 1 for some i. Since pa\„px , we have Y,a,b, = 0

(using the part of this theorem already proved) and it follows that b¡ = 0

and that x¡ - a. + b. for each j. Hence xi = 1 . Similarly, pa\00py~x, so

J2ajc, - 0 > from which c( = 0 and z¡ = ai + ci■ = 1 . Thus J2xjzj ¥" 0 •   □

Corollary 3. The infinitary divisors of p   ~   are all px , 0 < x < 2a - 1.

Proof. Taking y = 2a - 1 in Theorem 8, we see there that if x. = 0 or 1, then

z =1 or 0, respectively, and J2XjZ. = 0.   D

In the next theorem, we prove a very pleasing and useful property, namely,

that infinitary divisors are transitive. This is not true of k-axy divisors in

general. For example, p\5p   and p |5p7,but p\ip1'.

Theorem 9. If px\00py and py\00p:, then px\00pz ■

Proof. The result is trivial if x = 0, so suppose x > 1. Write x = J2xj2J,

y = ¿Zyj2J, y -x = J2rj2J, z - y = ¿Z s^1, and z - x = £ tj2J. We must

show that J2x,tj = 0, given that Y^x.r = 0 and J2y/. = 0. Consider any

particular value of j, say j = k, for which xk = 1 . Since J2xjr, = 0, we

then have rk = 0 and y ■ = x¡ + r for each j, so yk = 1. Then sk = 0. We

note that z - x = (z - y) + (y - x). If k = 0, then ?0 = 50 + rQ = 0. If k > 0,

then ^ = ^ + rfc unless s¿ = r¡. = 1 for some i < k. In that case, y; = 0,

since î^y.5, = 0 > and we cannot have y. = x¡ + r¡. Hence tk = sk + rk = 0, so

XT = 0 for all j, and the proof is finished.   D

Theorem 10. Suppose  2a  < y  <  2a+l .    If px\00Py~2",  then px\00py   and

P2"+XLPy ;  ifx<y-2aand p^/ , then px\00P>"2''.

Proof. Assume px\CX)Py~   ■  Since 2" < y < 2a+i , Theorem l' implies that

p2 \00py , so py~2 \00py , and so px\00py , by Theorem 9.

Now put x = ¿Zx^ and y - 2a - x = £ z,-2J. We have x < y - 2a <

2fl+1 - 2a = 2a  and 2fl < 2a + x < 2a+1 , so 2a + x has the proper binary
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representation 2" + 2~Z-*,2;. By Theorem 8, ¿~lxjzj = 0> and so, by the same

theorem, p2 ^l^'.

For the second part, suppose p \ oopy~ , and let x and y - 2a - x be as

before. Then x  = z  = 0 for j > a and xk = zk = \ for some /c < a (by

Theorem 8). But then y - x = 2a + J2 z¡2} and the right-hand side is a proper

binary representation; since xk = zk = 1, we have px \ oopy , as required.   D

Theorem 11. // 2a < y < 2a+1 and y - 2a < x < 2a, then px \ ^ .

Proof. Since y - 2a < x < 2a , we also have y-2a<y-x<2a. Then, putting

x = J2X:2J and y - x = J2 zj2> > we mav assume in each sum that j < a — 1.

Put also y = y]y,2"'. If x,z. = 0 for all /, then y, = x, + z¡ for all /, and

it is impossible to have ya - 1,, which we require since 2a < y < 2a+ . Hence

x = zj = 1 for some j , implying, by Theorem 8, that px \ oopy .   D

Theorems 10 and 11 imply the "arrowhead" of Figure 3. In particular, The-

orem 11 accounts for the large empty triangles.

We can use Theorem 10 to find the infinitary divisors of prime powers very

quickly (that is, in polynomial time). For example, the infinitary divisors of p

axe the infinitary divisors px of p , i.e., p   , and each p    +x . Use Fig-

ure 3 for the infinitary divisors of p     or calculate them from those of p

i.e., p . The infinitary divisors of p   are px for x = 0, 2, 4, 6 ; so those of
22 I SO

p     have x = 0, 2, 4, 6, 16, 18, 20, 22. Then the infinitary divisors of p
are px  for x = 0, 2, 4, 6, 16, 18, 20, 22, 128, 130, 132, 134, 144, 146,
148, 150.

The simplest means of constructing the Sierpiñski arrowhead is by means of

Pascal's triangle, where only the parity of the binomial coefficients need be noted

(Sved [13]). This gives immediately the following unexpected characterization

of infinitary divisors.

Theorem 12. We have px\00Py if and only if (yx) is odd.

3. Infinitary divisors of integers

The simplest and quickest way to introduce infinitary divisors in general is

as follows.

Definition 3. Let d be a divisor of n and write n = Y['j=xp/ , for distinct

primes p{ , p2, ... , pt, and  d = n'j=xPjJ   (where 0 < Xj < y¿,  j = I,

2, ... ,t).   Then d  is an infinitary divisor of n  if p/l^p/  for each j =

1,2,...,?.

We write dl^n if d is an infinitary divisor of n .

A more fundamental approach, parallel to what has been done for prime

powers, would be to write, say,

h(n) = maxy,
/II«
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and to define d to be an infinitary divisor of n if d\h,n)_xn . It could then be

shown that d\kn for any k > h(n) - 1 and after some work we would obtain

the result assumed by Definition 3. Conversely, the results just alluded to can

be shown to be a consequence of our definition.

4. Functions of infinitary divisors

We denote the number of infinitary divisors of n by t («) and their sum

by <r (/i). Essentially the same discussion as that for the example following

Theorem 11 gives us

Theorem 13. Let y = ^£ly¡21. Then

too(/) = 2^,        ajp") = U (l +/) .
y.= \   V /

Proof. Suppose 2a < y < 2a+ . Then, by Theorem 10,

U/) = 2t0O(/_2°),     <U/) = <U/~2") +Pro00(py~2a).

v—2"
Applying the same argument to the infinitary divisors of p , and repeating

it as often as necessary, gives the theorem.   D

This theorem in fact gives a direct means of finding the infinitary divisors of

py . For example, since 150= 128+ 16 + 4 + 2, we have

/    150\        it    ,      2\/i    ,      4wi    ,       16w,    ,       128,
°oo(P       ) = (l+P  )(1+P  )(1+P     )(i+P       )•

The terms in the sum, after the product on the right is multiplied out, are the

infinitary divisors of p

The functions t^ and a^ axe easily seen to be multiplicative, so general ex-

pressions for t^n) and o^n) may be written down with the aid of Theorem
13.

5. Infinitary perfect and multiperfect numbers

We define an integer n to be infinitary perfect if o^n) — 2« and infinitary

multiperfect if u^ffl) = sn for some s > 2 .

It is apparent from Theorem 13 that for values of n which are not, to take the

extreme case, products of powers of primes of the form p , there is generally

a rich algebraic factorization of o^n), so that more freedom is to be expected

in searching for infinitary perfect numbers than is the case for k-axy perfect

numbers for particular (small) k . (We say n is k-axy perfect if the sum of all

k-axy divisors of « is 2n .) The only biunitary perfect numbers are 6, 60, and

90 (Wall [15]) and only five unitary perfect numbers are known (Wall [16]).
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Without too intensive a search, we have found the following infinitary perfect

numbers:

2-3, 2634537213- 17-41,

2-325, 28335- 11 -43-257,

223-5, 21032527-11-13-43-257,

24335 -17, 21034537211 • 13 • 41 • 43 • 257,

25347 • 17 • 41, 212357 • 11 • 17 • 41 • 43 • 257,

2632527- 13-17, 212365 -7-11 • 17 • 41 • 43 • 257,

26345-7- 17-41, 2I236537211 -13-17-41 -43-257.

Assuming the validity of the pomments following the statement of Definition

3, it will be observed, for example, that the last of the above numbers is k-axy

perfect for all k > 11 .
The next thirteen numbers satisfy o^n) = 7>n :

233-5, 21134537211 • 13-41 • 43 • 257,

25335- 17, 213357- 11- 17-41 -43-257,

2732527- 13-17, 213365-7-ll • 17 ■ 41 • 43 • 257,

27345-7- 17-41, 21336537211- 13 • 17 • 41 • 43 • 257,

2734537213- 17-41, 214355-7-ll • 17 • 41 -43 • 257,

29335- 11-43-257, 21435537211 -13- 17-41-43-257.

2U32527- 11 • 13-43-257,

The next seven numbers satisfy a^n) - 4n :

2733527- 13-17, 2n355372ll • 13 • 41 • 43 • 257,

27355-7- 17-41, 213375-7- 11 • 17 • 41 • 43 • 257,

2735537213-17-41, 21337537211 -13-17-41 -43-257.

2U33527- 11 • 13-43-257,

The next two numbers satisfy o^n) - 5« :

215375-7- 11 -17-41 -43-257,     21537537211 • 13 • 17 • 41 • 43 • 257.

There is no prize for finding further examples of infinitary multiperfect num-

bers. The above examples are all even: a simple adjustment of the proof of The-

orem 1 in Hagis [6] shows that there are no odd infinitary multiperfect numbers.

We conjecture further that there are no infinitary multiperfect numbers not di-

visible by 3.
It is not difficult to devise methods of generating new infinitary multiperfect

numbers from known ones. The following are two results in this direction.
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Theorem 14. Suppose o^n) = qn, where q is prime, and that q2a\\n, for some

a. Then o^qn) = (q + l)qn .

Proof. Using Theorem 13 and the multiplicativity of a   , we have

(7oo(^") = CToo (<?2a+1 • 4r) = (« + ^oo^Voo (4t

= (« + l)ff00(ii) = (9 + l)tjn,

as required.   D

For example, given that n = 2 3 5 7-13-17 is infinitary perfect (it appears

in the first list above), we immediately expect to find 2« in the second list and

6« in the third list, as is the case.

Theorem 15. Suppose o^n) = sn, and that I and m satisfy

/aoo(m) = mrj0O(/),    l\\n,    (m,n/l) = l.

Then a^mn/l) = s(mn/l).

Proof. We have

imn\ .   ,      tn\     o  (m)      . .     m      . .       mn

OO ^    '

Numbers / and m to satisfy the conditions of this theorem may be obtained

as follows. Suppose o^u) = tu and o^v) = tv for some t, and that u\v .

Set w = (u, v)x , I = u/w , m = v/w . Since w is a unitary divisor of u, we

have (w , u/w) = 1 ; that is, (/, w) = 1 and similarly (m, w) = 1. Then

' " ffoo(") fToo(/W) O')

If there is some number « with ox{n) = sn, l\\n, and (m, n/l) = 1 , then

Theorem 15 implies that mn/l is also infinitary multiperfect.

For example, the infinitary perfect numbers 2 3 5-7-17-41 and 2357-

13 • 17-41 may be taken as u and v. Then w - 263417 • 41 , / = 5 • 7,

and m — 5 7 13. In the above lists, there are seven later occurrences of in-

finitary multiperfect numbers n such that l\\n and (m, n/l) = 1 , and conse-

quently there are seven corresponding infinitary multiperfect numbers mn/l =

527-13-/î.

Despite the apparent ease of finding infinitary multiperfect numbers, it seems

to be difficult to show that all such numbers of a desired shape have been found.

We do not know, for example, if there are any infinitary perfect numbers divis-

ible by 8 but not 16. We can, however, prove

Theorem 16. The only infinitary perfect numbers not divisible by 8 are 6, 60, and

90.

Proof. Let n be an infinitary perfect number. If n — 2m and m is odd, then

the proof that n = 6 or 90 is similar to what follows, but easier, and is omitted.
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Suppose n - 4m , with m odd. Since a^ is multiplicative and 0^(72) = 2« ,

we have

(1) 5^(771) = 8m.

Then 5|w and iWa^m). The latter implies, by Theorem 13, that m can have

at most three distinct prime factors. There are thus three possibilities for the

shape of m , and we consider them in turn.

Case 1: m = 5a . From (1), 0^(5") = 8 • 5a_1 . Since the left-hand side is

not divisible by 5, we must have a = 1. But then we have no solution.

Case 2: m - 5aq , where q is a prime, not 2 or 5. By Theorem 13, (1)

must take one of the following forms:

(2) (5a + l)(/+l) = 8-5a-1^, ab>\,

(3) (5a+l)(<7''+l)(/+l) = 8-5a"y+rf,       fl>l,rf>c>l,

(4) (5C+\)(5d+ l)(qh+l) = S-5c+d~lqb,       b>l, d>c>l.

If (2) holds, then 5a + q  +1 = 3- 5a~'<?  , and so, since a > 1 ,

q  =-¡-< 3.
3-5a-'-l"

Then q = 3 and, from (2), a = 1 . We thus obtain the solution n = 223 ■ 5 =
60, and this is the only solution to arise this way.

c d
Suppose (3) holds. Neither q + 1 nor q + 1 can be divisible by 4, since

the right-hand side of (3) is not divisible by 16, so we must have qc > 9 and

qd > 81. Then

4^8-5fl-1 _(qc+l)(qd + l) _        1      J_        1

3 -  5a + 1 q<+* qc     qd     qc+d

I     _L       1     _ 820-    + 9 + 81 + 729 ~ 729'

This is a contradiction.

Next, suppose (4) holds. Then q  + 1 cannot be divisible by 4, so q   > 9.

In that case,

9 qb (5C-H)(5'+1)_5 /        1      J_        1

1Í1  -      /l        . „     rr+d-\ 0   I      +  «c +   ,//  +10-^+1 S-5c+d~{ »V       5£     5d     5c+d

^ 5 /,     1      1        1  \     39
£8    1 + 5 + 25 + T25    =50'

which is a contradiction

Case 3:  m = 5'
( 1 ) takes the form

Case 3:   m = 5aí¡r V , where <? and r are distinct primes, not 2 or 5. Now

(5) (5û+l)(^ + l)(rc+l) = 8.5fl-Vrc.
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Neither q  + 1 nor rc + 1 can be divisible by 4, so we may take qb > 9 and
rc > 13. Then

4     8-5a_1      (qb + 1)(/ + 1) 111
~ <   ,„ .  .   =-r4--= 1 + ^- + ^ +3 -   5a + 1 9V ~     V     rc     ^V

1   _L   _L   112-    +9 + 13 + 117 ~ 117'

This is a contradiction.

With the comment above that all infinitary multiperfect numbers are even,

the proof is now complete.   D

6. Infinitary amicable pairs and aliquot cycles

We call two integers m and n infinitary amicable if a^m) - m + n -

o^n). A more general notion is that of an infinitary aliquot sequence {n }°^0 :

given the "leader" n0 , we define n-, for j > 1, by «. = (r0O(nJ_l) - «•_, . An

infinitary aliquot cycle of order r is a subsequence nk , nk+x, ... , nk+r_x with

the property that nk+r = nk . Such cycles of order 1 are infinitary perfect

numbers, and cycles of order 2 are infinitary amicable pairs.

A computer run, in which each integer less than 10 was considered in turn

as leader, found 62 infinitary amicable pairs, eight infinitary aliquot cycles of

order 4, three of order 6, and one of order 11. These are all given below. In this

search, there were 36172 infinitary aliquot sequences whose eventual behavior

was unknown in that a term of the sequence exceeded the imposed bound of
1 2

9-10 .Of the remaining sequences, many terminated in cycles with smallest

member greater than 10 . There was no systematic search for these, so they are

not listed, but the longest observed infinitary aliquot cycle was of order 23 and

had smallest member 12647808. The computations showed that there are no

other cycles of order less than 17 which have smallest member less than 106.

Most of the theorems of Hagis [4, 6] concerned with the corresponding no-

tions for unitary and biunitary divisors may be easily adjusted to apply also

to infinitary divisors. These give means of obtaining new amicable pairs and

aliquot cycles from known ones. A survey of the extensive literature on the

corresponding topic for ordinary and unitary divisors will be found in Guy [3].

The following is a list of all infinitary amicable pairs with smaller member

less than 106:

114 = 2-3-19 126 = 2-327

594 = 2-33ll 846 = 2-3247

1140 = 223 -5-19 1260 = 22325-7

4320 = 25335 7920 = 24325-11

5940 = 22335 - 11 8460 = 22325-47

8640 = 26335 11760 = 243-5-72

10744 = 2317-79 10856 = 2323 • 59
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12285 = 3 5-7-13

13500 = 223353

25728 = 273- 67

35712 = 273231

44772 = 223-7- 13-41

60858 = 2•337223

62100 = 22335223

67095 = 335-7-71

67158 = 2•327-13-41

74784 = 253- 19-41

79296 = 263-7- 59

79650 = 2-335259

79750 = 2- 5311 -29

86400 = 273352

92960 = 255 -7-83

118500 = 223-5379

118944 = 25327-59

142310 = 2-5-7- 19- 107

143808 = 263-7- 107

177750 = 2-325379

185368 = 2317-29-47

204512 = 257- 11-83

215712 = 25327 • 107

298188 = 223311-251

308220 = 223-5- 11-467

356408 = 2313-23- 149

377784 = 233411 -53

420640 = 255- 11-239

462330 = 2-325-11-467
476160 = 2l03-5-31

482720 = 255- 7 -431

487296 = 273447

14595

17700

3-5-7-139

223-5259

43632 = 2433101

45888 = 2 3-239

,249308 = 2 3

83142 = 2-3

62700 223

71145 = 335

73962 = 2-3

96576 = 263

83904 263

7-587

31-149

5211 - 19

17-31

7-587

503

19-23

107550 = 2-3252239

88730 = 2-5- 19-467

178800 243-52149

112672 = 2 7-503

131100 = 223 • 5219 • 23

125856 = 253219-23

168730 = 2-5-47-359

149952 = 263- 11-71

196650 = 2■325219 • 23

203432 = 2359-431

206752 = 257- 13-71

224928 = 253211 -71

306612 = 223317- 167

365700 = 223-5223- 53

399592

419256

2 199-251

2334647

460640 = 2 5 • 2879

548550 = 2-325223-53

510720 = 283-5-7-19

574816 = 2511-23-71

516384 = 253211 • 163
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545238 = 2-3 23-439

576882 = 2-351187

600392 = 2313- 23 -251

608580 = 22335-7223

609928 = 2311 -29-239

624184 = 2311 -41 -173

635624 = 2311 - 31 • 233

643336 = 2329-47-59

643776 = 263-7-479

669900 = 223-527- 11-29

671580 = 22325-7- 13-41

726104 = 2317 - 19-281

784224 25327-389

785148 = 2"3 • 7 - 13 - 719

796500 = 22335359

815100 = 223-5211 •13- 1«

863360 = 275 -19-71

898216 = 2311 -59- 173

916200 233252509

947835

974400

3 5-7- 17-59

263 • 527 -29

988038 = 2-3 19-107

998104 = 2317 - 41 • 179

721962 = 2-3-19-2111

592110 = 2-345- 17-43

669688 = 2397-863

831420 = 22325-31- 149

686072 = 23191-449

691256 = 2371•1217

712216 = 23127- 701

652664 = 2317-4799

661824 = 2633383

827700 = 223-5231 -89

22325-7-587

2 53-1879

739620

796696

806976 = 2633467

827652 = 223-7-59-167

1075500 = 223253239

932100 = 223-5213-239

1339840 = 265 -53-79

980984 = 2347-2609

1072800
S    1    2

2 3-5-I49

1125765 = 335-31 -269

1147200 = 263-52239

1137402 = 2-347- 17-59

1043096 = 2323-5669

A scanning of this list suggests that it would be interesting to investigate why

the two members of an infinitary amicable pair often have such similar prime

factorizations. The analogues of the theorems in Hagis [6] and the methods of

te Riele [14] go part of the way in explaining this.

The eight infinitary aliquot cycles of order 4 with smallest member less than

106 are:

(1026, 1374, 1386, 1494),

(10098, 15822, 19458, 15102),

(10260, 13740, 13860, 14940),

(41800, 51800, 66760, 83540),

(45696, 101184, 94656, 88944),
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(100980, 158220, 194580, 151020),

(241824, 321216, 331584, 313056),

(685440, 1517760, 1419840, 1334160).

The three of order 6 are:

(12420, 16380, 17220, 23100, 26820, 18180),

(512946, 869454, 891906, 933918, 933930, 769374),

(830568, 1245912, 1868928, 3288192, 5447088, 1076832).

Finally, the only other infinitary aliquot cycle of order less than 17 with least

member less than 10   is:

(448800,696864, 1124448, 1651584, 3636096,6608784,

5729136, 3736464,2187696,1572432, 895152).
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