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THE GENUS ZETA FUNCTION OF HEREDITARY ORDERS
IN CENTRAL SIMPLE ALGEBRAS OVER GLOBAL FIELDS

M. DENERT

Abstract. Louis Solomon introduced the notion of a zeta function ie(s) of an

order 0 in a finite-dimensional central simple ^-algebra A , with K a number

field or its completion Kp (P a non-Archimedean prime in K). In several

papers, C. J. Bushneil and I. Reiner have developed the theory of zeta functions

and they gave explicit formulae in some special cases. One important property

of these zeta functions is the Euler product, which implies that in order to

calculate £e(s), it is sufficient to consider the zeta function of local orders 0^ .

However, since these local orders 0^ are in general not principal ideal domains,

their zeta function is a finite sum of so-called 'partial zeta functions'. The most

complicated term is the 'genus zeta function', Ze (s), which is related to the

free 0^,-ideals. I. Reiner and C. J. Bushnell calculated the genus zeta function

for hereditary orders in quaternion algebras (i.e., [A : K] = 4) . The authors

mention the general case but they remark that the calculations are cumbersome.

In this paper we derive an explicit method to calculate the genus zeta function

Ze (s) of any local hereditary order &p in a central simple algebra over a

local field. We obtain Ze (s) as a finite sum of explicit terms which can be

calculated with a computer. We make some remarks on the programming of

the formula and give a short list of examples. The genus zeta function of the

minimal hereditary orders (corresponding to the partition (1, 1, ... , 1) of n)

seems to have a surprising property. In all examples, the nominator of this zeta

function is a generating function for the «jf-Eulerian polynomials. We conclude

with some remarks on a conjectured identity.

Louis Solomon introduced, in [12], the notion of a zeta function Çe(s) of an

order O in a finite-dimensional central simple K-algebra A , with K a number

field or its completion Kp   (P a non-Archimedean prime in K).

In several papers [1-5] C. J. Bushnell and I. Reiner have developed the the-

ory of zeta functions and they gave explicit formulae in some special cases.

Although the theory is formulated for number fields K (or their completions

Kp), it is immediately extended to global function fields K (or their comple-

tions Kp).

One important property of these zeta functions is the Euler product, which

states that for an 7v-order 0 in A , with R a Dedekind ring in K , one has

W=      Il     <e,W-
P prime in R
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So, in order to calculate Ce(s), it is sufficient to consider the local factors

Ce (s).   However, the local Rp-oxdexs &p axe in general not principal ideal

domains, and their zeta function £e (s) is a finite sum of h(Qp) 'partial zeta

functions', with h(Qp) the class number of the local order Qp . One term is

related to the free 0/,-ideals, the so-called 'genus zeta function' of O^ , denoted

by Ze (s).

In previous papers [7, 8] we studied the locally free class group of an Ä-order

0 ; therefore, our special interest concerns the genus zeta function of 0 :

w= n v>-
P prime in R

In [4] the factors Ze (s) were calculated for hereditary orders in quaternion

algebras (i.e., [A : K] = 4). (Actually, the authors of [4] determined Ç« (s) in

this special case; the main difficulty, however, is the calculation of the genus

zeta function.) The authors mention the general case but they remark that the

calculations are cumbersome.

In this paper we derive an explicit method for calculating the local factors

Ze (s) of the genus zeta function Ze(s) for any hereditary i?-order 0 in a

central simple algebra over a global field. The main idea is to use the description

of the orbits in Qp under the left action of 0^,, cf. §3. This reduces the

calculation to a counting problem, studied in §2. The necessary combinatorics

needed to solve this problem are introduced in §1. We obtain Z~ (s) as a finite

sum of explicit terms which can be calculated with a computer. We make some

remarks on the programming of the formula and in the appendix we give a short

list of examples, including all the partitions of n < 5 .

With similar methods we calculated the partial zeta functions of hereditary

orders. This allowed us to prove Solomon's second conjecture; cf. [1] for hered-
itary orders and also [10],

The examples of the genus zeta function of minimal hereditary orders (corre-

sponding to the partition (1, 1, ... , 1) of n) reveal a remarkable connection

with the ^-Eulerian polynomials. We conjecture that the nominator of this

genus zeta function is a generating function for the g-Eulerian polynomials.

We verified this for n < 20 ; however, we do not have a proof of this relation

for arbitrary n . In fact, we did not succeed in relating the inductive definition

of the tf-Eulerian polynomials to the constructive definition of the genus zeta

function. In §4 we make some further remarks on this.

1. THE   r/-ADMISSIBLE PERMUTATIONS IN  Sn

Let Sn be the permutation group of {1,...,«}. We can visualize a e Sn

by its graph Ta = {(/', a(i)) | 1 </<«}: we indicate the points of rff in the

lattice {1, ... , n}~, see Figures 1 and 2.

Since we will use the lattice to visualize the entries of matrices, cf. §3, the

point (i, j) is plotted, with i vertical and j horizontal.
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123 n-\   n 12     3     4     5     6     7

Figure 1. a=ln Figure2. er = (1 2346)(57)

Definition 1.1. For / c {1, ... , n}~ we say that a is a descending line on I

if and only if for every (/, a(i)), (/', a(i')) e / (\Ta , i < i' is equivalent to

a(i) < o(i').

Examples. (1) The identity 1^ is a descending line on every set /.

(2) a = (1 2 346)(5 7) in Figure 2 is a descending line on I = {2, 3, 5} x
{!,...,7}.

We now fix a composition rj = (nx, ... , nr) e Nr, with n¡ ^ 0 and n =

2~^\<i<r ni ■ ̂  composition r¡ will correspond to a partitioning of matrices into

r   blocks of size nl x n , cf. Theorem 7.

The kth partial sum (k < r) of r\ is abbreviated by S (k) = Y,l<i<knr

We will frequently use the block-map r\* associated with rj and defined by

if : {1,...,«}-» {1,.... r} such that Sn(r¡*(i) - I) < i < ^(r/*(/)).

We say that the row / belongs to the block //*(/'). A block-row (resp. block-
2 * *

column) is the subset of {1, ... , n} containing (/, j) with r¡ (i) (resp. r\ (j))

constant. We also introduce the notation /' -< j (resp. i >- j, i & j) to indicate

that r]*(i) < t]*U) (resp. r¡*(i) > r¡*(j), n*(i) = r¡*(j)).

Definition 1.2. A permutation a e Sn is (t])-admissible if and only if itaj and

i < /' imply a(i) < a(i'). In other words, a is r/-admissible if and only if a

is a descending line on every block-row. The set of r/-admissible permutations

is denoted by S    . Observe that S     is not a semigroup.

Example, a - (12 34 6)(5 7) in Figure 2 is (3, 2, 2)-admissible but not
(2,2, 3)-admissible.

In view of the application to hereditary orders in Theorem 7 we separate the

lattice {\, ... , n)   into two disjoint parts:

[t< J] = {(l,J) With !/•(/) <tl*(j)},

V> J] = {(iJ) with i/*(i) >r¡*(j)}.

We visualize this separation with a line as in Figure 2 for rj = (3, 2, 2).
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Definition 1.3. (i) The block numbers of a are

ba(!, k) = #{(i,a(i)) | t¡*(i) = l and rt*{a(i)) = k}   for 1 <l,k<r.

(ii) The upper and lower row indices of a axe

¡ r+(l) = #{(i,<7(i))\n*(i) = l<r1*(a(i))}
< for 1 < / < r.
\r-(l) = #{(i,o(i))\n*(i) = l>n*{o(i))}

(iii) The upper and lower column indices of a are

\c+a(k) = #{{i,a(i)) I rf(ï) <n(o(i)) = k}
{ for 1 < k < r.
\c;(k) = #{(i,a(i))\r¡*(i)>ri*(a(i)) = k}

We directly obtain the following

Properties. ( 1 ) For 1 < k < I < r we have

<W=EM'.fe).   CJ(*)= EM'.*)-   £(*) + <£(*) = »*■
!</<* fc</<r

(2) For 1 < / < r we /zuv^

^(0= E «¿"to- E ';(*) = E Ü')- E c;í/)>o.
!</</        2</</       l<i<r l<j<r

Proof. The first property is trivial, and for the second property we note that

va(i)= E   E M'.»>o- n

Lemma 1. Consider a set of natural numbers A = {/•(/), c(A:) 11 < A: < / < r}

wzi/i 0 < r(/) < n/ ûaîîj' 0 < c(k) < nk for 1 < k < I < r, and denote

SA = {(7 6 Sw | /•;(/) = r(l), c~(k) = c(k)for I < k < I < r}.

Then

(i) //?£ set S4 is nonempty if and only if for \ < I < r

E cu) - e m = E '(0 - E ^') ̂  °;
■<;'</ 2</</ /</</• /<;<r

(ii) in this case there exists a unique od e S ¡ that satisfies the additional

condition that ad is a descending line on [i < j], on [i >- j], and on every

block-column.

Proof, (i) It is clear that the conditions on r(l) and c(k) are necessary and

sufficient conditions to obtain that SA is nonempty.
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Figure 3. The graph of o,

(ii) We now construct the unique ad e SA Since this a. is a descending

line on block-rows and block-columns, and also on [/ < j] and [/ y j], the

graph of ad has the form shown in Figure 3.

It is now clear that this graph is uniquely determined by the set A . Namely,

r(l) (resp. c(k)) is the number of points (/, a'i)) in [i > j] that belong to the

block-row rf(i) = I (resp. block-column rj*(j) - k), for 1 < k < I < r.

Observe also that the conditions on /•(/) and c(k) are necessary and sufficient

conditions for being able to construct a graph as in Figure 3.   □

Definition 1.4. For SA = {a G S(n)\r~(l) = r(l),c~(k) = c(k) for 1 < k <

I < r) the unique ad defined by Lemma 1 (ii) is called a descending permutation,

abbreviated as desc. perm.

The reason for calling ad a descending permutation is clear from its graph,

cf. Figure 3. We introduce some further notation:

Notation. For ad a desc. perm, corresponding to S4 as in Lemma 1, we denote

(i) Cad = SA = {a e Sw\r;(l) = r(l) and c~(k) = c(k) for 1 < k <

l<r).
(ii)  (ad) - {a CzCa \a is a descending line on [i < j] and on [/' >- j]}.
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(iii) For a0 e (ad) : C^ = {a g Ca<¡ \ Ta n [i < j) = r9o n [/ ^ j]}.

(iv) For aieC°ao,a0e(ad): C\ = {a G CJ Ta n [,> j] = 1^ n [/ >- ;]}.

Lemma 2. 77zé> 5e/ C„ = M  c,„ N M  cr-° CL   « a disjoint union.

Proof. Let er G C   , and denote by i. < ■•■ < i    the rows for which (i, a(i)) e
d

[i ■< j]. We consider the permutation % g Sm such that

(7(/,(l))<t7(',(2))<---<ff(Z,(m))

and define the unique rr,  for which

{ox(ik) = o(in(k))   for \<k<m,

I ax(i) = a(i) otherwise.

Then ax G Ca   such that ct g Ca , and o^  is a descending line on [j < j].

Using similar arguments on ax  and [/ y j], we construct a unique rj0 G CCT

such that ax G Cff   and ct0 is a descending line on [/' >- j]. But o0 is also a

descending line on [/ < j], since it coincides with ax ; we therefore conclude

that fJ0 G (ad).   D

2. A COUNTING PROBLEM

For the calculation of the genus zeta function of local hereditary orders,

we need to consider the following counting problem; cf. the remark following

Lemma 10.

For a G S we consider two disjoint subsets a\ and a2 of the lattice

{\,...,n}2:

Í ol = {(i,j)\j>a(i) anda  l(j)> /},

1 o2 = {(i,j)\j>a(i) and a~ '(;')< /}.

For # G N we need to count how many matrices (xj   ) G Mn(\S) satisfy the

properties

(PI) x¡   ... = 1    (uniquely determined),

(P2) x¡ , = 0       if j < a(i) (uniquely determined),

¡\, ... , q     if (/', j) G [i' < j] n cri (q possibilities),

I, ... , q2   if (i, j) G [/ < j] n cr2 (^2 possibilities),

Í 1 if (/,/) G [/ >- yin a 1 (uniquely determined),
(P4) x     = s

'•-'     \l,...,q   if (/, j) G [/'>- j] ntr2 (<? possibilities).

Remark. Denote A/+ = #([/ ^ y] n cr2) and AT = #([/ >- j] n crl) ; then the

number of matrices satisfying properties (P) is <?' (CT), where

(m
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Lemma 3. Let od be a desc. perm, with lower row and column indices ra (I)

and c~(k),  1 < k < I < r. For every c G (ad), there holds

r-a(l)(r~a{l)+\)

2</<r

Proof. For 1 < /'0 < n , denote

JÎ = {j\o  '(;') < i0 < j and ; > rj(/0)},

Jjo ={J\o  '(;') > iQ >■ j and ; > ct(/0)}.

Then /v;-A/; =E,<,o<„(#/,;-#/").

We remark first that L <o(L) implies /+ = /,   = 0 :
u u 'o 'o

(a) If j G J~ , then z'0 > j > a(i0) implies i0 >- a(i0).

(b) If ; G /(+ , then j > a(iQ) > iQ > a~\j) implies j > a~ (j), and since

a is a desc. line on [i < j], we obtain that iQ > o~\j) implies a(iQ) > j,

contradicting / G J,  .
'0

We now fix L >- o(in) and calculate J~ , J+ :
u J 'o        'o

(a) Let ;' G J¡ ; then j > i0 >- a(i0), and the last condition can be omitted:

J* = {J\o~lU)<i0lJ}-

Moreover,  /'0 « a~ (j) and j G J*  imply /0 >- a(iQ) > j, a contradiction;

thus,

j+ = {j\<r~l(j)<i0<j}.

Using Property (2) of §1, we conclude: if i0 > a(i0), then

#< =     E E    K(l^) = Ua(r,*(i0)).
>í(i0)<k<r   l<l<r,'(i0)

(b) Let j G J~ ; then j < iQ < a~ (j) implies o~ (j) > j. Since a is

a descending line on [;' >- j], we conclude that /0 < a~ (j) is equivalent to

a(ifi) < J ! ana< again the last condition can be omitted. We rewrite /~ as
'o

Jj   = {j\a  \j)> i0>J)
'o

= [J\o~\j) > i0> j}\{j\a~\j)^i0>- j and a~\j)< i0}.

We now calculate the cardinality of the last set,

Sub = {;' | a' (j) « iQ y j and a~ (j) < iQ}.

Since /0 > a~ (j) ss /'0 implies o(i0) > j, which in turn implies iQ y j, we

can omit the second condition; thus, Sub = {j = a(i) \ iQ « i and iQ > /'}.

Therefore, #Sub = /'0 - S (rj*(i0)), and as in (a) we find

#•£ = Uatf{i0)) - U0 - S.iif (/„))] = #K - V0 - S„(rj*(i0))].
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So, finally,

K-K= E Jt-\= E ih-stfdo))]

r~(l)(r-a(l)+l)

i0>"(i0)

-£    L *=£
2</<r   i<s<r;(l) 2</<r

This completes the proof of Lemma 3.   D

Definition 2.1. For 0 < / < m , define the Gaussian polynomials

1,
(qm-\)---(qm'M-V

(q'-l)---(q-l)
[m]

Lemma 4. We have

I- 1
m-j-l ifl>0.=  E *

0<j<m-l

Proof. For 1=1, the identity is evident, and for / > 1 it can easily be proved

by induction on /.   D

Lemma 5. For I = {/, <</,<•< im} and a0 G Sn with crQ(ix) < •■■ <

o~0(im), consider

C

Then

(I. m)
■{•

^<;-<^J

E «
cr€Cl''m)

JV(<x) _    N(a0)

Proof. We prove this by induction on /.

(a) / = 0 : Cf-m) = {a0}, so the statement follows.

(b) Assume that the statement holds for Í < I. As illustrated in Figures 4(a)
U) M,m)

and 4(b), for 0 < j < m-I we consider a    , the unique a G C '     for which

/-i

tr(/'/+1) <-"<<j(/;   +1) <ff(/,)<   a(i2) <■■■ <a(it) < o(il+J+2) < ■ ■ ■ < a{im)

m—j— 1

(/-l ,m-j-l)
It is clear that C{J'm) = U0<;<m-, c„\j> l'm~J~1' (a disjoint union); indeed,

„(/-i,ot-;-1)     ,       ^(i.m) i _/,• -,     „O')/,- n
Cg[J, = {aeC^      \rj(ix) = a    (',)}.

Moreover, it follows from Figures 4(a) and 4(b) that N(a{j)) = N(a0) + Ij.

From the induction hypothesis we obtain

EN(o) K~~* V^ N(a)a    =   L       E    «   •
^GC'1 0<j<m-j   aççil-l.m-j-l)
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'/+!

';+; + !

'l+j+2

I

vr. ////,fi
'/+!

'/+;+l

'l+j+2

151£/// /A--

Figure 4(a). rjn Figure 4(b). a (./)

We thus conclude

EIV(u| N(an)      v^ /

(76CÍ' 0<j<m-l

I- 1
m-j-l

.N(°a
.     □

Theorem 6. For a desc. perm. ad corresponding to ra (I) and c  (k),  1 < k <

I < r, we have

(i) e iN{a) = ̂  n
<76C" 2</<r

r'ad) /or every a0 G (arf) ;

di)   e*   =«lff|)n
<rec' 2</<r

/or every <7. G C   .

Proof, (i) Recall that C° = {o g Cct | Ya n [/' -< y] = Ta n [j -< y']} . Denote

^2 = {'I'/*(') > 2 > ?7*(<T(0)} = {'i < ••• < i(/(2)} and observe that {/', <

' ' < 'r;(2)} = {' € 721 tf*(0 = 2} • Since ao(h) < • • • < ao(iUa(2)) » we can aPP!y

Lemma 5 to obtain

E
<rec'2

q       =q
[Ua(2)\

where Ca = Qr" °( ' for 2 < /: < r. To continue this procedure, we

renumber the rows and consider I} = {i\r¡*(i) > 3 > rj*(a(i))} = {/'. < ••• <

i'^(3)} with {/,<•■•< ir_(3)} = {/ g /31 i/*(i) = 3}. For every ax G Ca2) we

find fj,(/,) < ■ ■ • < <7,(/t, (3)), so we can apply Lemma 5 and find

a€C{J>

N(o) _     N(at)

^(3)
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-(3) „        ,- r(r)
Similar calculations can be made for a2 G Ca   , ... , ar_x G Ca    , and we note

that

<= U   U  -   U  K-,}
a,eC'2' <7,eCi3)      a   ,ec<r>

I (7q 2 o i r — 1 ar — 2

is a disjoint union. We finally obtain

e <? (ct)=«^ n
,6C; 2<A-<r

f„(*)j

(ii) Recall that Q ={aëCjro n [i >■ y] = Ya n [/ >- y]}. Denote

■/2 = {»'|if(0 < 2 < if(ff(/))} = {/,<••■< ^(2)+r;(2)}- Since o,(/,) < ■■■ <

ox(iv (2)+/+(2)) ' we can aPPly Lemma 5 to obtain

C(2)M<T) „A»(<7.)EA   <T /

<7€D!,21
^(2) +^(2)

where D¡f} = clJ'{k),U'lk)+r'{k)) for 1 < fc < r. We continue the proof as in

(i), and the assertion easily follows.   □

3. The genus zeta function of a local hereditary order

Let 7? be a discrete valuation ring in a local field K with prime ideal P. We

will consider hereditary /^-orders in a central simple .rí-algebra A = M (D).

The valuation v has a unique extension vD in the skew field D. We denote

by A the unique maximal Ä-order in D and by /t = AW the unique two-sided

prime ideal in A. Then #(A//?) = q with q finite; we refer to [11] for a more

detailed description.
A maximal Ä-order in A is isomorphic to Mn(A). For the hereditary .re-

orders in A we have

Theorem 7. A hereditary R-order in A is defined up to isomorphism by its local

type r and local invariants ?/ = («,,..., nr), n¡^ 0, with Sir) = n , namely

Q = e" = {xe m„(A) \X¡J gA ifnd) > n*(j)},

where rj* is the block map associated with the r-tuple y\ .

Proof. Cf. [11, p. 358].   D

Remark. The local invariants r¡ are determined up to a cyclic permutation.

Definition 3.1. The genus zeta function of a local R-oxdex 0 is

Ze(s) = E(ö:-STS>        *e(s)>\,

where the sum ranges over the free ideals Sf = Ox , x G A* (the units of A),

which are integral (i.e., 5? C 0) and (0: S?) = #(&/^).

Remark. One has (0: 0x) = |x|~  , where jjc| is the module of x , cf. [1].
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Theorem 8. For a maximal R-order A in A we have

zA(s)=çA(s)= n (l-^'-v.
o<;<«-i

Proof. We sketch the main steps of the proof; details can be found in [ 1, Chapter

3.3],
Note first that //(A) = 1, where h(A) is the class number of a local maximal

order A, so the zeta function of A coincides with its genus zeta function.

Furthermore, ÇA(s) = ]T)' \x\s > where x ranges over a full set of representatives

of A*\An^*. We can assume that A = Mn(A) ; then every class in A*\An^*

has a unique representative in "Hermite-normal form", i.e., x = (at   ) with

ai,, = n .A,.€N,

if j < i,

a   . eA/lt'A   if y > /.

Observe that these "Hermite-normal forms" are upper triangular. The number

of "Hermite-normal forms" with fixed values of A = (A,, ..., AJ is

0-Xl+\-X2+---+(n-l)-Xn _    TT    „L/'-IM,

For these x , we have |x| = q
-(X.+-+XJ-n

rw
We conclude that

/.,

j-ns,- 1caw=e n^~ns\ = no-«
À6N"  V1^^" J 0<j<n

This completes the proof.   D

We recall a result of C. J. Bushnell and I. Reiner on the genus zeta function

of local /î-orders in central simple algebras:

Theorem 9. If 0 c A are R-orders in A with A maximal, then

Ze(s) = CA(J) • fe(Q~S)    "M fe(q~s) G Z[q~s].

Proof. Cf. [1, Theorem 1],   □

Our aim is to determine the polynomial /e for hereditary Ä-orders in A .

Lemma 10. Let 0 = 0'' be the standard hereditary order with local invariants

r], cf. Theorem 7; then every class in 0*\0 n A* can be uniquely represented by

a " Q-normal form" x . Here, x = (a(   ) G 0 is a " Q-normal form" belonging

to aeSw and X G N" if and only if

Í   ("1K.,T(/)=^<"">
(n2)a/; = 0   ifj<a(i),

. .,        . Í A/^;'^      if(i,j)eal,
«3   a,. , G <

y     U/X'+1    ;/(/,y)Ga2,
l (n4)ñ\ai j   if(i,j)e[i>j].
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Proof. Cf. [9, p. 35] for a detailed proof. Using the same techniques as for

the reduction to "Hermite-normal forms", we get these " O-normal forms" if

we consider that the elementary transformations corresponding to left multi-

plication with matrices e are 'allowed' if and only if e g 0 *. For e = P(¡,

the permutation of the z'th and the y'th row, we have e G 0* if and only if

1*(i) = 1*(j) ■ F°r e = T¡j(y), replacing the ith row by the z'th row +y times

the y'th row, we have e G 0* precisely if i < j ox n\y .   D

Remark. If A, = ••• = Xn = 1, then the "©''-normal forms" corresponding

to a G S axe bijectively in correspondence with the matrices in (P) of §2.

If a = ln , the identity, then the "©''-normal forms" corresponding to a are

the "Hermite-normal forms". Moreover, if x G 0'' is a " ©''-normal form"

corresponding to o G S(n) and leN", then clearly A ,., > 0 if i > a (i).

We conclude that the number of " ©''-normal forms" corresponding to a G S

and A G N", with A ,., > 0 if / >- a(i), iis

N„-N~ ni<j<"
.o-iw,

Theorem 11. The genus zeta function of a hereditary R-order 8 = 0' is

Z0(s) = CA(s)-f0(q-ns),

»here fe(Y) = Zaadexp^C(a)-q^.Yk

VUa(l)\    [Ua(l) + r+a(l)_
c(o)= n

2</<r

» with Y = q~ns and

c~(kyn
\<k<r

pow(o) = -   E'-;(/)2+ ECW2  + £sf(*-i).c;(*),
v2</<r I<A:<r J        l<*<r

U(a) = #/a w/A/^c/k"1 (»>-;}•
Proof. As in Theorem 8, we can assume that © = ©'', and we find Ze(s) =

J2' \x\s, where x runs over the " ©''-normal forms", so

ze(s) =  E <?
creS1"1

n:-n:

/leN"     i<y<«
A>0ifye/„

j-l-ns^Xj

Fix a0 G (ffrf) with ad a descending permutation. Note that for a G (J

we have /  = /   . Using Theorem 6, we calculate

*(*o) = E  E ^+";

ff.ee,
C

".,

o.ea   oec'1 (IQ U,

=    9N. -N„ n
2<l<r

r~(D
UAD\ Ua(D + r+a(l)\
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From Lemma 3 we recall  Ng - N~ = ¿ lZ2<i<rrâ(l)(râ(t) + U f°r every

o0 G (ad) ; thus ß(a0) = B(ad). Using Lemma 2, we find

w =    E   *(*„) E    E    n^"1"")^-
ct, a desc. perm. °0£(ad)       X&i"        !</<»

XjXHtjei,

Observe that for I c {1,..., n) we have

E   /ïî)=E^)-EE/w+"'+h)"   E   /(*)■
ÀGN" A6N" je/ AeN" /16N"

Xj>0 if j€l A;=0 Xj=Oifj€l

We apply this to /(j) = rii</<„(^      "J) J ana< l = la ■ Tn^s yields

e /<*)= n (i-^-'-v-n^"1""-
^>0ifj€/o

Substituting this in the expression for Ze(s), we find

w-cam-  e  ^)Íe n^'V^-
ad a desc. perm. \a€(ad) j€f J

Now we calculate

(i) E UV"1-
oe{«d)jei.

Let <j/w G (rj¿) be uniquely determined by

hm = is„(k -l)+j\l<k<rmdl<j< c~(k)}.

Then the exact power of q dividing ( 1 ) corresponds to the contribution of am

and is given by

qN=U^ with*= Zc;(k).s¿k-i) + c^k)%{k)-l).

jel„m l<k<r

To calculate (1), we use the same techniques as in the proof of Theorem 6:

Denote Jk = {z, < • • • < in } = {z1 rf(am(i)) = k} and note that {/, < ■ ■ • <

i +    } = {/'|í7*(<Trf(/)) = A >; /}. Let C(k) = cjr»<*,""*) be defined as in Lern-
a       ' in in

ma 5:

<' = |. € MI .(I) - ..(0 ¡f « * A and | ,,. ;'m+i) o    ^ j | .

Since the powers of <7 in ( 1 ) are exactly the same as the powers of q in Lemma

5, we can extend the result:

I Ne n*'"=»
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Writing (ad) as a disjoint union over Ca   , we conclude that

(i)=/- n„A7

l<A<r

and the theorem follows.   D

nk

Remarks. ( 1 ) The result is technically complicated but it can be used to calculate

the genus zeta function explicitly. Namely, generate all sets {ba(l, k) | 1 < k <

I < r} for which the following conditions are satisfied:

(i)   E W>i) ^ nl and  E boV> k^nk    for 1 < /c < / < r;
1 <_/</ k<i<r

(ii) ba(l,k) * 0 => bjl + 1, y) = 0   for all j < k.

These conditions imply that there exists a unique descending permutation a

with these block numbers. Then we calculate k(a), C(a), and pow(a) using

Theorem 11. This computation can be done by a computer.

(2) We have a check, to detect errors in the program, since

lll</<rlll<y<n(l^J

This follows from the idele description for Ze(s) and the functional equation,

see[l, 3, 9]. We find that

ze(0)   p*{e"')

Jq[1)    cA(0)    p*(A*) '

which can be calculated for hereditary orders, see [13, 9].

In the appendix we give some examples calculated with the Siemens main-

frame computer (BS2000 Operating System).

4. The genus zeta function of minimal hereditary orders

and #-eulerian polynomials

L. Carlitz introduced the notion of #-Eulerian polynomials An k(q) for 0 <

k < n, with the property that, evaluated at q = 1 , one obtains the Eulerian

numbers, cf. [6]. These polynomials are defined by the recursion formula

Ank(q) = [n+l-k]-An_ik_l(q) + q"~k[k]'An_lk(q).

Denote by Bn k(q), 0<k<n, the coefficient of Yk in fQ(Y), with 0 = Qn

the minimal hereditary order, i.e., r\ = (1, ... , 1). The referee informed us of

a quite unexpected relationship between the Bn k(q) and the An k(q).

After we calculated examples up to n = 20, we conjecture that the exact

relation is

An,„-k(<l)=Bnik(q).

We are not able to match the definition of Bn k{q) with the known interpreta-

tions for An k(q), cf. [6]. So we think the only way to prove the relation is to

show that Bn k(q) satisfies the recursion formula. From Theorem 11 we now
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deduce the expression (C) below for Bn k(q) which only involves combinato-

rial calculations.

For t] = (1, ... , 1) we find S{r,) = Sn (namely rj*(i) = i for every i), so

Theorem 11 yields

Bn,k(q)= E C(a).qM).
CT€Sn a desc. perm, with # Ia=k

For a G S„, let Ia = {y, < < y"J with 1 < jm = a(ij < im < n and

k = #Ia . Restricting to a desc. perm, a yields z, < • • • < z'^ and such a ct is

completely determined by the k couples ( i   , j ).

We calculate now C(a) and pow(cr) in terms of (im, jm) : pow(cr) = jx +

■■■+ jk. Moreover, £/,(/) = #{i\a(i) </</} = #{m\jm < I < ij. We

introduce the notation V(j    . }(/) = #{m\jm < I < im} + 1. Since r~(im) = 1

and r*(im) = 0 for 1 < m < k, and r~(l) = 0 and r*(/) = 1 otherwise, we

find^.;w)(/) = ^/) + ^/)-

With n¡ = 1 we obtain C(cr) = Ili</<„[^/    , ,(0] and thus

(C) Bnk(q)=   E   ̂ ,+'"+A   II[^.yj(')]-

We remark that the recursion formula has no natural interpretation. Using

the expression (Ç), we could prove the recursion for k < 2 , but we were not

able to prove it in the general case. The conjecture (C) is proven by D. Foata

and D. Zeilberger, in Denert's permutation statistic is indeed Euler-Mahonian,

preprint. Moreover, the "problem" only occurs for minimal hereditary orders.

So, maybe a generalization of ^-Eulerian polynomials is needed to understand

the matter completely.

Appendix. Examples for f(Y) = fQt](Y) with Y = q~'

1. f<»-i\Y)=l + [qn-l+..- + q2 + q]Y.

2. fl-i)(Y) = l+[qi + q2 + q]Y.

3. f--2\Y) = 1 + [q3 + 2q2 + q]Y + [qA]Y2 .

4. /(1'1'2)(T) = \ + [2q3 + 3q2 + 2q]Y + [q5 + 2q4 + q^Y2.

5. /(1 ' ' ' ' ' l)(Y) = 1 + [3q3 + 5q2 + 3q]Y + [3q5 + 5q4 + 3q3]Y2 + [q6]Y3.

6. f-*\Y)=\+[q* + q' + q1 + q]Y.
7. /(2,3)(T) = l + [q4 + 2q' + 2q2 + q]Y + [q6 + q5 + q4]Y2 .

8. /(I'''3)(T)= l+[2i4 + 3^3 + 3^ + 2^]y + [^7 + 2^6 + 3^5 + 2/ + ^3]y2.

9. /(1 '2'2)(F) = 1 + [2q4 + 4q} + 4q2 + 2q]Y + [q1 + 4qb + 5q5 + 4q4 +

q^Y' + tf + q7^.
10. /(' ' ' ' ' -2)(Y) = 1 + [3q4 + 6q3 + 6q2 + 3q]Y + [3q7 + Sq6+l lq5 + 8^4 +

3qi]Y2 + [q9 + 3q* + 3q1 + q6]Y\

11. /(1 ' ' ' ' ' ' ' "(F) = 1 + [4q4 + 9<73 + 9q2 + 4q]Y + [6q7 + I6q6 + 22q5 +
\6q4 + 6q3]Y2 + [4q9 + 9q% + 9q1 + 4qb]Y3 + [q[0]Y4 .
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12. f<2<2-2-2\Y) = l+[3?7 + 9?6 + 15?5 + 18?4 + 15?3 + 9?2 + 3?]y + [3?13 +

17?12 + 41?" + 77q[0 + I04q9 + 119?8 + 104?7 + 77?6 + 41?5 + 17?4 +

3<73]F2 + [?18 + 12<?17 + 39?16 + 86?15 + 145?14 + 194?13 + 214?12 +

194?' ' + 145?10 + 86?9 + 39?8 + I2q7 + q6]Y3 + [3q21 + I7q20 + 41?19 +

77?18+104?17 + 119?16+104?15 + 77?14 + 41?13+17?12 + 3?"]y4 +

[3(?23 + Q<?22 + l5q2) + 18^20 + 15i,9 + 9i18 + 3^^ + [(?24]y6

13. f<l>2>2'2\Y) = 1 + [3?6 + 8?5 + I2q4 + I2q3 + 8?2 + 3q]Y + [3?" +

14?10 + 30?9 + 48?8 + 54?7 + 48?6 + 30?5 + 14?4 + 3?3]y2 + [?15 + 9?14 +

24?13 + 44?12 + 58?" + 58?10 + 44q9 + 24?8 + 9q7 + q6]Y3 + [2?17 +
oJ6  ,   ,„   15  ,   ,~   14  .   ,A   13  ,   o   12  ,  -   111V-4  ,  r   18   ,      '7-ivS
8?    + I4q    + I7q    + I4q    + 8?    +2q   ]Y  +[q    + q   ]Y  .

14. /' '2'3'4)(F) - l + [3q9 + 8?8 + I4q7 + 19?6 + 2lq5 + I9q4 + I4q3 +

8?2 + 3?]y + [3?17+14?16 + 36?15 + 73?14 + 118?13 + 166?12 + 200?" +

215q10 + 200?9 + 166?8 + 11 8?7 + 73?6 + 36q5 + I4q4 + 3q3]Y2 + [q24 +

9q23 + 30q22 + 77?21 + 154?20 + 264?19 + 392?18 + 516?17 + 605?16 +

639q]5 + 605?14 + 516?13 + 392?12 + 264?" + 154?10 + 77?9 + 30?8 +

9?7 + ?6]y3 + [2?29+10?28 + 33?27 + 80?26+158?25 + 268?24 + 395?23 +

518?22 + 606?21+640?20 + 606?19 + 518?l8 + 395?l7 + 268?16 + 158?15 +
on   14   ,   ->->    13   ,   m   12   ,   -,    lllv4  ,  r   33   ,   c   32   ,   , -,   31   ,   -,n   30   ,   -,-   29   ,
80? +33? +10? +2? ]Y +[? +5? +17? +39? +75? +

119?28 + 164?27 + 197?26 + 210?25 + 197?24 + 164?23 + 119?22 + 75?21 +
in   20   ,    n    19   ,   ,    18   ,      171v-5   ,   r   35   ,   -,   34   ,   -,   33   ,    , -,   32   ,    . ,   31    ,
39?    +17?    +5?    +?   ]Y  +[q    + 3q    +7?    +12?    +16?    +
i o   30   ,   . ¿   29   ,   . -,   28   ,   -,   27   ,   .,   26   ,      25, v6
18?    +16?    +12?    +7?    +3?    +q   ]Y .

15   ^(i,i.i,i.i.i)(r)= i+[5í5+i4í4+1903+14tf2 + 5í]y + [lOí9 + 35tf8 +

66?7 + 80?6 + 66?5 + 35?4 + 10?3]y2 + [10?12 + 35?" + 66?10 + 80?9 +

66?8 + 35?7 + 10?6]y3+[5?'4 + 14?13 + 19?12 + 14?"+5?10]y4+[?15]y5.

16. /C'-i.'.2,2,2)(y) = 1+[6(79 + 23?8 + 52?7 + 82?6 + 95?5 + 82?4 + 52?3 +

23?2 + 6?]y + [15?17 + 82?16 + 257?15 + 518?i4+1033?'3 + 1519?12 +

1894?"+2037?10+1894?9 + 1519?8 + 1033?7 + 518?6 + 257?5 + 82?4 +

15?3]y2 + [20?24 + 135?23 + 492?22 + 1295?21 + 2711?20 + 4757?19 +

7206?'8+9597?17+11355?16+12003?'5+11355?l4+9597?13+7206?12+

4757?"+271 l?'°+1295?9+492?8+135?7+20?6]y3+[15?30+124?29 +

509?28+1469?27+3344?26+6373?25 + 10495?24+15233?23+19730?22+

22978?21 + 24165?20 + 22978?19 + 19730?18 + 15233?17 + 10495?16 +

6373?15 + 3344?14 + 1469?13 + 509?12 + 124?" + 15?'°]y4 + [6?35 +

65?34 + 304?33 + 946?32 + 2264?31 + 4463?30 + 7524?29 + 11099?28 +

14529?27 + 17025?26 + 17939?25 + 17025?24 + 14529?23 + 11099?22 +

7524?21 + 4463?20 + 2264?19 + 946?18 + 304?'7 + 65?'6 + 6?'5]y5 +

[?39+ 18?38+ 102?37 + 342?36 + 837?35 + 1628?34 + 2641?33 + 3672?32 +

4449?31 + 4739?30 + 4449?29 + 3672?28 + 2641?27 + 1628?26 + 837?25 +

342?24 + 102?23 + 18?22 + ?2,]y6 + [2?41 + 17?40 + 62?39 + 145?38 +

250?37 + 341?36 + 377?35 + 341?34 + 250?33 + 145?32 + 62?3' + 17?30 +
->   291V7   ,   r   42   ,    .   41   ,   ,   40   ,    .   39   ,      381v8
2?   ]Y  +[q    +4?    +6?    +4?    + q   ]Y .
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